/* $NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $ */ /* * Copyright (c) 1996, 2000 Christopher G. Demetriou * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the * NetBSD Project. See http://www.NetBSD.org/ for * information about NetBSD. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )-- */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratories. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL) * * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94 */ #include __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.165 2008/11/18 21:20:32 macallan Exp $"); #include "opt_ddb.h" #include "drvctl.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_userconf.h" #ifdef USERCONF #include #endif #ifdef __i386__ #include "opt_splash.h" #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) #include extern struct splash_progress *splash_progress_state; #endif #endif /* * Autoconfiguration subroutines. */ typedef struct pmf_private { int pp_nwait; int pp_nlock; lwp_t *pp_holder; kmutex_t pp_mtx; kcondvar_t pp_cv; } pmf_private_t; /* * ioconf.c exports exactly two names: cfdata and cfroots. All system * devices and drivers are found via these tables. */ extern struct cfdata cfdata[]; extern const short cfroots[]; /* * List of all cfdriver structures. We use this to detect duplicates * when other cfdrivers are loaded. */ struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers); extern struct cfdriver * const cfdriver_list_initial[]; /* * Initial list of cfattach's. */ extern const struct cfattachinit cfattachinit[]; /* * List of cfdata tables. We always have one such list -- the one * built statically when the kernel was configured. */ struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables); static struct cftable initcftable; #define ROOT ((device_t)NULL) struct matchinfo { cfsubmatch_t fn; struct device *parent; const int *locs; void *aux; struct cfdata *match; int pri; }; static char *number(char *, int); static void mapply(struct matchinfo *, cfdata_t); static device_t config_devalloc(const device_t, const cfdata_t, const int *); static void config_devdealloc(device_t); static void config_makeroom(int, struct cfdriver *); static void config_devlink(device_t); static void config_devunlink(device_t); static void pmflock_debug(device_t, const char *, int); static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO); static device_t deviter_next1(deviter_t *); static void deviter_reinit(deviter_t *); struct deferred_config { TAILQ_ENTRY(deferred_config) dc_queue; device_t dc_dev; void (*dc_func)(device_t); }; TAILQ_HEAD(deferred_config_head, deferred_config); struct deferred_config_head deferred_config_queue = TAILQ_HEAD_INITIALIZER(deferred_config_queue); struct deferred_config_head interrupt_config_queue = TAILQ_HEAD_INITIALIZER(interrupt_config_queue); int interrupt_config_threads = 8; static void config_process_deferred(struct deferred_config_head *, device_t); /* Hooks to finalize configuration once all real devices have been found. */ struct finalize_hook { TAILQ_ENTRY(finalize_hook) f_list; int (*f_func)(device_t); device_t f_dev; }; static TAILQ_HEAD(, finalize_hook) config_finalize_list = TAILQ_HEAD_INITIALIZER(config_finalize_list); static int config_finalize_done; /* list of all devices */ struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs); kcondvar_t alldevs_cv; kmutex_t alldevs_mtx; static int alldevs_nread = 0; static int alldevs_nwrite = 0; static lwp_t *alldevs_writer = NULL; static int config_pending; /* semaphore for mountroot */ static kmutex_t config_misc_lock; static kcondvar_t config_misc_cv; #define STREQ(s1, s2) \ (*(s1) == *(s2) && strcmp((s1), (s2)) == 0) static int config_initialized; /* config_init() has been called. */ static int config_do_twiddle; struct vnode * opendisk(struct device *dv) { int bmajor, bminor; struct vnode *tmpvn; int error; dev_t dev; /* * Lookup major number for disk block device. */ bmajor = devsw_name2blk(device_xname(dv), NULL, 0); if (bmajor == -1) return NULL; bminor = minor(device_unit(dv)); /* * Fake a temporary vnode for the disk, open it, and read * and hash the sectors. */ dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) : MAKEDISKDEV(bmajor, bminor, RAW_PART); if (bdevvp(dev, &tmpvn)) panic("%s: can't alloc vnode for %s", __func__, device_xname(dv)); error = VOP_OPEN(tmpvn, FREAD, NOCRED); if (error) { #ifndef DEBUG /* * Ignore errors caused by missing device, partition, * or medium. */ if (error != ENXIO && error != ENODEV) #endif printf("%s: can't open dev %s (%d)\n", __func__, device_xname(dv), error); vput(tmpvn); return NULL; } return tmpvn; } int config_handle_wedges(struct device *dv, int par) { struct dkwedge_list wl; struct dkwedge_info *wi; struct vnode *vn; char diskname[16]; int i, error; if ((vn = opendisk(dv)) == NULL) return -1; wl.dkwl_bufsize = sizeof(*wi) * 16; wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK); error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED); VOP_CLOSE(vn, FREAD, NOCRED); vput(vn); if (error) { #ifdef DEBUG_WEDGE printf("%s: List wedges returned %d\n", device_xname(dv), error); #endif free(wi, M_TEMP); return -1; } #ifdef DEBUG_WEDGE printf("%s: Returned %u(%u) wedges\n", device_xname(dv), wl.dkwl_nwedges, wl.dkwl_ncopied); #endif snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv), par + 'a'); for (i = 0; i < wl.dkwl_ncopied; i++) { #ifdef DEBUG_WEDGE printf("%s: Looking for %s in %s\n", device_xname(dv), diskname, wi[i].dkw_wname); #endif if (strcmp(wi[i].dkw_wname, diskname) == 0) break; } if (i == wl.dkwl_ncopied) { #ifdef DEBUG_WEDGE printf("%s: Cannot find wedge with parent %s\n", device_xname(dv), diskname); #endif free(wi, M_TEMP); return -1; } #ifdef DEBUG_WEDGE printf("%s: Setting boot wedge %s (%s) at %llu %llu\n", device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname, (unsigned long long)wi[i].dkw_offset, (unsigned long long)wi[i].dkw_size); #endif dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size); free(wi, M_TEMP); return 0; } /* * Initialize the autoconfiguration data structures. Normally this * is done by configure(), but some platforms need to do this very * early (to e.g. initialize the console). */ void config_init(void) { const struct cfattachinit *cfai; int i, j; if (config_initialized) return; mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE); cv_init(&alldevs_cv, "alldevs"); mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&config_misc_cv, "cfgmisc"); /* allcfdrivers is statically initialized. */ for (i = 0; cfdriver_list_initial[i] != NULL; i++) { if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0) panic("configure: duplicate `%s' drivers", cfdriver_list_initial[i]->cd_name); } for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) { for (j = 0; cfai->cfai_list[j] != NULL; j++) { if (config_cfattach_attach(cfai->cfai_name, cfai->cfai_list[j]) != 0) panic("configure: duplicate `%s' attachment " "of `%s' driver", cfai->cfai_list[j]->ca_name, cfai->cfai_name); } } initcftable.ct_cfdata = cfdata; TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list); config_initialized = 1; } void config_deferred(device_t dev) { config_process_deferred(&deferred_config_queue, dev); config_process_deferred(&interrupt_config_queue, dev); } static void config_interrupts_thread(void *cookie) { struct deferred_config *dc; while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) { TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue); (*dc->dc_func)(dc->dc_dev); kmem_free(dc, sizeof(*dc)); config_pending_decr(); } kthread_exit(0); } /* * Configure the system's hardware. */ void configure(void) { extern void ssp_init(void); CPU_INFO_ITERATOR cii; struct cpu_info *ci; int i, s; /* Initialize data structures. */ config_init(); pmf_init(); #if NDRVCTL > 0 drvctl_init(); #endif #ifdef USERCONF if (boothowto & RB_USERCONF) user_config(); #endif if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) { config_do_twiddle = 1; printf_nolog("Detecting hardware..."); } /* * Do the machine-dependent portion of autoconfiguration. This * sets the configuration machinery here in motion by "finding" * the root bus. When this function returns, we expect interrupts * to be enabled. */ cpu_configure(); /* Initialize SSP. */ ssp_init(); /* * Now that we've found all the hardware, start the real time * and statistics clocks. */ initclocks(); cold = 0; /* clocks are running, we're warm now! */ s = splsched(); curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING; splx(s); /* Boot the secondary processors. */ for (CPU_INFO_FOREACH(cii, ci)) { uvm_cpu_attach(ci); } mp_online = true; #if defined(MULTIPROCESSOR) cpu_boot_secondary_processors(); #endif /* Setup the runqueues and scheduler. */ runq_init(); sched_init(); /* * Create threads to call back and finish configuration for * devices that want interrupts enabled. */ for (i = 0; i < interrupt_config_threads; i++) { (void)kthread_create(PRI_NONE, 0, NULL, config_interrupts_thread, NULL, NULL, "config"); } /* Get the threads going and into any sleeps before continuing. */ yield(); /* Lock the kernel on behalf of lwp0. */ KERNEL_LOCK(1, NULL); } /* * Announce device attach/detach to userland listeners. */ static void devmon_report_device(device_t dev, bool isattach) { #if NDRVCTL > 0 prop_dictionary_t ev; const char *parent; const char *what; device_t pdev = device_parent(dev); ev = prop_dictionary_create(); if (ev == NULL) return; what = (isattach ? "device-attach" : "device-detach"); parent = (pdev == NULL ? "root" : device_xname(pdev)); if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) || !prop_dictionary_set_cstring(ev, "parent", parent)) { prop_object_release(ev); return; } devmon_insert(what, ev); #endif } /* * Add a cfdriver to the system. */ int config_cfdriver_attach(struct cfdriver *cd) { struct cfdriver *lcd; /* Make sure this driver isn't already in the system. */ LIST_FOREACH(lcd, &allcfdrivers, cd_list) { if (STREQ(lcd->cd_name, cd->cd_name)) return (EEXIST); } LIST_INIT(&cd->cd_attach); LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list); return (0); } /* * Remove a cfdriver from the system. */ int config_cfdriver_detach(struct cfdriver *cd) { int i; /* Make sure there are no active instances. */ for (i = 0; i < cd->cd_ndevs; i++) { if (cd->cd_devs[i] != NULL) return (EBUSY); } /* ...and no attachments loaded. */ if (LIST_EMPTY(&cd->cd_attach) == 0) return (EBUSY); LIST_REMOVE(cd, cd_list); KASSERT(cd->cd_devs == NULL); return (0); } /* * Look up a cfdriver by name. */ struct cfdriver * config_cfdriver_lookup(const char *name) { struct cfdriver *cd; LIST_FOREACH(cd, &allcfdrivers, cd_list) { if (STREQ(cd->cd_name, name)) return (cd); } return (NULL); } /* * Add a cfattach to the specified driver. */ int config_cfattach_attach(const char *driver, struct cfattach *ca) { struct cfattach *lca; struct cfdriver *cd; cd = config_cfdriver_lookup(driver); if (cd == NULL) return (ESRCH); /* Make sure this attachment isn't already on this driver. */ LIST_FOREACH(lca, &cd->cd_attach, ca_list) { if (STREQ(lca->ca_name, ca->ca_name)) return (EEXIST); } LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list); return (0); } /* * Remove a cfattach from the specified driver. */ int config_cfattach_detach(const char *driver, struct cfattach *ca) { struct cfdriver *cd; device_t dev; int i; cd = config_cfdriver_lookup(driver); if (cd == NULL) return (ESRCH); /* Make sure there are no active instances. */ for (i = 0; i < cd->cd_ndevs; i++) { if ((dev = cd->cd_devs[i]) == NULL) continue; if (dev->dv_cfattach == ca) return (EBUSY); } LIST_REMOVE(ca, ca_list); return (0); } /* * Look up a cfattach by name. */ static struct cfattach * config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname) { struct cfattach *ca; LIST_FOREACH(ca, &cd->cd_attach, ca_list) { if (STREQ(ca->ca_name, atname)) return (ca); } return (NULL); } /* * Look up a cfattach by driver/attachment name. */ struct cfattach * config_cfattach_lookup(const char *name, const char *atname) { struct cfdriver *cd; cd = config_cfdriver_lookup(name); if (cd == NULL) return (NULL); return (config_cfattach_lookup_cd(cd, atname)); } /* * Apply the matching function and choose the best. This is used * a few times and we want to keep the code small. */ static void mapply(struct matchinfo *m, cfdata_t cf) { int pri; if (m->fn != NULL) { pri = (*m->fn)(m->parent, cf, m->locs, m->aux); } else { pri = config_match(m->parent, cf, m->aux); } if (pri > m->pri) { m->match = cf; m->pri = pri; } } int config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux) { const struct cfiattrdata *ci; const struct cflocdesc *cl; int nlocs, i; ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); KASSERT(ci); nlocs = ci->ci_loclen; KASSERT(!nlocs || locs); for (i = 0; i < nlocs; i++) { cl = &ci->ci_locdesc[i]; /* !cld_defaultstr means no default value */ if ((!(cl->cld_defaultstr) || (cf->cf_loc[i] != cl->cld_default)) && cf->cf_loc[i] != locs[i]) return (0); } return (config_match(parent, cf, aux)); } /* * Helper function: check whether the driver supports the interface attribute * and return its descriptor structure. */ static const struct cfiattrdata * cfdriver_get_iattr(const struct cfdriver *cd, const char *ia) { const struct cfiattrdata * const *cpp; if (cd->cd_attrs == NULL) return (0); for (cpp = cd->cd_attrs; *cpp; cpp++) { if (STREQ((*cpp)->ci_name, ia)) { /* Match. */ return (*cpp); } } return (0); } /* * Lookup an interface attribute description by name. * If the driver is given, consider only its supported attributes. */ const struct cfiattrdata * cfiattr_lookup(const char *name, const struct cfdriver *cd) { const struct cfdriver *d; const struct cfiattrdata *ia; if (cd) return (cfdriver_get_iattr(cd, name)); LIST_FOREACH(d, &allcfdrivers, cd_list) { ia = cfdriver_get_iattr(d, name); if (ia) return (ia); } return (0); } /* * Determine if `parent' is a potential parent for a device spec based * on `cfp'. */ static int cfparent_match(const device_t parent, const struct cfparent *cfp) { struct cfdriver *pcd; /* We don't match root nodes here. */ if (cfp == NULL) return (0); pcd = parent->dv_cfdriver; KASSERT(pcd != NULL); /* * First, ensure this parent has the correct interface * attribute. */ if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr)) return (0); /* * If no specific parent device instance was specified (i.e. * we're attaching to the attribute only), we're done! */ if (cfp->cfp_parent == NULL) return (1); /* * Check the parent device's name. */ if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0) return (0); /* not the same parent */ /* * Make sure the unit number matches. */ if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */ cfp->cfp_unit == parent->dv_unit) return (1); /* Unit numbers don't match. */ return (0); } /* * Helper for config_cfdata_attach(): check all devices whether it could be * parent any attachment in the config data table passed, and rescan. */ static void rescan_with_cfdata(const struct cfdata *cf) { device_t d; const struct cfdata *cf1; deviter_t di; /* * "alldevs" is likely longer than a modules's cfdata, so make it * the outer loop. */ for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) { if (!(d->dv_cfattach->ca_rescan)) continue; for (cf1 = cf; cf1->cf_name; cf1++) { if (!cfparent_match(d, cf1->cf_pspec)) continue; (*d->dv_cfattach->ca_rescan)(d, cf1->cf_pspec->cfp_iattr, cf1->cf_loc); } } deviter_release(&di); } /* * Attach a supplemental config data table and rescan potential * parent devices if required. */ int config_cfdata_attach(cfdata_t cf, int scannow) { struct cftable *ct; ct = kmem_alloc(sizeof(*ct), KM_SLEEP); ct->ct_cfdata = cf; TAILQ_INSERT_TAIL(&allcftables, ct, ct_list); if (scannow) rescan_with_cfdata(cf); return (0); } /* * Helper for config_cfdata_detach: check whether a device is * found through any attachment in the config data table. */ static int dev_in_cfdata(const struct device *d, const struct cfdata *cf) { const struct cfdata *cf1; for (cf1 = cf; cf1->cf_name; cf1++) if (d->dv_cfdata == cf1) return (1); return (0); } /* * Detach a supplemental config data table. Detach all devices found * through that table (and thus keeping references to it) before. */ int config_cfdata_detach(cfdata_t cf) { device_t d; int error = 0; struct cftable *ct; deviter_t di; for (d = deviter_first(&di, DEVITER_F_RW); d != NULL; d = deviter_next(&di)) { if (!dev_in_cfdata(d, cf)) continue; if ((error = config_detach(d, 0)) != 0) break; } deviter_release(&di); if (error) { aprint_error_dev(d, "unable to detach instance\n"); return error; } TAILQ_FOREACH(ct, &allcftables, ct_list) { if (ct->ct_cfdata == cf) { TAILQ_REMOVE(&allcftables, ct, ct_list); kmem_free(ct, sizeof(*ct)); return (0); } } /* not found -- shouldn't happen */ return (EINVAL); } /* * Invoke the "match" routine for a cfdata entry on behalf of * an external caller, usually a "submatch" routine. */ int config_match(device_t parent, cfdata_t cf, void *aux) { struct cfattach *ca; ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname); if (ca == NULL) { /* No attachment for this entry, oh well. */ return (0); } return ((*ca->ca_match)(parent, cf, aux)); } /* * Iterate over all potential children of some device, calling the given * function (default being the child's match function) for each one. * Nonzero returns are matches; the highest value returned is considered * the best match. Return the `found child' if we got a match, or NULL * otherwise. The `aux' pointer is simply passed on through. * * Note that this function is designed so that it can be used to apply * an arbitrary function to all potential children (its return value * can be ignored). */ cfdata_t config_search_loc(cfsubmatch_t fn, device_t parent, const char *ifattr, const int *locs, void *aux) { struct cftable *ct; cfdata_t cf; struct matchinfo m; KASSERT(config_initialized); KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr)); m.fn = fn; m.parent = parent; m.locs = locs; m.aux = aux; m.match = NULL; m.pri = 0; TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { /* We don't match root nodes here. */ if (!cf->cf_pspec) continue; /* * Skip cf if no longer eligible, otherwise scan * through parents for one matching `parent', and * try match function. */ if (cf->cf_fstate == FSTATE_FOUND) continue; if (cf->cf_fstate == FSTATE_DNOTFOUND || cf->cf_fstate == FSTATE_DSTAR) continue; /* * If an interface attribute was specified, * consider only children which attach to * that attribute. */ if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr)) continue; if (cfparent_match(parent, cf->cf_pspec)) mapply(&m, cf); } } return (m.match); } cfdata_t config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr, void *aux) { return (config_search_loc(fn, parent, ifattr, NULL, aux)); } /* * Find the given root device. * This is much like config_search, but there is no parent. * Don't bother with multiple cfdata tables; the root node * must always be in the initial table. */ cfdata_t config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux) { cfdata_t cf; const short *p; struct matchinfo m; m.fn = fn; m.parent = ROOT; m.aux = aux; m.match = NULL; m.pri = 0; m.locs = 0; /* * Look at root entries for matching name. We do not bother * with found-state here since only one root should ever be * searched (and it must be done first). */ for (p = cfroots; *p >= 0; p++) { cf = &cfdata[*p]; if (strcmp(cf->cf_name, rootname) == 0) mapply(&m, cf); } return (m.match); } static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" }; /* * The given `aux' argument describes a device that has been found * on the given parent, but not necessarily configured. Locate the * configuration data for that device (using the submatch function * provided, or using candidates' cd_match configuration driver * functions) and attach it, and return true. If the device was * not configured, call the given `print' function and return 0. */ device_t config_found_sm_loc(device_t parent, const char *ifattr, const int *locs, void *aux, cfprint_t print, cfsubmatch_t submatch) { cfdata_t cf; #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) if (splash_progress_state) splash_progress_update(splash_progress_state); #endif if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux))) return(config_attach_loc(parent, cf, locs, aux, print)); if (print) { if (config_do_twiddle) twiddle(); aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]); } #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) if (splash_progress_state) splash_progress_update(splash_progress_state); #endif return (NULL); } device_t config_found_ia(device_t parent, const char *ifattr, void *aux, cfprint_t print) { return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL)); } device_t config_found(device_t parent, void *aux, cfprint_t print) { return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL)); } /* * As above, but for root devices. */ device_t config_rootfound(const char *rootname, void *aux) { cfdata_t cf; if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL) return (config_attach(ROOT, cf, aux, (cfprint_t)NULL)); aprint_error("root device %s not configured\n", rootname); return (NULL); } /* just like sprintf(buf, "%d") except that it works from the end */ static char * number(char *ep, int n) { *--ep = 0; while (n >= 10) { *--ep = (n % 10) + '0'; n /= 10; } *--ep = n + '0'; return (ep); } /* * Expand the size of the cd_devs array if necessary. */ static void config_makeroom(int n, struct cfdriver *cd) { const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); int old, new; device_t *nsp; if (n < cd->cd_ndevs) return; /* * Need to expand the array. */ old = cd->cd_ndevs; if (old == 0) new = 4; else new = old * 2; while (new <= n) new *= 2; cd->cd_ndevs = new; nsp = kmem_alloc(sizeof(device_t [new]), kmflags); if (nsp == NULL) panic("config_attach: %sing dev array", old != 0 ? "expand" : "creat"); memset(nsp + old, 0, sizeof(device_t [new - old])); if (old != 0) { memcpy(nsp, cd->cd_devs, sizeof(device_t [old])); kmem_free(cd->cd_devs, sizeof(device_t [old])); } cd->cd_devs = nsp; } static void config_devlink(device_t dev) { struct cfdriver *cd = dev->dv_cfdriver; /* put this device in the devices array */ config_makeroom(dev->dv_unit, cd); if (cd->cd_devs[dev->dv_unit]) panic("config_attach: duplicate %s", device_xname(dev)); cd->cd_devs[dev->dv_unit] = dev; /* It is safe to add a device to the tail of the list while * readers are in the list, but not while a writer is in * the list. Wait for any writer to complete. */ mutex_enter(&alldevs_mtx); while (alldevs_nwrite != 0 && alldevs_writer != curlwp) cv_wait(&alldevs_cv, &alldevs_mtx); TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */ cv_signal(&alldevs_cv); mutex_exit(&alldevs_mtx); } static void config_devunlink(device_t dev) { struct cfdriver *cd = dev->dv_cfdriver; int i; /* Unlink from device list. */ TAILQ_REMOVE(&alldevs, dev, dv_list); /* Remove from cfdriver's array. */ cd->cd_devs[dev->dv_unit] = NULL; /* * If the device now has no units in use, deallocate its softc array. */ for (i = 0; i < cd->cd_ndevs; i++) { if (cd->cd_devs[i] != NULL) return; } /* nothing found; deallocate */ kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs])); cd->cd_devs = NULL; cd->cd_ndevs = 0; } static device_t config_devalloc(const device_t parent, const cfdata_t cf, const int *locs) { struct cfdriver *cd; struct cfattach *ca; size_t lname, lunit; const char *xunit; int myunit; char num[10]; device_t dev; void *dev_private; const struct cfiattrdata *ia; const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); cd = config_cfdriver_lookup(cf->cf_name); if (cd == NULL) return (NULL); ca = config_cfattach_lookup_cd(cd, cf->cf_atname); if (ca == NULL) return (NULL); if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 && ca->ca_devsize < sizeof(struct device)) panic("config_devalloc: %s", cf->cf_atname); #ifndef __BROKEN_CONFIG_UNIT_USAGE if (cf->cf_fstate == FSTATE_STAR) { for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++) if (cd->cd_devs[myunit] == NULL) break; /* * myunit is now the unit of the first NULL device pointer, * or max(cd->cd_ndevs,cf->cf_unit). */ } else { myunit = cf->cf_unit; if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL) return (NULL); } #else myunit = cf->cf_unit; #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */ /* compute length of name and decimal expansion of unit number */ lname = strlen(cd->cd_name); xunit = number(&num[sizeof(num)], myunit); lunit = &num[sizeof(num)] - xunit; if (lname + lunit > sizeof(dev->dv_xname)) panic("config_devalloc: device name too long"); /* get memory for all device vars */ KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device)); if (ca->ca_devsize > 0) { dev_private = kmem_zalloc(ca->ca_devsize, kmflags); if (dev_private == NULL) panic("config_devalloc: memory allocation for device softc failed"); } else { KASSERT(ca->ca_flags & DVF_PRIV_ALLOC); dev_private = NULL; } if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) { dev = kmem_zalloc(sizeof(*dev), kmflags); } else { dev = dev_private; } if (dev == NULL) panic("config_devalloc: memory allocation for device_t failed"); dev->dv_class = cd->cd_class; dev->dv_cfdata = cf; dev->dv_cfdriver = cd; dev->dv_cfattach = ca; dev->dv_unit = myunit; dev->dv_activity_count = 0; dev->dv_activity_handlers = NULL; dev->dv_private = dev_private; memcpy(dev->dv_xname, cd->cd_name, lname); memcpy(dev->dv_xname + lname, xunit, lunit); dev->dv_parent = parent; if (parent != NULL) dev->dv_depth = parent->dv_depth + 1; else dev->dv_depth = 0; dev->dv_flags = DVF_ACTIVE; /* always initially active */ dev->dv_flags |= ca->ca_flags; /* inherit flags from class */ if (locs) { KASSERT(parent); /* no locators at root */ ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver); dev->dv_locators = kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags); *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]); memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen])); } dev->dv_properties = prop_dictionary_create(); KASSERT(dev->dv_properties != NULL); prop_dictionary_set_cstring_nocopy(dev->dv_properties, "device-driver", dev->dv_cfdriver->cd_name); prop_dictionary_set_uint16(dev->dv_properties, "device-unit", dev->dv_unit); return (dev); } static void config_devdealloc(device_t dev) { int priv = (dev->dv_flags & DVF_PRIV_ALLOC); KASSERT(dev->dv_properties != NULL); prop_object_release(dev->dv_properties); if (dev->dv_activity_handlers) panic("config_devdealloc with registered handlers"); if (dev->dv_locators) { size_t amount = *--dev->dv_locators; kmem_free(dev->dv_locators, amount); } if (dev->dv_cfattach->ca_devsize > 0) kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize); if (priv) kmem_free(dev, sizeof(*dev)); } /* * Attach a found device. */ device_t config_attach_loc(device_t parent, cfdata_t cf, const int *locs, void *aux, cfprint_t print) { device_t dev; struct cftable *ct; const char *drvname; #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) if (splash_progress_state) splash_progress_update(splash_progress_state); #endif dev = config_devalloc(parent, cf, locs); if (!dev) panic("config_attach: allocation of device softc failed"); /* XXX redundant - see below? */ if (cf->cf_fstate != FSTATE_STAR) { KASSERT(cf->cf_fstate == FSTATE_NOTFOUND); cf->cf_fstate = FSTATE_FOUND; } #ifdef __BROKEN_CONFIG_UNIT_USAGE else cf->cf_unit++; #endif config_devlink(dev); if (config_do_twiddle) twiddle(); else aprint_naive("Found "); /* * We want the next two printfs for normal, verbose, and quiet, * but not silent (in which case, we're twiddling, instead). */ if (parent == ROOT) { aprint_naive("%s (root)", device_xname(dev)); aprint_normal("%s (root)", device_xname(dev)); } else { aprint_naive("%s at %s", device_xname(dev), device_xname(parent)); aprint_normal("%s at %s", device_xname(dev), device_xname(parent)); if (print) (void) (*print)(aux, NULL); } /* * Before attaching, clobber any unfound devices that are * otherwise identical. * XXX code above is redundant? */ drvname = dev->dv_cfdriver->cd_name; TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { if (STREQ(cf->cf_name, drvname) && cf->cf_unit == dev->dv_unit) { if (cf->cf_fstate == FSTATE_NOTFOUND) cf->cf_fstate = FSTATE_FOUND; #ifdef __BROKEN_CONFIG_UNIT_USAGE /* * Bump the unit number on all starred cfdata * entries for this device. */ if (cf->cf_fstate == FSTATE_STAR) cf->cf_unit++; #endif /* __BROKEN_CONFIG_UNIT_USAGE */ } } } #ifdef __HAVE_DEVICE_REGISTER device_register(dev, aux); #endif /* Let userland know */ devmon_report_device(dev, true); #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) if (splash_progress_state) splash_progress_update(splash_progress_state); #endif (*dev->dv_cfattach->ca_attach)(parent, dev, aux); #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS) if (splash_progress_state) splash_progress_update(splash_progress_state); #endif if (!device_pmf_is_registered(dev)) aprint_debug_dev(dev, "WARNING: power management not supported\n"); config_process_deferred(&deferred_config_queue, dev); return (dev); } device_t config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print) { return (config_attach_loc(parent, cf, NULL, aux, print)); } /* * As above, but for pseudo-devices. Pseudo-devices attached in this * way are silently inserted into the device tree, and their children * attached. * * Note that because pseudo-devices are attached silently, any information * the attach routine wishes to print should be prefixed with the device * name by the attach routine. */ device_t config_attach_pseudo(cfdata_t cf) { device_t dev; dev = config_devalloc(ROOT, cf, NULL); if (!dev) return (NULL); /* XXX mark busy in cfdata */ config_devlink(dev); #if 0 /* XXXJRT not yet */ #ifdef __HAVE_DEVICE_REGISTER device_register(dev, NULL); /* like a root node */ #endif #endif (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL); config_process_deferred(&deferred_config_queue, dev); return (dev); } /* * Detach a device. Optionally forced (e.g. because of hardware * removal) and quiet. Returns zero if successful, non-zero * (an error code) otherwise. * * Note that this code wants to be run from a process context, so * that the detach can sleep to allow processes which have a device * open to run and unwind their stacks. */ int config_detach(device_t dev, int flags) { struct cftable *ct; cfdata_t cf; const struct cfattach *ca; struct cfdriver *cd; #ifdef DIAGNOSTIC device_t d; #endif int rv = 0; #ifdef DIAGNOSTIC cf = dev->dv_cfdata; if (cf != NULL && cf->cf_fstate != FSTATE_FOUND && cf->cf_fstate != FSTATE_STAR) panic("config_detach: %s: bad device fstate %d", device_xname(dev), cf ? cf->cf_fstate : -1); #endif cd = dev->dv_cfdriver; KASSERT(cd != NULL); ca = dev->dv_cfattach; KASSERT(ca != NULL); KASSERT(curlwp != NULL); mutex_enter(&alldevs_mtx); if (alldevs_nwrite > 0 && alldevs_writer == NULL) ; else while (alldevs_nread != 0 || (alldevs_nwrite != 0 && alldevs_writer != curlwp)) cv_wait(&alldevs_cv, &alldevs_mtx); if (alldevs_nwrite++ == 0) alldevs_writer = curlwp; mutex_exit(&alldevs_mtx); /* * Ensure the device is deactivated. If the device doesn't * have an activation entry point, we allow DVF_ACTIVE to * remain set. Otherwise, if DVF_ACTIVE is still set, the * device is busy, and the detach fails. */ if (ca->ca_activate != NULL) rv = config_deactivate(dev); /* * Try to detach the device. If that's not possible, then * we either panic() (for the forced but failed case), or * return an error. */ if (rv == 0) { if (ca->ca_detach != NULL) rv = (*ca->ca_detach)(dev, flags); else rv = EOPNOTSUPP; } if (rv != 0) { if ((flags & DETACH_FORCE) == 0) goto out; else panic("config_detach: forced detach of %s failed (%d)", device_xname(dev), rv); } /* * The device has now been successfully detached. */ /* Let userland know */ devmon_report_device(dev, false); #ifdef DIAGNOSTIC /* * Sanity: If you're successfully detached, you should have no * children. (Note that because children must be attached * after parents, we only need to search the latter part of * the list.) */ for (d = TAILQ_NEXT(dev, dv_list); d != NULL; d = TAILQ_NEXT(d, dv_list)) { if (d->dv_parent == dev) { printf("config_detach: detached device %s" " has children %s\n", device_xname(dev), device_xname(d)); panic("config_detach"); } } #endif /* notify the parent that the child is gone */ if (dev->dv_parent) { device_t p = dev->dv_parent; if (p->dv_cfattach->ca_childdetached) (*p->dv_cfattach->ca_childdetached)(p, dev); } /* * Mark cfdata to show that the unit can be reused, if possible. */ TAILQ_FOREACH(ct, &allcftables, ct_list) { for (cf = ct->ct_cfdata; cf->cf_name; cf++) { if (STREQ(cf->cf_name, cd->cd_name)) { if (cf->cf_fstate == FSTATE_FOUND && cf->cf_unit == dev->dv_unit) cf->cf_fstate = FSTATE_NOTFOUND; #ifdef __BROKEN_CONFIG_UNIT_USAGE /* * Note that we can only re-use a starred * unit number if the unit being detached * had the last assigned unit number. */ if (cf->cf_fstate == FSTATE_STAR && cf->cf_unit == dev->dv_unit + 1) cf->cf_unit--; #endif /* __BROKEN_CONFIG_UNIT_USAGE */ } } } config_devunlink(dev); if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0) aprint_normal_dev(dev, "detached\n"); config_devdealloc(dev); out: mutex_enter(&alldevs_mtx); if (--alldevs_nwrite == 0) alldevs_writer = NULL; cv_signal(&alldevs_cv); mutex_exit(&alldevs_mtx); return rv; } int config_detach_children(device_t parent, int flags) { device_t dv; deviter_t di; int error = 0; for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL; dv = deviter_next(&di)) { if (device_parent(dv) != parent) continue; if ((error = config_detach(dv, flags)) != 0) break; } deviter_release(&di); return error; } int config_activate(device_t dev) { const struct cfattach *ca = dev->dv_cfattach; int rv = 0, oflags = dev->dv_flags; if (ca->ca_activate == NULL) return (EOPNOTSUPP); if ((dev->dv_flags & DVF_ACTIVE) == 0) { dev->dv_flags |= DVF_ACTIVE; rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE); if (rv) dev->dv_flags = oflags; } return (rv); } int config_deactivate(device_t dev) { const struct cfattach *ca = dev->dv_cfattach; int rv = 0, oflags = dev->dv_flags; if (ca->ca_activate == NULL) return (EOPNOTSUPP); if (dev->dv_flags & DVF_ACTIVE) { dev->dv_flags &= ~DVF_ACTIVE; rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE); if (rv) dev->dv_flags = oflags; } return (rv); } /* * Defer the configuration of the specified device until all * of its parent's devices have been attached. */ void config_defer(device_t dev, void (*func)(device_t)) { const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); struct deferred_config *dc; if (dev->dv_parent == NULL) panic("config_defer: can't defer config of a root device"); #ifdef DIAGNOSTIC for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL; dc = TAILQ_NEXT(dc, dc_queue)) { if (dc->dc_dev == dev) panic("config_defer: deferred twice"); } #endif dc = kmem_alloc(sizeof(*dc), kmflags); if (dc == NULL) panic("config_defer: unable to allocate callback"); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue); config_pending_incr(); } /* * Defer