/* $NetBSD: rtc.c,v 1.1.1.1 1999/09/16 12:23:32 takemura Exp $ */ /*- * Copyright (c) 1999 Shin Takemura. All rights reserved. * Copyright (c) 1999 SATO Kazumi. All rights reserved. * Copyright (c) 1999 PocketBSD Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the PocketBSD project * and its contributors. * 4. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #if 0 #define RTCDEBUG /* rtc debugging infomation */ #define RTC_HEARTBEAT /* HEARTBEAT print */ #define RECALC_CPUSPEED /* cpuspeed recalculaton */ #define RECALC_CPUSPEED_DEBUG /* XXX */ #endif struct vrrtc_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; void *sc_ih; }; void clock_init __P((struct device *)); void clock_get __P((struct device *, time_t, struct clocktime *)); void clock_set __P((struct device *, struct clocktime *)); static const struct clockfns clockfns = { clock_init, clock_get, clock_set, }; int vrrtc_match __P((struct device *, struct cfdata *, void *)); void vrrtc_attach __P((struct device *, struct device *, void *)); int vrrtc_intr __P((void*, u_int32_t, u_int32_t)); struct cfattach vrrtc_ca = { sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach }; void vrrtc_write __P((struct vrrtc_softc *, int, unsigned short)); unsigned short vrrtc_read __P((struct vrrtc_softc *, int)); void cvt_timehl_ct __P((u_long, u_long, struct clocktime *)); int vrrtc_recalc_cpuspeed __P((struct device *)); extern int rtc_offset; int vrrtc_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { return(1); } inline void vrrtc_write(sc, port, val) struct vrrtc_softc *sc; int port; unsigned short val; { bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val); } inline unsigned short vrrtc_read(sc, port) struct vrrtc_softc *sc; int port; { return bus_space_read_2(sc->sc_iot, sc->sc_ioh, port); } void vrrtc_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct vrip_attach_args *va = aux; struct vrrtc_softc *sc = (void*)self; sc->sc_iot = va->va_iot; if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size, 0 /* no flags */, &sc->sc_ioh)) { printf("vrrtc_attach: can't map i/o space\n"); return; } /* RTC interrupt handler is directly dispatched from CPU intr */ vr_intr_establish(VR_INTR1, vrrtc_intr, sc); /* But need to set level 1 interupt mask register, * so regsiter fake interrurpt handler */ if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr, IPL_CLOCK, 0, 0))) { printf (":can't map interrupt.\n"); return; } /* * Rtc is attached to call this routine * before cpu_initclock() calls clock_init(). * So we must disable all interrupt for now. */ /* * Disable all rtc interrupts */ /* Disable Elapse compare intr */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0); bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0); bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0); /* Disable RTC Long1 intr */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0); bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0); /* Disable RTC Long2 intr */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0); bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0); /* Disable RTC TCLK intr */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0); bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0); /* * Clear all rtc intrrupts. */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL); clockattach(&sc->sc_dev, &clockfns); } int vrrtc_intr(arg, pc, statusReg) void *arg; u_int32_t pc; u_int32_t statusReg; { struct vrrtc_softc *sc = arg; struct clockframe cf; bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL); cf.pc = pc; cf.sr = statusReg; hardclock(&cf); intrcnt[HARDCLOCK]++; #ifdef RTC_HEARTBEAT if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) { struct clocktime ct; clock_get((struct device *)sc, NULL, &ct); printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n", __FILE__, __LINE__, ct.year, ct.mon, ct.day, ct.hour, ct.min, ct.sec); } #endif return 0; } int vrrtc_recalc_cpuspeed(dev) struct device *dev; { struct vrrtc_softc *sc = (struct vrrtc_softc *)dev; u_long otimeh; u_long otimel; u_long timeh; u_long timel; otimeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W); otimel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W); otimel = (otimel << 16) | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W); #define MSEC 1000 /* wait 1msec */ DELAY(MSEC); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W); timel = (timel << 16) | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W); if (timeh-otimeh > 0){ /* cpuspeed is too large (> 2 sec)*/ cpuspeed = cpuspeed/((timeh-otimeh)*2*MSEC); cpuspeed +=1; return 0; } if (timel-otimel < (ETIME_L_HZ/MSEC/10)) { /* cpuspeed is too small (< 0.1msec) */ cpuspeed *=10; return -1; } cpuspeed = cpuspeed * (ETIME_L_HZ/MSEC) / (timel-otimel); return 0; } void clock_init(dev) struct device *dev; { struct vrrtc_softc *sc = (struct vrrtc_softc *)dev; #ifdef RTCDEBUG int timeh; int timel; #endif /* RTCDEBUG */ #ifdef RECALC_CPUSPEED int maxrecalc = 3; #endif /* RECALC_CPUSPEED */ #ifdef RTCDEBUG timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W); timel = (timel << 16) | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W); printf("clock_init() Elapse Time %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W); timel = (timel << 16) | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W); printf("clock_init() Elapse Compare %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W); printf("clock_init() LONG1 %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W); printf("clock_init() LONG1 CNTL %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W); printf("clock_init() LONG2 %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W); printf("clock_init() LONG2 CNTL %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W); printf("clock_init() TCLK %04x%04x\n", timeh, timel); timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W); printf("clock_init() TCLK CNTL %04x%04x\n", timeh, timel); #endif /* RTCDEBUG */ /* * Set tick (CLOCK_RATE) */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0); bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, RTCL1_L_HZ/CLOCK_RATE); #ifdef RECALC_CPUSPEED /* calcurate cpu speed */ while (maxrecalc-- > 0 && vrrtc_recalc_cpuspeed(dev)) ; #ifdef RECALC_CPUSPEED_DEBUG printf("clock_init() cpuspeed = %d\n", cpuspeed); #endif /* RECALC_CPUSPEED_DEBUG */ #endif /* RECALC_CPUSPEED */ } static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; void cvt_timehl_ct(timeh, timel, ct) u_long timeh; /* 2 sec */ u_long timel; /* 1/32768 sec */ struct clocktime *ct; { #define EPOCHOFF 0 #define EPOCHYEAR 1850 /* XXXX */ #define EPOCHMONTH 0 #define EPOCHDATE 0 u_long year, month, date, hour, min, sec, sec2; timeh -= EPOCHOFF; timeh += (rtc_offset*(SECMIN/2)); year = EPOCHYEAR; sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2; while (timeh > sec2) { year++; timeh -= sec2; sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2; } #ifdef RTCDEBUG printf("cvt_timehl_ct: timeh %08lx year %ld yrref %ld\n", timeh, year, sec2); #endif /* RTCDEBUG */ month = 0; /* now month is 0..11 */ sec2 = (SECDAY * m2d[month])/2; while (timeh > sec2) { timeh -= sec2; month++; sec2 = (SECDAY * m2d[month])/2; if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */ sec2 += SECDAY/2; } month +=1; /* now month is 1..12 */ #ifdef RTCDEBUG printf("cvt_timehl_ct: timeh %08lx month %ld mref %ld\n", timeh, month, sec2); #endif /* RTCDEBUG */ sec2 = SECDAY/2; date = timeh/sec2+1; /* date is 1..31 */ timeh -= (date-1)*sec2; #ifdef RTCDEBUG printf("cvt_timehl_ct: timeh %08lx date %ld dref %ld\n", timeh, date, sec2); #endif /* RTCDEBUG */ sec2 = SECHOUR/2; hour = timeh/sec2; timeh -= hour*sec2; sec2 = SECMIN/2; min = timeh/sec2; timeh -= min*sec2; sec = timeh*2 + timel/ETIME_L_HZ; #ifdef RTCDEBUG printf("cvt_timehl_ct: hour %ld min %ld sec %ld\n", hour, min, sec); #endif /* RTCDEBUG */ if (ct) { ct->year = year - 1900; /* base 1900 */ ct->mon = month; ct->day = date; ct->hour = hour; ct->min = min; ct->sec = sec; } } void clock_get(dev, base, ct) struct device *dev; time_t base; struct clocktime *ct; { struct vrrtc_softc *sc = (struct vrrtc_softc *)dev; u_long timeh; /* elapse time (2*timeh sec) */ u_long timel; /* timel/32768 sec */ timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W); timeh = (timeh << 16) | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W); timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W); #ifdef RTCDEBUG printf("clock_get: timeh %08lx timel %08lx\n", timeh, timel); #endif /* RTCDEBUG */ cvt_timehl_ct(timeh, timel, ct); #ifdef RTCDEBUG printf("clock_get: %d/%d/%d/%d/%d/%d\n", ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec); #endif /* RTCDEBUG */ } void clock_set(dev, ct) struct device *dev; struct clocktime *ct; { struct vrrtc_softc *sc = (struct vrrtc_softc *)dev; u_long timeh; /* elapse time (2*timeh sec) */ u_long timel; /* timel/32768 sec */ int year, month, sec2; timeh = 0; timel = 0; #ifdef RTCDEBUG printf("clock_set: %d/%d/%d/%d/%d/%d\n", ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec); #endif /* RTCDEBUG */ ct->year += 1900; #ifdef RTCDEBUG printf("clock_set: %d/%d/%d/%d/%d/%d\n", ct->year, ct->mon, ct->day, ct->hour, ct->min, ct->sec); #endif /* RTCDEBUG */ year = EPOCHYEAR; sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2; while (year < ct->year) { year++; timeh += sec2; sec2 = LEAPYEAR4(year)?(SECYR+SECDAY)/2:SECYR/2; } month = 1; /* now month is 1..12 */ sec2 = (SECDAY * m2d[month-1])/2; while (month < ct->mon) { month++; timeh += sec2; sec2 = (SECDAY * m2d[month-1])/2; if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */ sec2 += SECDAY/2; } timeh += (ct->day - 1)*(SECDAY/2); timeh += ct->hour*(SECHOUR/2); timeh += ct->min*(SECMIN/2); timeh += ct->sec/2; timel += (ct->sec%2)*ETIME_L_HZ; timeh += EPOCHOFF; timeh -= (rtc_offset*(SECMIN/2)); #ifdef RTCDEBUG cvt_timehl_ct(timeh, timel, NULL); #endif /* RTCDEBUG */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W, (timeh>>16)&0xffff); bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W, timeh&0xffff); bus_space_write_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W, timel); }