/* $NetBSD: if_axe.c,v 1.46 2010/08/14 12:11:46 tsutsui Exp $ */ /* $OpenBSD: if_axe.c,v 1.96 2010/01/09 05:33:08 jsg Exp $ */ /* * Copyright (c) 2005, 2006, 2007 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Copyright (c) 1997, 1998, 1999, 2000-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * ASIX Electronics AX88172 USB 2.0 ethernet driver. Used in the * LinkSys USB200M and various other adapters. * * Manuals available from: * http://www.asix.com.tw/datasheet/mac/Ax88172.PDF * Note: you need the manual for the AX88170 chip (USB 1.x ethernet * controller) to find the definitions for the RX control register. * http://www.asix.com.tw/datasheet/mac/Ax88170.PDF * * Written by Bill Paul * Senior Engineer * Wind River Systems */ /* * The AX88172 provides USB ethernet supports at 10 and 100Mbps. * It uses an external PHY (reference designs use a RealTek chip), * and has a 64-bit multicast hash filter. There is some information * missing from the manual which one needs to know in order to make * the chip function: * * - You must set bit 7 in the RX control register, otherwise the * chip won't receive any packets. * - You must initialize all 3 IPG registers, or you won't be able * to send any packets. * * Note that this device appears to only support loading the station * address via autload from the EEPROM (i.e. there's no way to manaully * set it). * * (Adam Weinberger wanted me to name this driver if_gir.c.) */ /* * Ported to OpenBSD 3/28/2004 by Greg Taleck * with bits and pieces from the aue and url drivers. */ #include __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.46 2010/08/14 12:11:46 tsutsui Exp $"); #if defined(__NetBSD__) #include "opt_inet.h" #include "rnd.h" #endif #include #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef AXE_DEBUG #define DPRINTF(x) do { if (axedebug) logprintf x; } while (0) #define DPRINTFN(n,x) do { if (axedebug >= (n)) logprintf x; } while (0) int axedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/products. */ static const struct axe_type axe_devs[] = { { { USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_UFE2000}, 0 }, { { USB_VENDOR_ACERCM, USB_PRODUCT_ACERCM_EP1427X2}, 0 }, { { USB_VENDOR_APPLE, USB_PRODUCT_APPLE_ETHERNET }, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88172}, 0 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772}, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88772A}, AX772 }, { { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178}, AX178 }, { { USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC210T}, 0 }, { { USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D5055 }, AX178 }, { { USB_VENDOR_BILLIONTON, USB_PRODUCT_BILLIONTON_USB2AR}, 0}, { { USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_USB200MV2}, AX772 }, { { USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0}, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100}, 0 }, { { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUBE100B1 }, AX772 }, { { USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_GWUSB2E}, 0 }, { { USB_VENDOR_IODATA, USB_PRODUCT_IODATA_ETGUS2 }, AX178 }, { { USB_VENDOR_JVC, USB_PRODUCT_JVC_MP_PRX1}, 0 }, { { USB_VENDOR_LINKSYS2, USB_PRODUCT_LINKSYS2_USB200M}, 0 }, { { USB_VENDOR_LINKSYS4, USB_PRODUCT_LINKSYS4_USB1000 }, AX178 }, { { USB_VENDOR_LOGITEC, USB_PRODUCT_LOGITEC_LAN_GTJU2}, AX178 }, { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2GT}, AX178 }, { { USB_VENDOR_MELCO, USB_PRODUCT_MELCO_LUAU2KTX}, 0 }, { { USB_VENDOR_MSI, USB_PRODUCT_MSI_AX88772A}, AX772 }, { { USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_FA120}, 0 }, { { USB_VENDOR_OQO, USB_PRODUCT_OQO_ETHER01PLUS }, AX772 }, { { USB_VENDOR_PLANEX3, USB_PRODUCT_PLANEX3_GU1000T }, AX178 }, { { USB_VENDOR_SYSTEMTALKS, USB_PRODUCT_SYSTEMTALKS_SGCX2UL}, 0 }, { { USB_VENDOR_SITECOM, USB_PRODUCT_SITECOM_LN029}, 0 }, { { USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_LN028 }, AX178 } }; #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p)) int axe_match(device_t, cfdata_t, void *); void axe_attach(device_t, device_t, void *); int axe_detach(device_t, int); int axe_activate(device_t, devact_t); CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc), axe_match, axe_attach, axe_detach, axe_activate); static int axe_tx_list_init(struct axe_softc *); static int axe_rx_list_init(struct axe_softc *); static int axe_encap(struct axe_softc *, struct mbuf *, int); static void axe_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void axe_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); static void axe_tick(void *); static void axe_tick_task(void *); static void axe_start(struct ifnet *); static int axe_ioctl(struct ifnet *, u_long, void *); static int axe_init(struct ifnet *); static void axe_stop(struct ifnet *, int); static void axe_watchdog(struct ifnet *); static int axe_miibus_readreg(device_t, int, int); static void axe_miibus_writereg(device_t, int, int, int); static void axe_miibus_statchg(device_t); static int axe_cmd(struct axe_softc *, int, int, int, void *); static void axe_reset(struct axe_softc *sc); static int axe_ifmedia_upd(struct ifnet *); static void axe_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void axe_setmulti(struct axe_softc *); static void axe_lock_mii(struct axe_softc *sc); static void axe_unlock_mii(struct axe_softc *sc); static void axe_ax88178_init(struct axe_softc *); static void axe_ax88772_init(struct axe_softc *); /* Get exclusive access to the MII registers */ static void axe_lock_mii(struct axe_softc *sc) { sc->axe_refcnt++; mutex_enter(&sc->axe_mii_lock); } static void axe_unlock_mii(struct axe_softc *sc) { mutex_exit(&sc->axe_mii_lock); if (--sc->axe_refcnt < 0) usb_detach_wakeup((sc->axe_dev)); } static int axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf) { usb_device_request_t req; usbd_status err; KASSERT(mutex_owned(&sc->axe_mii_lock)); if (sc->axe_dying) return 0; if (AXE_CMD_DIR(cmd)) req.bmRequestType = UT_WRITE_VENDOR_DEVICE; else req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = AXE_CMD_CMD(cmd); USETW(req.wValue, val); USETW(req.wIndex, index); USETW(req.wLength, AXE_CMD_LEN(cmd)); err = usbd_do_request(sc->axe_udev, &req, buf); if (err) { DPRINTF(("axe_cmd err: cmd %d err %d\n", cmd, err)); return -1; } return 0; } static int axe_miibus_readreg(device_t dev, int phy, int reg) { struct axe_softc *sc = device_private(dev); usbd_status err; uint16_t val; if (sc->axe_dying) { DPRINTF(("axe: dying\n")); return 0; } /* * The chip tells us the MII address of any supported * PHYs attached to the chip, so only read from those. * * But if the chip lies about its PHYs, read from any. */ val = 0; if ((phy == sc->axe_phyaddrs[0]) || (phy == sc->axe_phyaddrs[1]) || (sc->axe_flags & AXE_ANY_PHY)) { axe_lock_mii(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, (void *)&val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); axe_unlock_mii(sc); if (err) { aprint_error_dev(sc->axe_dev, "read PHY failed\n"); return -1; } DPRINTF(("axe_miibus_readreg: phy 0x%x reg 0x%x val 0x%x\n", phy, reg, val)); if (val && val != 0xffff) sc->axe_phyaddrs[0] = phy; } else { DPRINTF(("axe_miibus_readreg: ignore read from phy 0x%x\n", phy)); } return le16toh(val); } static void axe_miibus_writereg(device_t dev, int phy, int reg, int aval) { struct axe_softc *sc = device_private(dev); usbd_status err; uint16_t