some autoconfiguration for a device until after interrupts * are enabled. */ void config_interrupts(device_t dev, void (*func)(device_t)) { const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP); struct deferred_config *dc; /* * If interrupts are enabled, callback now. */ if (cold == 0) { (*func)(dev); return; } #ifdef DIAGNOSTIC for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL; dc = TAILQ_NEXT(dc, dc_queue)) { if (dc->dc_dev == dev) panic("config_interrupts: deferred twice"); } #endif dc = kmem_alloc(sizeof(*dc), kmflags); if (dc == NULL) panic("config_interrupts: unable to allocate callback"); dc->dc_dev = dev; dc->dc_func = func; TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue); config_pending_incr(); } /* * Process a deferred configuration queue. */ static void config_process_deferred(struct deferred_config_head *queue, device_t parent) { struct deferred_config *dc, *ndc; for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) { ndc = TAILQ_NEXT(dc, dc_queue); if (parent == NULL || dc->dc_dev->dv_parent == parent) { TAILQ_REMOVE(queue, dc, dc_queue); (*dc->dc_func)(dc->dc_dev); kmem_free(dc, sizeof(*dc)); config_pending_decr(); } } } /* * Manipulate the config_pending semaphore. */ void config_pending_incr(void) { mutex_enter(&config_misc_lock); config_pending++; mutex_exit(&config_misc_lock); } void config_pending_decr(void) { #ifdef DIAGNOSTIC if (config_pending == 0) panic("config_pending_decr: config_pending == 0"); #endif mutex_enter(&config_misc_lock); config_pending--; if (config_pending == 0) cv_broadcast(&config_misc_cv); mutex_exit(&config_misc_lock); } /* * Register a "finalization" routine. Finalization routines are * called iteratively once all real devices have been found during * autoconfiguration, for as long as any one finalizer has done * any work. */ int config_finalize_register(device_t dev, int (*fn)(device_t)) { struct finalize_hook *f; /* * If finalization has already been done, invoke the * callback function now. */ if (config_finalize_done) { while ((*fn)(dev) != 0) /* loop */ ; } /* Ensure this isn't already on the list. */ TAILQ_FOREACH(f, &config_finalize_list, f_list) { if (f->f_func == fn && f->f_dev == dev) return (EEXIST); } f = kmem_alloc(sizeof(*f), KM_SLEEP); f->f_func = fn; f->f_dev = dev; TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list); return (0); } void config_finalize(void) { struct finalize_hook *f; struct pdevinit *pdev; extern struct pdevinit pdevinit[]; int errcnt, rv; /* * Now that device driver threads have been created, wait for * them to finish any deferred autoconfiguration. */ mutex_enter(&config_misc_lock); while (config_pending != 0) cv_wait(&config_misc_cv, &config_misc_lock); mutex_exit(&config_misc_lock); /* Attach pseudo-devices. */ for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++) (*pdev->pdev_attach)(pdev->pdev_count); /* Run the hooks until none of them does any work. */ do { rv = 0; TAILQ_FOREACH(f, &config_finalize_list, f_list) rv |= (*f->f_func)(f->f_dev); } while (rv != 0); config_finalize_done = 1; /* Now free all the hooks. */ while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) { TAILQ_REMOVE(&config_finalize_list, f, f_list); kmem_free(f, sizeof(*f)); } errcnt = aprint_get_error_count(); if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 && (boothowto & AB_VERBOSE) == 0) { if (config_do_twiddle) { config_do_twiddle = 0; printf_nolog("done.\n"); } if (errcnt != 0) { printf("WARNING: %d error%s while detecting hardware; " "check system log.\n", errcnt, errcnt == 1 ? "" : "s"); } } } /* * device_lookup: * * Look up a device instance for a given driver. */ device_t device_lookup(cfdriver_t cd, int unit) { if (unit < 0 || unit >= cd->cd_ndevs) return (NULL); return (cd->cd_devs[unit]); } /* * device_lookup: * * Look up a device instance for a given driver. */ void * device_lookup_private(cfdriver_t cd, int unit) { device_t dv; if (unit < 0 || unit >= cd->cd_ndevs) return NULL; if ((dv = cd->cd_devs[unit]) == NULL) return NULL; return dv->dv_private; } /* * Accessor functions for the device_t type. */ devclass_t device_class(device_t dev) { return (dev->dv_class); } cfdata_t device_cfdata(device_t dev) { return (dev->dv_cfdata); } cfdriver_t device_cfdriver(device_t dev) { return (dev->dv_cfdriver); } cfattach_t device_cfattach(device_t dev) { return (dev->dv_cfattach); } int device_unit(device_t dev) { return (dev->dv_unit); } const char * device_xname(device_t dev) { return (dev->dv_xname); } device_t device_parent(device_t dev) { return (dev->dv_parent); } bool device_is_active(device_t dev) { int active_flags; active_flags = DVF_ACTIVE; active_flags |= DVF_CLASS_SUSPENDED; active_flags |= DVF_DRIVER_SUSPENDED; active_flags |= DVF_BUS_SUSPENDED; return ((dev->dv_flags & active_flags) == DVF_ACTIVE); } bool device_is_enabled(device_t dev) { return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE; } bool device_has_power(device_t dev) { int active_flags; active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED; return ((dev->dv_flags & active_flags) == DVF_ACTIVE); } int device_locator(device_t dev, u_int locnum) { KASSERT(dev->dv_locators != NULL); return (dev->dv_locators[locnum]); } void * device_private(device_t dev) { /* * The reason why device_private(NULL) is allowed is to simplify the * work of a lot of userspace request handlers (i.e., c/bdev * handlers) which grab cfdriver_t->cd_units[n]. * It avoids having them test for it to be NULL and only then calling * device_private. */ return dev == NULL ? NULL : dev->dv_private; } prop_dictionary_t device_properties(device_t dev) { return (dev->dv_properties); } /* * device_is_a: * * Returns true if the device is an instance of the specified * driver. */ bool device_is_a(device_t dev, const char *dname) { return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0); } /* * device_find_by_xname: * * Returns the device of the given name or NULL if it doesn't exist. */ device_t device_find_by_xname(const char *name) { device_t dv; deviter_t di; for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) { if (strcmp(device_xname(dv), name) == 0) break; } deviter_release(&di); return dv; } /* * device_find_by_driver_unit: * * Returns the device of the given driver name and unit or * NULL if it doesn't exist. */ device_t device_find_by_driver_unit(const char *name, int unit) { struct cfdriver *cd; if ((cd = config_cfdriver_lookup(name)) == NULL) return NULL; return device_lookup(cd, unit); } /* * Power management related functions. */ bool device_pmf_is_registered(device_t dev) { return (dev->dv_flags & DVF_POWER_HANDLERS) != 0; } bool device_pmf_driver_suspend(device_t dev PMF_FN_ARGS) { if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) return true; if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) return false; if (*dev->dv_driver_suspend != NULL && !