/* $NetBSD: init_sysctl.c,v 1.74 2006/06/21 13:46:17 christos Exp $ */ /*- * Copyright (c) 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Brown. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.74 2006/06/21 13:46:17 christos Exp $"); #include "opt_sysv.h" #include "opt_multiprocessor.h" #include "opt_posix.h" #include "opt_verified_exec.h" #include "pty.h" #include "rnd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VERIFIED_EXEC #define VERIEXEC_NEED_NODE #include #endif /* VERIFIED_EXEC */ #include #include #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) #include #endif #ifdef SYSVMSG #include #endif #ifdef SYSVSEM #include #endif #ifdef SYSVSHM #include #endif #include /* XXX this should not be here */ int security_curtain = 0; int security_setidcore_dump; char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core"; uid_t security_setidcore_owner = 0; gid_t security_setidcore_group = 0; mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR); /* * try over estimating by 5 procs/lwps */ #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp)) #ifndef MULTIPROCESSOR #define sysctl_ncpus() (1) #else /* MULTIPROCESSOR */ #ifndef CPU_INFO_FOREACH #define CPU_INFO_ITERATOR int #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL #endif static int sysctl_ncpus(void) { struct cpu_info *ci; CPU_INFO_ITERATOR cii; int ncpus = 0; for (CPU_INFO_FOREACH(cii, ci)) ncpus++; return (ncpus); } #endif /* MULTIPROCESSOR */ #ifdef DIAGNOSTIC static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO); #endif static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO); static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO); static int sysctl_kern_maxproc(SYSCTLFN_PROTO); static int sysctl_kern_hostid(SYSCTLFN_PROTO); static int sysctl_setlen(SYSCTLFN_PROTO); static int sysctl_kern_clockrate(SYSCTLFN_PROTO); static int sysctl_kern_file(SYSCTLFN_PROTO); static int sysctl_kern_autonice(SYSCTLFN_PROTO); static int sysctl_msgbuf(SYSCTLFN_PROTO); static int sysctl_kern_defcorename(SYSCTLFN_PROTO); static int sysctl_kern_cptime(SYSCTLFN_PROTO); #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) static int sysctl_kern_sysvipc(SYSCTLFN_PROTO); #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */ #if NPTY > 0 static int sysctl_kern_maxptys(SYSCTLFN_PROTO); #endif /* NPTY > 0 */ static int sysctl_kern_sbmax(SYSCTLFN_PROTO); static int sysctl_kern_urnd(SYSCTLFN_PROTO); static int sysctl_kern_lwp(SYSCTLFN_PROTO); static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO); static int sysctl_kern_root_partition(SYSCTLFN_PROTO); static int sysctl_kern_drivers(SYSCTLFN_PROTO); static int sysctl_kern_file2(SYSCTLFN_PROTO); #ifdef VERIFIED_EXEC static int sysctl_kern_veriexec(SYSCTLFN_PROTO); #endif static int sysctl_security_setidcore(SYSCTLFN_PROTO); static int sysctl_security_setidcorename(SYSCTLFN_PROTO); static int sysctl_kern_cpid(SYSCTLFN_PROTO); static int sysctl_doeproc(SYSCTLFN_PROTO); static int sysctl_kern_proc_args(SYSCTLFN_PROTO); static int sysctl_hw_usermem(SYSCTLFN_PROTO); static int sysctl_hw_cnmagic(SYSCTLFN_PROTO); static int sysctl_hw_ncpu(SYSCTLFN_PROTO); static void fill_kproc2(struct proc *, struct kinfo_proc2 *); static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl); static void fill_file(struct kinfo_file *, const struct file *, struct proc *, int); /* * ******************************************************************** * section 1: setup routines * ******************************************************************** * these functions are stuffed into a link set for sysctl setup * functions. they're never called or referenced from anywhere else. * ******************************************************************** */ /* * sets up the base nodes... */ SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", SYSCTL_DESCR("High kernel"), NULL, 0, NULL, 0, CTL_KERN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "vm", SYSCTL_DESCR("Virtual memory"), NULL, 0, NULL, 0, CTL_VM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "vfs", SYSCTL_DESCR("Filesystem"), NULL, 0, NULL, 0, CTL_VFS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", SYSCTL_DESCR("Networking"), NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "debug", SYSCTL_DESCR("Debugging"), NULL, 0, NULL, 0, CTL_DEBUG, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", SYSCTL_DESCR("Generic CPU, I/O"), NULL, 0, NULL, 0, CTL_HW, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", SYSCTL_DESCR("Machine