val; if (sc->axe_dying) return; val = htole16(aval); axe_lock_mii(sc); axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL); err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, (void *)&val); axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL); axe_unlock_mii(sc); if (err) { aprint_error_dev(sc->axe_dev, "write PHY failed\n"); return; } } static void axe_miibus_statchg(device_t dev) { struct axe_softc *sc = device_private(dev); struct mii_data *mii = &sc->axe_mii; int val, err; if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) val = AXE_MEDIA_FULL_DUPLEX; else val = 0; if (sc->axe_flags & AX178 || sc->axe_flags & AX772) { val |= (AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK; break; case IFM_100_TX: val |= AXE_178_MEDIA_100TX; break; case IFM_10_T: /* doesn't need to be handled */ break; } } DPRINTF(("axe_miibus_statchg: val=0x%x\n", val)); axe_lock_mii(sc); err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL); axe_unlock_mii(sc); if (err) { aprint_error_dev(sc->axe_dev, "media change failed\n"); return; } } /* * Set media options */ static int axe_ifmedia_upd(struct ifnet *ifp) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->axe_mii; int rc; sc->axe_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } if ((rc = mii_mediachg(mii)) == ENXIO) return 0; return rc; } /* * Report current media status */ static void axe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct axe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->axe_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static void axe_setmulti(struct axe_softc *sc) { struct ifnet *ifp = &sc->sc_if; struct ether_multi *enm; struct ether_multistep step; uint32_t h = 0; uint16_t rxmode; uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; if (sc->axe_dying) return; axe_lock_mii(sc); axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, (void *)&rxmode); rxmode = le16toh(rxmode); rxmode &= ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC); /* If we want promiscuous mode, set the allframes bit */ if (ifp->if_flags & IFF_PROMISC) { rxmode |= AXE_RXCMD_PROMISC; goto allmulti; } /* Now program new ones */ ETHER_FIRST_MULTI(step, &sc->axe_ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; hashtbl[h >> 3] |= 1U << (h & 7); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, (void *)&hashtbl); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); axe_unlock_mii(sc); return; allmulti: ifp->if_flags |= IFF_ALLMULTI; rxmode |= AXE_RXCMD_ALLMULTI; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); axe_unlock_mii(sc); } static void axe_reset(struct axe_softc *sc) { if (sc->axe_dying) return; /* XXX What to reset? */ /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); } static void axe_ax88178_init(struct axe_softc *sc) { int gpio0 = 0, phymode = 0; uint16_t eeprom; axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL); /* XXX magic */ axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom); axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL); eeprom = le16toh(eeprom); DPRINTF((" EEPROM is 0x%x\n", eeprom)); /* if EEPROM is invalid we have to use to GPIO0 */ if (eeprom == 0xffff) { phymode = 0; gpio0 = 1; } else { phymode = eeprom & 7; gpio0 = (eeprom & 0x80) ? 