(*dev->dv_driver_suspend)(dev PMF_FN_CALL)) return false; dev->dv_flags |= DVF_DRIVER_SUSPENDED; return true; } bool device_pmf_driver_resume(device_t dev PMF_FN_ARGS) { if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) return true; if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) return false; if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) return false; if (*dev->dv_driver_resume != NULL && !(*dev->dv_driver_resume)(dev PMF_FN_CALL)) return false; dev->dv_flags &= ~DVF_DRIVER_SUSPENDED; return true; } bool device_pmf_driver_shutdown(device_t dev, int how) { if (*dev->dv_driver_shutdown != NULL && !(*dev->dv_driver_shutdown)(dev, how)) return false; return true; } bool device_pmf_driver_register(device_t dev, bool (*suspend)(device_t PMF_FN_PROTO), bool (*resume)(device_t PMF_FN_PROTO), bool (*shutdown)(device_t, int)) { pmf_private_t *pp; if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL) return false; mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE); cv_init(&pp->pp_cv, "pmfsusp"); dev->dv_pmf_private = pp; dev->dv_driver_suspend = suspend; dev->dv_driver_resume = resume; dev->dv_driver_shutdown = shutdown; dev->dv_flags |= DVF_POWER_HANDLERS; return true; } static const char * curlwp_name(void) { if (curlwp->l_name != NULL) return curlwp->l_name; else return curlwp->l_proc->p_comm; } void device_pmf_driver_deregister(device_t dev) { pmf_private_t *pp = dev->dv_pmf_private; /* XXX avoid crash in case we are not initialized */ if (!pp) return; dev->dv_driver_suspend = NULL; dev->dv_driver_resume = NULL; mutex_enter(&pp->pp_mtx); dev->dv_flags &= ~DVF_POWER_HANDLERS; while (pp->pp_nlock > 0 || pp->pp_nwait > 0) { /* Wake a thread that waits for the lock. That * thread will fail to acquire the lock, and then * it will wake the next thread that waits for the * lock, or else it will wake us. */ cv_signal(&pp->pp_cv); pmflock_debug(dev, __func__, __LINE__); cv_wait(&pp->pp_cv, &pp->pp_mtx); pmflock_debug(dev, __func__, __LINE__); } dev->dv_pmf_private = NULL; mutex_exit(&pp->pp_mtx); cv_destroy(&pp->pp_cv); mutex_destroy(&pp->pp_mtx); kmem_free(pp, sizeof(*pp)); } bool device_pmf_driver_child_register(device_t dev) { device_t parent = device_parent(dev); if (parent == NULL || parent->dv_driver_child_register == NULL) return true; return (*parent->dv_driver_child_register)(dev); } void device_pmf_driver_set_child_register(device_t dev, bool (*child_register)(device_t)) { dev->dv_driver_child_register = child_register; } void device_pmf_self_resume(device_t dev PMF_FN_ARGS) { pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0) dev->dv_flags &= ~DVF_SELF_SUSPENDED; pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); } bool device_is_self_suspended(device_t dev) { return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0; } void device_pmf_self_suspend(device_t dev PMF_FN_ARGS) { bool self = (flags & PMF_F_SELF) != 0; pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); if (!self) dev->dv_flags &= ~DVF_SELF_SUSPENDED; else if (device_is_active(dev)) dev->dv_flags |= DVF_SELF_SUSPENDED; pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); } static void pmflock_debug(device_t dev, const char *func, int line) { pmf_private_t *pp = device_pmf_private(dev); aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n", func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait, dev->dv_flags); } static void pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS) { pmf_private_t *pp = device_pmf_private(dev); aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x " "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL); } static bool device_pmf_lock1(device_t dev PMF_FN_ARGS) { pmf_private_t *pp = device_pmf_private(dev); while (device_pmf_is_registered(dev) && pp->pp_nlock > 0 && pp->pp_holder != curlwp) { pp->pp_nwait++; pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); cv_wait(&pp->pp_cv, &pp->pp_mtx); pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); pp->pp_nwait--; } if (!device_pmf_is_registered(dev)) { pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); /* We could not acquire the lock, but some other thread may * wait for it, also. Wake that thread. */ cv_signal(&pp->pp_cv); return false; } pp->pp_nlock++; pp->pp_holder = curlwp; pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); return true; } bool device_pmf_lock(device_t dev PMF_FN_ARGS) { bool rc; pmf_private_t *pp = device_pmf_private(dev); mutex_enter(&pp->pp_mtx); rc = device_pmf_lock1(dev PMF_FN_CALL); mutex_exit(&pp->pp_mtx); return rc; } void device_pmf_unlock(device_t dev PMF_FN_ARGS) { pmf_private_t *pp = device_pmf_private(dev); KASSERT(pp->pp_nlock > 0); mutex_enter(&pp->pp_mtx); if (--pp->pp_nlock == 0) pp->pp_holder = NULL; cv_signal(&pp->pp_cv); pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL); mutex_exit(&pp->pp_mtx); } void * device_pmf_private(device_t dev) { return dev->dv_pmf_private; } void * device_pmf_bus_private(device_t dev) { return dev->dv_bus_private; } bool device_pmf_bus_suspend(device_t dev PMF_FN_ARGS) { if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0) return true; if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 || (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0) return false; if (*dev->dv_bus_suspend != NULL && !(*dev->dv_bus_suspend)(dev PMF_FN_CALL)) return false; dev->dv_flags |= DVF_BUS_SUSPENDED; return true; } bool device_pmf_bus_resume(device_t dev PMF_FN_ARGS) { if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0) return true; if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev)) return false; if (*dev->dv_bus_resume != NULL && !(*dev->dv_bus_resume)(dev PMF_FN_CALL)) return false; dev->dv_flags &= ~DVF_BUS_SUSPENDED; return true; } bool device_pmf_bus_shutdown(device_t dev, int how) { if (*dev->dv_bus_shutdown != NULL && !(*dev->dv_bus_shutdown)(dev, how)) return false; return true; } void device_pmf_bus_register(device_t dev, void *priv, bool (*suspend)(device_t PMF_FN_PROTO), bool (*resume)(device_t PMF_FN_PROTO), bool (*shutdown)(device_t, int), void (*deregister)(device_t)) { dev->dv_bus_private = priv; dev->dv_bus_resume = resume; dev->dv_bus_suspend = suspend; dev->dv_bus_shutdown = shutdown; dev->dv_bus_deregister = deregister; } void device_pmf_bus_deregister(device_t dev) { if (dev->dv_bus_deregister == NULL) return; (*dev->dv_bus_deregister)(dev); dev->dv_bus_private = NULL; dev->dv_bus_suspend = NULL; dev->dv_bus_resume = NULL; dev->dv_bus_deregister = NULL; } void * device_pmf_class_private(device_t dev) { return dev->dv_class_private; } bool device_pmf_class_suspend(device_t dev PMF_FN_ARGS) { if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0) return true; if (*dev->dv_class_suspend != NULL && !(*dev->dv_class_suspend)(dev PMF_FN_CALL)) return false; dev->dv_flags |= DVF_CLASS_SUSPENDED; return true; } bool device_pmf_class_resume(device_t dev PMF_FN_ARGS) { if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0) return true; if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 || (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0) return false; if (*dev->dv_class_resume != NULL && !