dependent"), NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL); /* * this node is inserted so that the sysctl nodes in libc can * operate. */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "user", SYSCTL_DESCR("User-level"), NULL, 0, NULL, 0, CTL_USER, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ddb", SYSCTL_DESCR("In-kernel debugger"), NULL, 0, NULL, 0, CTL_DDB, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "proc", SYSCTL_DESCR("Per-process"), NULL, 0, NULL, 0, CTL_PROC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_NODE, "vendor", SYSCTL_DESCR("Vendor specific"), NULL, 0, NULL, 0, CTL_VENDOR, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "emul", SYSCTL_DESCR("Emulation settings"), NULL, 0, NULL, 0, CTL_EMUL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "security", SYSCTL_DESCR("Security"), NULL, 0, NULL, 0, CTL_SECURITY, CTL_EOL); } /* * this setup routine is a replacement for kern_sysctl() */ SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup") { extern int kern_logsigexit; /* defined in kern/kern_sig.c */ extern fixpt_t ccpu; /* defined in kern/kern_synch.c */ extern int dumponpanic; /* defined in kern/subr_prf.c */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", NULL, NULL, 0, NULL, 0, CTL_KERN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "ostype", SYSCTL_DESCR("Operating system type"), NULL, 0, &ostype, 0, CTL_KERN, KERN_OSTYPE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "osrelease", SYSCTL_DESCR("Operating system release"), NULL, 0, &osrelease, 0, CTL_KERN, KERN_OSRELEASE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "osrevision", SYSCTL_DESCR("Operating system revision"), NULL, __NetBSD_Version__, NULL, 0, CTL_KERN, KERN_OSREV, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "version", SYSCTL_DESCR("Kernel version"), NULL, 0, &version, 0, CTL_KERN, KERN_VERSION, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxvnodes", SYSCTL_DESCR("Maximum number of vnodes"), sysctl_kern_maxvnodes, 0, NULL, 0, CTL_KERN, KERN_MAXVNODES, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxproc", SYSCTL_DESCR("Maximum number of simultaneous processes"), sysctl_kern_maxproc, 0, NULL, 0, CTL_KERN, KERN_MAXPROC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxfiles", SYSCTL_DESCR("Maximum number of open files"), NULL, 0, &maxfiles, 0, CTL_KERN, KERN_MAXFILES, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "argmax", SYSCTL_DESCR("Maximum number of bytes of arguments to " "execve(2)"), NULL, ARG_MAX, NULL, 0, CTL_KERN, KERN_ARGMAX, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRING, "hostname", SYSCTL_DESCR("System hostname"), sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN, CTL_KERN, KERN_HOSTNAME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX, CTLTYPE_INT, "hostid", SYSCTL_DESCR("System host ID number"), sysctl_kern_hostid, 0, NULL, 0, CTL_KERN, KERN_HOSTID, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "clockrate", SYSCTL_DESCR("Kernel clock rates"), sysctl_kern_clockrate, 0, NULL, sizeof(struct clockinfo), CTL_KERN, KERN_CLOCKRATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "hardclock_ticks", SYSCTL_DESCR("Number of hardclock ticks"), NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks), CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "vnode", SYSCTL_DESCR("System vnode table"), sysctl_kern_vnode, 0, NULL, 0, CTL_KERN, KERN_VNODE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "file", SYSCTL_DESCR("System open file table"), sysctl_kern_file, 0, NULL, 0, CTL_KERN, KERN_FILE, CTL_EOL); #ifndef GPROF sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "profiling", SYSCTL_DESCR("Profiling information (not available)"), sysctl_notavail, 0, NULL, 0, CTL_KERN, KERN_PROF, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix1version", SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) " "with which the operating system attempts " "to comply"), NULL, _POSIX_VERSION, NULL, 0, CTL_KERN, KERN_POSIX1, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "ngroups", SYSCTL_DESCR("Maximum number of supplemental groups"), NULL, NGROUPS_MAX, NULL, 0, CTL_KERN, KERN_NGROUPS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "job_control", SYSCTL_DESCR("Whether job control is available"), NULL, 1, NULL, 0, CTL_KERN, KERN_JOB_CONTROL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "saved_ids", SYSCTL_DESCR("Whether POSIX saved set-group/user ID is " "available"), NULL, #ifdef _POSIX_SAVED_IDS 1, #else /* _POSIX_SAVED_IDS */ 0, #endif /* _POSIX_SAVED_IDS */ NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "boottime", SYSCTL_DESCR("System boot time"), NULL, 0, &boottime, sizeof(boottime), CTL_KERN, KERN_BOOTTIME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRING, "domainname", SYSCTL_DESCR("YP domain name"), sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN, CTL_KERN, KERN_DOMAINNAME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "maxpartitions", SYSCTL_DESCR("Maximum number of partitions allowed per " "disk"), NULL, MAXPARTITIONS, NULL, 0, CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "rawpartition", SYSCTL_DESCR("Raw partition of a disk"), NULL, RAW_PART, NULL, 0, CTL_KERN, KERN_RAWPARTITION, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "timex", NULL, sysctl_notavail, 0, NULL, 0, CTL_KERN, KERN_TIMEX, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "autonicetime", SYSCTL_DESCR("CPU clock seconds before non-root " "process priority is lowered"), sysctl_kern_autonice, 0, &autonicetime, 0, CTL_KERN, KERN_AUTONICETIME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "autoniceval", SYSCTL_DESCR("Automatic reniced non-root process " "priority"), sysctl_kern_autonice, 0, &autoniceval, 0, CTL_KERN, KERN_AUTONICEVAL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rtc_offset", SYSCTL_DESCR("Offset of real time clock from UTC in " "minutes"), sysctl_kern_rtc_offset, 0, &rtc_offset, 0, CTL_KERN, KERN_RTC_OFFSET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "root_device", SYSCTL_DESCR("Name of the root device"), sysctl_root_device, 0, NULL, 0, CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "msgbufsize", SYSCTL_DESCR("Size of the kernel message buffer"), sysctl_msgbuf, 0, NULL, 0, CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "fsync", SYSCTL_DESCR("Whether the POSIX 1003.1b File " "Synchronization Option is available on " "this system"), NULL, 1, NULL, 0, CTL_KERN, KERN_FSYNC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "sysvmsg", SYSCTL_DESCR("System V style message support available"), NULL, #ifdef SYSVMSG 1, #else /* SYSVMSG */ 0, #endif /* SYSVMSG */ NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "sysvsem", SYSCTL_DESCR("System V style semaphore support " "available"), NULL, #ifdef SYSVSEM 1, #else /* SYSVSEM */ 0, #endif /* SYSVSEM */ NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "sysvshm", SYSCTL_DESCR("System V style shared memory support " "available"), NULL, #ifdef SYSVSHM 1, #else /* SYSVSHM */ 0, #endif /* SYSVSHM */ NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "synchronized_io", SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized " "I/O Option is available on this system"), NULL, 1, NULL, 0, CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "iov_max", SYSCTL_DESCR("Maximum number of iovec structures per " "process"), NULL, IOV_MAX, NULL, 0, CTL_KERN, KERN_IOV_MAX, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "mapped_files", SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped " "Files Option is available on this system"), NULL, 1, NULL, 0, CTL_KERN, KERN_MAPPED_FILES, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "memlock", SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory " "Locking Option is available on this " "system"), NULL, 1, NULL, 0, CTL_KERN, KERN_MEMLOCK, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "memlock_range", SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory " "Locking Option is available on this " "system"), NULL, 1, NULL, 0, CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "memory_protection", SYSCTL_DESCR("Whether the POSIX 1003.1b Memory " "Protection Option is available on this " "system"), NULL, 1, NULL, 0, CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "login_name_max", SYSCTL_DESCR("Maximum login name length"), NULL, LOGIN_NAME_MAX, NULL, 0, CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRING, "defcorename", SYSCTL_DESCR("Default core file name"), sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN, CTL_KERN, KERN_DEFCORENAME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "logsigexit", SYSCTL_DESCR("Log process exit when caused by signals"), NULL, 0, &kern_logsigexit, 0, CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "fscale", SYSCTL_DESCR("Kernel fixed-point scale factor"), NULL, FSCALE, NULL, 0, CTL_KERN, KERN_FSCALE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "ccpu", SYSCTL_DESCR("Scheduler