0 : 1; } DPRINTF(("use gpio0: %d, phymode %d\n", gpio0, phymode)); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x008c, NULL); usbd_delay_ms(sc->axe_udev, 40); if ((eeprom >> 8) != 1) { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x003c, NULL); usbd_delay_ms(sc->axe_udev, 30); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x001c, NULL); usbd_delay_ms(sc->axe_udev, 300); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x003c, NULL); usbd_delay_ms(sc->axe_udev, 30); } else { DPRINTF(("axe gpio phymode == 1 path\n")); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x0004, NULL); usbd_delay_ms(sc->axe_udev, 30); axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x000c, NULL); usbd_delay_ms(sc->axe_udev, 30); } /* soft reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL); usbd_delay_ms(sc->axe_udev, 150); /* Enable MII/GMII/RGMII for external PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL); usbd_delay_ms(sc->axe_udev, 10); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } static void axe_ax88772_init(struct axe_softc *sc) { axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL); usbd_delay_ms(sc->axe_udev, 40); if (sc->axe_phyaddrs[1] == AXE_INTPHY) { /* ask for the embedded PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x01, NULL); usbd_delay_ms(sc->axe_udev, 10); /* power down and reset state, pin reset state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL); usbd_delay_ms(sc->axe_udev, 60); /* power down/reset state, pin operating state */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); usbd_delay_ms(sc->axe_udev, 150); /* power up, reset */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL); /* power up, operating */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL); } else { /* ask for external PHY */ axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x00, NULL); usbd_delay_ms(sc->axe_udev, 10); /* power down internal PHY */ axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL); } usbd_delay_ms(sc->axe_udev, 150); axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL); } /* * Probe for a AX88172 chip. */ int axe_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; return axe_lookup(uaa->vendor, uaa->product) != NULL ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void axe_attach(device_t parent, device_t self, void *aux) { struct axe_softc *sc = device_private(self); struct usb_attach_arg *uaa = aux; usbd_device_handle dev = uaa->device; usbd_status err; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; struct mii_data *mii; uint8_t eaddr[ETHER_ADDR_LEN]; char *devinfop; const char *devname = device_xname(self); struct ifnet *ifp; int i, s; aprint_naive("\n"); aprint_normal("\n"); sc->axe_dev = self; sc->axe_udev = dev; devinfop = usbd_devinfo_alloc(dev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } sc->axe_flags = axe_lookup(uaa->vendor, uaa->product)->axe_flags; mutex_init(&sc->axe_mii_lock, MUTEX_DEFAULT, IPL_NONE); usb_init_task(&sc->axe_tick_task, axe_tick_task, sc); err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &sc->axe_iface); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } sc->axe_product = uaa->product; sc->axe_vendor = uaa->vendor; id = usbd_get_interface_descriptor(sc->axe_iface); /* decide on what our bufsize will be */ if (sc->axe_flags & AX178 || sc->axe_flags & AX772) sc->axe_bufsz = (sc->axe_udev->speed == USB_SPEED_HIGH) ? AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ; else sc->axe_bufsz = AXE_172_BUFSZ; /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->axe_iface, i); if (ed == NULL) { aprint_error_dev(self, "couldn't get ep %d\n", i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->axe_ed[AXE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->axe_ed[AXE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->axe_ed[AXE_ENDPT_INTR] = ed->bEndpointAddress; } } s = splnet(); /* We need the PHYID for init dance in some cases */ axe_lock_mii(sc); axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, (void *)&sc->axe_phyaddrs); DPRINTF((" phyaddrs[0]: %x phyaddrs[1]: %x\n", sc->axe_phyaddrs[0], sc->axe_phyaddrs[1])); if (sc->axe_flags & AX178) axe_ax88178_init(sc); else if (sc->axe_flags & AX772) axe_ax88772_init(sc); /* * Get station address. */ if (sc->axe_flags & AX178 || sc->axe_flags & AX772) axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, &eaddr); else axe_cmd(sc, AXE_172_CMD_READ_NODEID, 0, 0, &eaddr); /* * Load IPG values */ axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, (void *)&sc->axe_ipgs); axe_unlock_mii(sc); /* * An ASIX chip was detected. Inform the world. */ aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr)); /* Initialize interface info.*/ ifp = &sc->sc_if; ifp->if_softc = sc; strncpy(ifp->if_xname, devname, IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = axe_ioctl; ifp->if_start = axe_start; ifp->if_init = axe_init; ifp->if_stop = axe_stop; ifp->if_watchdog = axe_watchdog; IFQ_SET_READY(&ifp->if_snd); sc->axe_ec.ec_capabilities = ETHERCAP_VLAN_MTU; /* Initialize MII/media info. */ mii = &sc->axe_mii; mii->mii_ifp = ifp; mii->mii_readreg = axe_miibus_readreg; mii->mii_writereg = axe_miibus_writereg; mii->mii_statchg = axe_miibus_statchg; mii->mii_flags = MIIF_AUTOTSLEEP; sc->axe_ec.ec_mii = mii; if (sc->axe_flags & AXE_MII) ifmedia_init(&mii->mii_media, 0, axe_ifmedia_upd, axe_ifmedia_sts); else ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); mii_attach(sc->axe_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_EMPTY(&mii->mii_phys)) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, eaddr); #if NRND > 0 rnd_attach_source(&sc->rnd_source, device_xname(sc->axe_dev), RND_TYPE_NET, 0); #endif callout_init(&sc->axe_stat_ch, 0); callout_setfunc(&sc->axe_stat_ch, axe_tick, sc); sc->axe_attached = true; splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->axe_udev, sc->axe_dev); } int axe_detach(device_t self, int flags) { struct axe_softc *sc = device_private(self); int s; struct ifnet *ifp = &sc->sc_if; DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->axe_dev), __func__)); /* Detached before attached finished, so just bail out. */ if (!sc->axe_attached) return 0; sc->axe_dying = true; /* * Remove any pending tasks. They cannot be executing because they run * in the same thread as detach. */ usb_rem_task(sc->axe_udev, &sc->axe_tick_task); s = splusb(); if (ifp->if_flags & IFF_RUNNING) axe_stop(ifp, 1); callout_destroy(&sc->axe_stat_ch); mutex_destroy(&sc->axe_mii_lock); #if NRND > 0 rnd_detach_source(&sc->rnd_source); #endif mii_detach(&sc->axe_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_delete_instance(&sc->axe_mii.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); #ifdef DIAGNOSTIC if (sc->axe_ep[AXE_ENDPT_TX] != NULL || sc->axe_ep[AXE_ENDPT_RX] != NULL || sc->axe_ep[AXE_ENDPT_INTR] != NULL) aprint_debug_dev(self, "detach has active endpoints\n"); #endif sc->axe_attached = false; if (--sc->axe_refcnt >= 0) { /* Wait for processes to go away. */ usb_detach_wait((sc->axe_dev)); } splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->axe_udev, sc->axe_dev); return 0; } int axe_activate(device_t self, devact_t act) { struct axe_softc *sc = device_private(self); DPRINTFN(2,("%s: %s: enter\n", USBDEVNAME(sc->axe_dev), __func__)); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->axe_ec.ec_if); sc->axe_dying = true; return 0; default: return EOPNOTSUPP; } } static int axe_rx_list_init(struct axe_softc *sc) { struct axe_cdata *cd; struct axe_chain *c; int i; DPRINTF(("%s: %s: enter\n", USBDEVNAME(sc->axe_dev), __func__)); cd = &sc->axe_cdata; for (i = 0; i < AXE_RX_LIST_CNT; i++) { c = &cd->axe_rx_chain[i]; c->axe_sc = sc; c->axe_idx = i; if (c->axe_xfer == NULL) { c->axe_xfer = usbd_alloc_xfer(sc->axe_udev); if (c->axe_xfer == NULL) return