(*dev->dv_class_resume)(dev PMF_FN_CALL)) return false; dev->dv_flags &= ~DVF_CLASS_SUSPENDED; return true; } void device_pmf_class_register(device_t dev, void *priv, bool (*suspend)(device_t PMF_FN_PROTO), bool (*resume)(device_t PMF_FN_PROTO), void (*deregister)(device_t)) { dev->dv_class_private = priv; dev->dv_class_suspend = suspend; dev->dv_class_resume = resume; dev->dv_class_deregister = deregister; } void device_pmf_class_deregister(device_t dev) { if (dev->dv_class_deregister == NULL) return; (*dev->dv_class_deregister)(dev); dev->dv_class_private = NULL; dev->dv_class_suspend = NULL; dev->dv_class_resume = NULL; dev->dv_class_deregister = NULL; } bool device_active(device_t dev, devactive_t type) { size_t i; if (dev->dv_activity_count == 0) return false; for (i = 0; i < dev->dv_activity_count; ++i) { if (dev->dv_activity_handlers[i] == NULL) break; (*dev->dv_activity_handlers[i])(dev, type); } return true; } bool device_active_register(device_t dev, void (*handler)(device_t, devactive_t)) { void (**new_handlers)(device_t, devactive_t); void (**old_handlers)(device_t, devactive_t); size_t i, old_size, new_size; int s; old_handlers = dev->dv_activity_handlers; old_size = dev->dv_activity_count; for (i = 0; i < old_size; ++i) { KASSERT(old_handlers[i] != handler); if (old_handlers[i] == NULL) { old_handlers[i] = handler; return true; } } new_size = old_size + 4; new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP); memcpy(new_handlers, old_handlers, sizeof(void *[old_size])); new_handlers[old_size] = handler; memset(new_handlers + old_size + 1, 0, sizeof(int [new_size - (old_size+1)])); s = splhigh(); dev->dv_activity_count = new_size; dev->dv_activity_handlers = new_handlers; splx(s); if (old_handlers != NULL) kmem_free(old_handlers, sizeof(void * [old_size])); return true; } void device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t)) { void (**old_handlers)(device_t, devactive_t); size_t i, old_size; int s; old_handlers = dev->dv_activity_handlers; old_size = dev->dv_activity_count; for (i = 0; i < old_size; ++i) { if (old_handlers[i] == handler) break; if (old_handlers[i] == NULL) return; /* XXX panic? */ } if (i == old_size) return; /* XXX panic? */ for (; i < old_size - 1; ++i) { if ((old_handlers[i] = old_handlers[i + 1]) != NULL) continue; if (i == 0) { s = splhigh(); dev->dv_activity_count = 0; dev->dv_activity_handlers = NULL; splx(s); kmem_free(old_handlers, sizeof(void *[old_size])); } return; } old_handlers[i] = NULL; } /* * Device Iteration * * deviter_t: a device iterator. Holds state for a "walk" visiting * each device_t's in the device tree. * * deviter_init(di, flags): initialize the device iterator `di' * to "walk" the device tree. deviter_next(di) will return * the first device_t in the device tree, or NULL if there are * no devices. * * `flags' is one or more of DEVITER_F_RW, indicating that the * caller intends to modify the device tree by calling * config_detach(9) on devices in the order that the iterator * returns them; DEVITER_F_ROOT_FIRST, asking for the devices * nearest the "root" of the device tree to be returned, first; * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from * the root of the device tree, first; and DEVITER_F_SHUTDOWN, * indicating both that deviter_init() should not respect any * locks on the device tree, and that deviter_next(di) may run * in more than one LWP before the walk has finished. * * Only one DEVITER_F_RW iterator may be in the device tree at * once. * * DEVITER_F_SHUTDOWN implies DEVITER_F_RW. * * Results are undefined if the flags DEVITER_F_ROOT_FIRST and * DEVITER_F_LEAVES_FIRST are used in combination. * * deviter_first(di, flags): initialize the device iterator `di' * and return the first device_t in the device tree, or NULL * if there are no devices. The statement * * dv = deviter_first(di); * * is shorthand for * * deviter_init(di); * dv = deviter_next(di); * * deviter_next(di): return the next device_t in the device tree, * or NULL if there are no more devices. deviter_next(di) * is undefined if `di' was not initialized with deviter_init() or * deviter_first(). * * deviter_release(di): stops iteration (subsequent calls to * deviter_next() will return NULL), releases any locks and * resources held by the device iterator. * * Device iteration does not return device_t's in any particular * order. An iterator will never return the same device_t twice. * Device iteration is guaranteed to complete---i.e., if deviter_next(di) * is called repeatedly on the same `di', it will eventually return * NULL. It is ok to attach/detach devices during device iteration. */ void deviter_init(deviter_t *di, deviter_flags_t flags) { device_t dv; bool rw; mutex_enter(&alldevs_mtx); if ((flags & DEVITER_F_SHUTDOWN) != 0) { flags |= DEVITER_F_RW; alldevs_nwrite++; alldevs_writer = NULL; alldevs_nread = 0; } else { rw = (flags & DEVITER_F_RW) != 0; if (alldevs_nwrite > 0 && alldevs_writer == NULL) ; else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) || (rw && alldevs_nread != 0)) cv_wait(&alldevs_cv, &alldevs_mtx); if (rw) { if (alldevs_nwrite++ == 0) alldevs_writer = curlwp; } else alldevs_nread++; } mutex_exit(&alldevs_mtx); memset(di, 0, sizeof(*di)); di->di_flags = flags; switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { case DEVITER_F_LEAVES_FIRST: TAILQ_FOREACH(dv, &alldevs, dv_list) di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth); break; case DEVITER_F_ROOT_FIRST: TAILQ_FOREACH(dv, &alldevs, dv_list) di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth); break; default: break; } deviter_reinit(di); } static void deviter_reinit(deviter_t *di) { if ((di->di_flags & DEVITER_F_RW) != 0) di->di_prev = TAILQ_LAST(&alldevs, devicelist); else di->di_prev = TAILQ_FIRST(&alldevs); } device_t deviter_first(deviter_t *di, deviter_flags_t flags) { deviter_init(di, flags); return deviter_next(di); } static device_t deviter_next1(deviter_t *di) { device_t dv; dv = di->di_prev; if (dv == NULL) ; else if ((di->di_flags & DEVITER_F_RW) != 0) di->di_prev = TAILQ_PREV(dv, devicelist, dv_list); else di->di_prev = TAILQ_NEXT(dv, dv_list); return dv; } device_t deviter_next(deviter_t *di) { device_t dv = NULL; switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) { case 0: return deviter_next1(di); case DEVITER_F_LEAVES_FIRST: while (di->di_curdepth >= 0) { if ((dv = deviter_next1(di)) == NULL) { di->di_curdepth--; deviter_reinit(di); } else if (dv->dv_depth == di->di_curdepth) break; } return dv; case DEVITER_F_ROOT_FIRST: while (di->di_curdepth <= di->di_maxdepth) { if ((dv = deviter_next1(di)) == NULL) { di->di_curdepth++; deviter_reinit(di); } else if (dv->dv_depth == di->di_curdepth) break; } return dv; default: return NULL; } } void deviter_release(deviter_t *di) { bool rw = (di->di_flags & DEVITER_F_RW) != 0; mutex_enter(&alldevs_mtx); if (alldevs_nwrite > 0 && alldevs_writer == NULL) --alldevs_nwrite; else { if (rw) { if (--alldevs_nwrite == 0) alldevs_writer = NULL; } else --alldevs_nread; cv_signal(&alldevs_cv); } mutex_exit(&alldevs_mtx); }