exponential decay value"), NULL, 0, &ccpu, 0, CTL_KERN, KERN_CCPU, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "cp_time", SYSCTL_DESCR("Clock ticks spent in different CPU states"), sysctl_kern_cptime, 0, NULL, 0, CTL_KERN, KERN_CP_TIME, CTL_EOL); #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "sysvipc_info", SYSCTL_DESCR("System V style IPC information"), sysctl_kern_sysvipc, 0, NULL, 0, CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL); #endif /* SYSVMSG || SYSVSEM || SYSVSHM */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "msgbuf", SYSCTL_DESCR("Kernel message buffer"), sysctl_msgbuf, 0, NULL, 0, CTL_KERN, KERN_MSGBUF, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "consdev", SYSCTL_DESCR("Console device"), sysctl_consdev, 0, NULL, sizeof(dev_t), CTL_KERN, KERN_CONSDEV, CTL_EOL); #if NPTY > 0 sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "maxptys", SYSCTL_DESCR("Maximum number of pseudo-ttys"), sysctl_kern_maxptys, 0, NULL, 0, CTL_KERN, KERN_MAXPTYS, CTL_EOL); #endif /* NPTY > 0 */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "maxphys", SYSCTL_DESCR("Maximum raw I/O transfer size"), NULL, MAXPHYS, NULL, 0, CTL_KERN, KERN_MAXPHYS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sbmax", SYSCTL_DESCR("Maximum socket buffer size"), sysctl_kern_sbmax, 0, NULL, 0, CTL_KERN, KERN_SBMAX, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "monotonic_clock", SYSCTL_DESCR("Implementation version of the POSIX " "1003.1b Monotonic Clock Option"), /* XXX _POSIX_VERSION */ NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0, CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "urandom", SYSCTL_DESCR("Random integer value"), sysctl_kern_urnd, 0, NULL, 0, CTL_KERN, KERN_URND, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "labelsector", SYSCTL_DESCR("Sector number containing the disklabel"), NULL, LABELSECTOR, NULL, 0, CTL_KERN, KERN_LABELSECTOR, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "labeloffset", SYSCTL_DESCR("Offset of the disklabel within the " "sector"), NULL, LABELOFFSET, NULL, 0, CTL_KERN, KERN_LABELOFFSET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "lwp", SYSCTL_DESCR("System-wide LWP information"), sysctl_kern_lwp, 0, NULL, 0, CTL_KERN, KERN_LWP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "forkfsleep", SYSCTL_DESCR("Milliseconds to sleep on fork failure due " "to process limits"), sysctl_kern_forkfsleep, 0, NULL, 0, CTL_KERN, KERN_FORKFSLEEP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_threads", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " "Threads option to which the system " "attempts to conform"), /* XXX _POSIX_VERSION */ NULL, _POSIX_THREADS, NULL, 0, CTL_KERN, KERN_POSIX_THREADS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_semaphores", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " "Semaphores option to which the system " "attempts to conform"), NULL, #ifdef P1003_1B_SEMAPHORE 200112, #else /* P1003_1B_SEMAPHORE */ 0, #endif /* P1003_1B_SEMAPHORE */ NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_barriers", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " "Barriers option to which the system " "attempts to conform"), /* XXX _POSIX_VERSION */ NULL, _POSIX_BARRIERS, NULL, 0, CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_timers", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " "Timers option to which the system " "attempts to conform"), /* XXX _POSIX_VERSION */ NULL, _POSIX_TIMERS, NULL, 0, CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_spin_locks", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin " "Locks option to which the system attempts " "to conform"), /* XXX _POSIX_VERSION */ NULL, _POSIX_SPIN_LOCKS, NULL, 0, CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "posix_reader_writer_locks", SYSCTL_DESCR("Version of IEEE Std 1003.1 and its " "Read-Write Locks option to which the " "system attempts to conform"), /* XXX _POSIX_VERSION */ NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0, CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "dump_on_panic", SYSCTL_DESCR("Perform a crash dump on system panic"), NULL, 0, &dumponpanic, 0, CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL); #ifdef DIAGNOSTIC sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "panic_now", SYSCTL_DESCR("Trigger a panic"), sysctl_kern_trigger_panic, 0, NULL, 0, CTL_KERN, CTL_CREATE, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "root_partition", SYSCTL_DESCR("Root