ENOBUFS; c->axe_buf = usbd_alloc_buffer(c->axe_xfer, sc->axe_bufsz); if (c->axe_buf == NULL) { usbd_free_xfer(c->axe_xfer); return ENOBUFS; } } } return 0; } static int axe_tx_list_init(struct axe_softc *sc) { struct axe_cdata *cd; struct axe_chain *c; int i; DPRINTF(("%s: %s: enter\n", USBDEVNAME(sc->axe_dev), __func__)); cd = &sc->axe_cdata; for (i = 0; i < AXE_TX_LIST_CNT; i++) { c = &cd->axe_tx_chain[i]; c->axe_sc = sc; c->axe_idx = i; if (c->axe_xfer == NULL) { c->axe_xfer = usbd_alloc_xfer(sc->axe_udev); if (c->axe_xfer == NULL) return ENOBUFS; c->axe_buf = usbd_alloc_buffer(c->axe_xfer, sc->axe_bufsz); if (c->axe_buf == NULL) { usbd_free_xfer(c->axe_xfer); return ENOBUFS; } } } return 0; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void axe_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct axe_softc *sc; struct axe_chain *c; struct ifnet *ifp; uint8_t *buf; uint32_t total_len; u_int rxlen, pktlen; struct mbuf *m; struct axe_sframe_hdr hdr; int s; c = (struct axe_chain *)priv; sc = c->axe_sc; buf = c->axe_buf; ifp = &sc->sc_if; DPRINTFN(10,("%s: %s: enter\n", USBDEVNAME(sc->axe_dev),__func__)); if (sc->axe_dying) return; if ((ifp->if_flags & IFF_RUNNING) == 0) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (usbd_ratecheck(&sc->axe_rx_notice)) aprint_error_dev(sc->axe_dev, "usb errors on rx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->axe_ep[AXE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); do { if (sc->axe_flags & AX178 || sc->axe_flags & AX772) { if (total_len < sizeof(hdr)) { ifp->if_ierrors++; goto done; } memcpy(&hdr, buf, sizeof(hdr)); total_len -= sizeof(hdr); buf += sizeof(hdr); if ((hdr.len ^ hdr.ilen) != 0xffff) { ifp->if_ierrors++; goto done; } rxlen = le16toh(hdr.len); if (total_len < rxlen) { pktlen = total_len; total_len = 0; } else { pktlen = rxlen; rxlen = roundup2(rxlen, 2); total_len -= rxlen; } } else { /* AX172 */ pktlen = rxlen = total_len; total_len = 0; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; goto done; } if (pktlen > MHLEN - ETHER_ALIGN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); ifp->if_ierrors++; goto done; } } m->m_data += ETHER_ALIGN; ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = pktlen; memcpy(mtod(m, uint8_t *), buf, pktlen); buf += rxlen; s = splnet(); bpf_mtap(ifp, m); DPRINTFN(10,("%s: %s: deliver %d\n", USBDEVNAME(sc->axe_dev), __func__, m->m_len)); (*(ifp)->if_input)((ifp), (m)); splx(s); } while (total_len > 0); done: /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->axe_ep[AXE_ENDPT_RX], c, c->axe_buf, sc->axe_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, axe_rxeof); usbd_transfer(xfer); DPRINTFN(10,("%s: %s: start rx\n", USBDEVNAME(sc->axe_dev), __func__)); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void axe_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct axe_softc *sc; struct axe_chain *c; struct ifnet *ifp; int s; c = priv; sc = c->axe_sc; ifp = &sc->sc_if; if (sc->axe_dying) return; s = splnet(); if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; aprint_error_dev(sc->axe_dev, "usb error on tx: %s\n", usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->axe_ep[AXE_ENDPT_TX]); splx(s); return; } ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (!IFQ_IS_EMPTY(&ifp->if_snd)) axe_start(ifp); ifp->if_opackets++; splx(s); } static void axe_tick(void *xsc) { struct axe_softc *sc = xsc; if (sc == NULL) return; DPRINTFN(0xff, ("%s: %s: enter\n", USBDEVNAME(sc->axe_dev), __func__)); if (sc->axe_dying) return; /* Perform periodic stuff in process context */ usb_add_task(sc->axe_udev, &sc->axe_tick_task, USB_TASKQ_DRIVER); } static void axe_tick_task(void *xsc) { int s; struct