partition on the root device"), sysctl_kern_root_partition, 0, NULL, 0, CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "drivers", SYSCTL_DESCR("List of all drivers with block and " "character device numbers"), sysctl_kern_drivers, 0, NULL, 0, CTL_KERN, KERN_DRIVERS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "file2", SYSCTL_DESCR("System open file table"), sysctl_kern_file2, 0, NULL, 0, CTL_KERN, KERN_FILE2, CTL_EOL); #ifdef VERIFIED_EXEC sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "veriexec", SYSCTL_DESCR("Verified Exec"), NULL, 0, NULL, 0, CTL_KERN, KERN_VERIEXEC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "verbose", SYSCTL_DESCR("Verified Exec verbose level"), NULL, 0, &veriexec_verbose, 0, CTL_KERN, KERN_VERIEXEC, VERIEXEC_VERBOSE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "strict", SYSCTL_DESCR("Verified Exec strict level"), sysctl_kern_veriexec, 0, NULL, 0, CTL_KERN, KERN_VERIEXEC, VERIEXEC_STRICT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "algorithms", SYSCTL_DESCR("Verified Exec supported hashing " "algorithms"), sysctl_kern_veriexec, 0, NULL, 0, CTL_KERN, KERN_VERIEXEC, VERIEXEC_ALGORITHMS, CTL_EOL); sysctl_createv(clog, 0, NULL, &veriexec_count_node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "count", SYSCTL_DESCR("Number of fingerprints on device(s)"), NULL, 0, NULL, 0, CTL_KERN, KERN_VERIEXEC, VERIEXEC_COUNT, CTL_EOL); #endif /* VERIFIED_EXEC */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "cp_id", SYSCTL_DESCR("Mapping of CPU number to CPU id"), sysctl_kern_cpid, 0, NULL, 0, CTL_KERN, KERN_CP_ID, CTL_EOL); } SYSCTL_SETUP(sysctl_kern_proc_setup, "sysctl kern.proc/proc2/proc_args subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", NULL, NULL, 0, NULL, 0, CTL_KERN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "proc", SYSCTL_DESCR("System-wide process information"), sysctl_doeproc, 0, NULL, 0, CTL_KERN, KERN_PROC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "proc2", SYSCTL_DESCR("Machine-independent process information"), sysctl_doeproc, 0, NULL, 0, CTL_KERN, KERN_PROC2, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "proc_args", SYSCTL_DESCR("Process argument information"), sysctl_kern_proc_args, 0, NULL, 0, CTL_KERN, KERN_PROC_ARGS, CTL_EOL); /* "nodes" under these: KERN_PROC_ALL KERN_PROC_PID pid KERN_PROC_PGRP pgrp KERN_PROC_SESSION sess KERN_PROC_TTY tty KERN_PROC_UID uid KERN_PROC_RUID uid KERN_PROC_GID gid KERN_PROC_RGID gid all in all, probably not worth the effort... */ } SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup") { u_int u; u_quad_t q; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "machine", SYSCTL_DESCR("Machine class"), NULL, 0, machine, 0, CTL_HW, HW_MACHINE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "model", SYSCTL_DESCR("Machine model"), NULL, 0, cpu_model, 0, CTL_HW, HW_MODEL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "ncpu", SYSCTL_DESCR("Number of active CPUs"), sysctl_hw_ncpu, 0, NULL, 0, CTL_HW, HW_NCPU, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "byteorder", SYSCTL_DESCR("System byte order"), NULL, BYTE_ORDER, NULL, 0, CTL_HW, HW_BYTEORDER, CTL_EOL); u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ? UINT_MAX : physmem * PAGE_SIZE; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "physmem", SYSCTL_DESCR("Bytes of physical memory"), NULL, u, NULL, 0, CTL_HW, HW_PHYSMEM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, "usermem", SYSCTL_DESCR("Bytes of non-kernel memory"), sysctl_hw_usermem, 0, NULL, 0, CTL_HW, HW_USERMEM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "pagesize", SYSCTL_DESCR("Software page size"), NULL, PAGE_SIZE, NULL, 0, CTL_HW, HW_PAGESIZE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "machine_arch", SYSCTL_DESCR("Machine CPU class"), NULL, 0, machine_arch, 0, CTL_HW, HW_MACHINE_ARCH, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_INT, "alignbytes", SYSCTL_DESCR("Alignment constraint for all possible " "data types"), NULL, ALIGNBYTES, NULL, 0, CTL_HW, HW_ALIGNBYTES, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX, CTLTYPE_STRING, "cnmagic", SYSCTL_DESCR("Console magic key sequence"), sysctl_hw_cnmagic, 0, NULL, CNS_LEN, CTL_HW, HW_CNMAGIC, CTL_EOL); q = (u_quad_t)physmem * PAGE_SIZE; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE, CTLTYPE_QUAD, "physmem64", SYSCTL_DESCR("Bytes of physical memory"), NULL, q, NULL, 