axe_softc *sc; struct ifnet *ifp; struct mii_data *mii; sc = xsc; if (sc == NULL) return; if (sc->axe_dying) return; ifp = &sc->sc_if; mii = &sc->axe_mii; if (mii == NULL) return; s = splnet(); mii_tick(mii); if (sc->axe_link == 0 && (mii->mii_media_status & IFM_ACTIVE) != 0 && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { DPRINTF(("%s: %s: got link\n", device_xname(sc->axe_dev), __func__)); sc->axe_link++; if (!IFQ_IS_EMPTY(&ifp->if_snd)) axe_start(ifp); } callout_schedule(&sc->axe_stat_ch, hz); splx(s); } static int axe_encap(struct axe_softc *sc, struct mbuf *m, int idx) { struct ifnet *ifp = &sc->sc_if; struct axe_chain *c; usbd_status err; struct axe_sframe_hdr hdr; int length, boundary; c = &sc->axe_cdata.axe_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ if (sc->axe_flags & AX178 || sc->axe_flags & AX772) { boundary = (sc->axe_udev->speed == USB_SPEED_HIGH) ? 512 : 64; hdr.len = htole16(m->m_pkthdr.len); hdr.ilen = ~hdr.len; memcpy(c->axe_buf, &hdr, sizeof(hdr)); length = sizeof(hdr); m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf + length); length += m->m_pkthdr.len; if ((length % boundary) == 0) { hdr.len = 0x0000; hdr.ilen = 0xffff; memcpy(c->axe_buf + length, &hdr, sizeof(hdr)); length += sizeof(hdr); } } else { m_copydata(m, 0, m->m_pkthdr.len, c->axe_buf); length = m->m_pkthdr.len; } usbd_setup_xfer(c->axe_xfer, sc->axe_ep[AXE_ENDPT_TX], c, c->axe_buf, length, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 10000, axe_txeof); /* Transmit */ err = usbd_transfer(c->axe_xfer); if (err != USBD_IN_PROGRESS) { axe_stop(ifp, 0); return EIO; } sc->axe_cdata.axe_tx_cnt++; return 0; } static void axe_start(struct ifnet *ifp) { struct axe_softc *sc; struct mbuf *m; sc = ifp->if_softc; if ((sc->axe_flags & AXE_MII) != 0 && sc->axe_link == 0) return; if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) return; IFQ_POLL(&ifp->if_snd, m); if (m == NULL) { return; } if (axe_encap(sc, m, 0)) { ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m); m_freem(m); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static int axe_init(struct ifnet *ifp) { struct axe_softc *sc = ifp->if_softc; struct axe_chain *c; usbd_status err; int rxmode; int i, s; uint8_t eaddr[ETHER_ADDR_LEN]; s = splnet(); if (ifp->if_flags & IFF_RUNNING) axe_stop(ifp, 0); /* * Cancel pending I/O and free all RX/TX buffers. */ axe_reset(sc); /* Set MAC address */ if (sc->axe_flags & AX178 || sc->axe_flags & AX772) { memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr)); axe_lock_mii(sc); axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, eaddr); axe_unlock_mii(sc); } /* Enable RX logic. */ /* Init RX ring. */ if (axe_rx_list_init(sc) == ENOBUFS) { aprint_error_dev(sc->axe_dev, "rx list init failed\n"); splx(s); return ENOBUFS; } /* Init TX ring. */ if (axe_tx_list_init(sc) == ENOBUFS) { aprint_error_dev(sc->axe_dev, "tx list init failed\n"); splx(s); return ENOBUFS; } /* Set transmitter IPG values */ axe_lock_mii(sc); if (sc->axe_flags & AX178 || sc->axe_flags & AX772) axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2], (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL); else { axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL); axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL); } /* Enable receiver, set RX mode */ rxmode = AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE; if (sc->axe_flags & AX178 || sc->axe_flags & AX772) { if (sc->axe_udev->speed == USB_SPEED_HIGH) { /* Largest possible USB buffer size for AX88178 */ rxmode |= AXE_178_RXCMD_MFB; } } else rxmode |= AXE_172_RXCMD_UNICAST; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxmode |= AXE_RXCMD_PROMISC; if (ifp->if_flags & IFF_BROADCAST) rxmode |= AXE_RXCMD_BROADCAST; axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL); axe_unlock_mii(sc); /* Load the multicast filter. */ axe_setmulti(sc); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->axe_ep[AXE_ENDPT_RX]); if (err) { aprint_error_dev(sc->axe_dev, "open rx pipe failed: %s\n", usbd_errstr(err)); splx(s); return EIO; } err = usbd_open_pipe(sc->axe_iface, sc->axe_ed[AXE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->axe_ep[AXE_ENDPT_TX]); if (err) { aprint_error_dev(sc->axe_dev, "open tx pipe failed: %s\n", usbd_errstr(err)); splx(s); return EIO; } /* Start up the receive pipe. */ for (i = 0; i < AXE_RX_LIST_CNT; i++) { c = &sc->axe_cdata.axe_rx_chain[i]; usbd_setup_xfer(c->axe_xfer, sc->axe_ep[AXE_ENDPT_RX], c, c->axe_buf, sc->axe_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, axe_rxeof); usbd_transfer(c->axe_xfer); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); callout_schedule(&sc->axe_stat_ch, hz); return 0; } static int axe_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct axe_softc *sc = ifp->if_softc; int s; int error = 0; s = splnet(); switch(cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { case IFF_RUNNING: axe_stop(ifp, 1); break; case IFF_UP: axe_init(ifp); break; case IFF_UP | IFF_RUNNING: if ((ifp->if_flags ^ sc->axe_if_flags) == IFF_PROMISC) axe_setmulti(sc); else axe_init(ifp); break; } sc->axe_if_flags = ifp->if_flags; break; default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) axe_setmulti(sc); } splx(s); return error; } static void axe_watchdog(struct ifnet *ifp) { struct axe_softc *sc; struct axe_chain *c; usbd_status stat; int s; sc = ifp->if_softc; ifp->if_oerrors++; aprint_error_dev(sc->axe_dev, "watchdog timeout\n"); s = splusb(); c = &sc->axe_cdata.axe_tx_chain[0]; usbd_get_xfer_status(c->axe_xfer, NULL, NULL, NULL, &stat); axe_txeof(c->axe_xfer, c, stat); if (!IFQ_IS_EMPTY(&ifp->if_snd)) axe_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void axe_stop(struct ifnet *ifp, int disable) { struct axe_softc *sc = ifp->if_softc; usbd_status err; int i; axe_reset(sc); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); callout_stop(&(sc->axe_stat_ch)); /* Stop transfers. */ if (sc->axe_ep[AXE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (err) { aprint_error_dev(sc->axe_dev, "abort rx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_RX]); if (err) { aprint_error_dev(sc->axe_dev, "close rx pipe failed: %s\n", usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_RX] = NULL; } if (sc->axe_ep[AXE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (err) { aprint_error_dev(sc->axe_dev, "abort tx pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_TX]); if (err) { aprint_error_dev(sc->axe_dev, "close tx pipe failed: %s\n", usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_TX] = NULL; } if (sc->axe_ep[AXE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->axe_ep[AXE_ENDPT_INTR]); if (err) { aprint_error_dev(sc->axe_dev, "abort intr pipe failed: %s\n", usbd_errstr(err)); } err = usbd_close_pipe(sc->axe_ep[AXE_ENDPT_INTR]); if (err) { aprint_error_dev(sc->axe_dev, "close intr pipe failed: %s\n", usbd_errstr(err)); } sc->axe_ep[AXE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < AXE_RX_LIST_CNT; i++) { if (sc->axe_cdata.axe_rx_chain[i].axe_xfer != NULL) { usbd_free_xfer(sc->axe_cdata.axe_rx_chain[i].axe_xfer); sc->axe_cdata.axe_rx_chain[i].axe_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < AXE_TX_LIST_CNT; i++) { if (sc->axe_cdata.axe_tx_chain[i].axe_xfer != NULL) { usbd_free_xfer(sc->axe_cdata.axe_tx_chain[i].axe_xfer); sc->axe_cdata.axe_tx_chain[i].axe_xfer = NULL; } } sc->axe_link = 0; }