0, CTL_HW, HW_PHYSMEM64, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_QUAD, "usermem64", SYSCTL_DESCR("Bytes of non-kernel memory"), sysctl_hw_usermem, 0, NULL, 0, CTL_HW, HW_USERMEM64, CTL_EOL); } #ifdef DEBUG /* * Debugging related system variables. */ struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4; struct ctldebug debug5, debug6, debug7, debug8, debug9; struct ctldebug debug10, debug11, debug12, debug13, debug14; struct ctldebug debug15, debug16, debug17, debug18, debug19; static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = { &debug0, &debug1, &debug2, &debug3, &debug4, &debug5, &debug6, &debug7, &debug8, &debug9, &debug10, &debug11, &debug12, &debug13, &debug14, &debug15, &debug16, &debug17, &debug18, &debug19, }; /* * this setup routine is a replacement for debug_sysctl() * * note that it creates several nodes per defined debug variable */ SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup") { struct ctldebug *cdp; char nodename[20]; int i; /* * two ways here: * * the "old" way (debug.name -> value) which was emulated by * the sysctl(8) binary * * the new way, which the sysctl(8) binary was actually using node debug node debug.0 string debug.0.name int debug.0.value int debug.name */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "debug", NULL, NULL, 0, NULL, 0, CTL_DEBUG, CTL_EOL); for (i = 0; i < CTL_DEBUG_MAXID; i++) { cdp = debugvars[i]; if (cdp->debugname == NULL || cdp->debugvar == NULL) continue; snprintf(nodename, sizeof(nodename), "debug%d", i); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_HIDDEN, CTLTYPE_NODE, nodename, NULL, NULL, 0, NULL, 0, CTL_DEBUG, i, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_HIDDEN, CTLTYPE_STRING, "name", NULL, /*XXXUNCONST*/ NULL, 0, __UNCONST(cdp->debugname), 0, CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_HIDDEN, CTLTYPE_INT, "value", NULL, NULL, 0, cdp->debugvar, 0, CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_INT, cdp->debugname, NULL, NULL, 0, cdp->debugvar, 0, CTL_DEBUG, CTL_CREATE, CTL_EOL); } } #endif /* DEBUG */ SYSCTL_SETUP(sysctl_security_setup, "sysctl security subtree setup") { const struct sysctlnode *rnode = NULL; sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "security", NULL, NULL, 0, NULL, 0, CTL_SECURITY, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "curtain", SYSCTL_DESCR("Curtain information about objects" " to users not owning them."), NULL, 0, &security_curtain, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "setid_core", SYSCTL_DESCR("Set-id processes' coredump settings."), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "dump", SYSCTL_DESCR("Allow set-id processes to dump core."), sysctl_security_setidcore, 0, &security_setidcore_dump, sizeof(security_setidcore_dump), CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRING, "path", SYSCTL_DESCR("Path pattern for set-id coredumps."), sysctl_security_setidcorename, 0, &security_setidcore_path, sizeof(security_setidcore_path), CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "owner", SYSCTL_DESCR("Owner id for set-id processes' cores."), sysctl_security_setidcore, 0, &security_setidcore_owner, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "group", SYSCTL_DESCR("Group id for set-id processes' cores."), sysctl_security_setidcore, 0, &security_setidcore_group, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mode", SYSCTL_DESCR("Mode for set-id processes' cores."), sysctl_security_setidcore, 0, &security_setidcore_mode, 0, CTL_CREATE, CTL_EOL); } /* * ******************************************************************** * section 2: private node-specific helper routines. * ******************************************************************** */ #ifdef DIAGNOSTIC static int sysctl_kern_trigger_panic(SYSCTLFN_ARGS) { int newtrig, error; struct sysctlnode node; newtrig = 0; node = *rnode; node.sysctl_data = &newtrig; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (newtrig != 0) panic("Panic triggered"); return (error); } #endif /* * sysctl helper routine for kern.maxvnodes. drain vnodes if * new value is lower than desiredvnodes and then calls reinit * routines that needs to adjust to the new value. */ static int sysctl_kern_maxvnodes(SYSCTLFN_ARGS) { int error, new_vnodes, old_vnodes; struct sysctlnode node; new_vnodes = desiredvnodes; node = *rnode; node.sysctl_data = &new_vnodes; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); old_vnodes = desiredvnodes; desiredvnodes = new_vnodes; if (new_vnodes < old_vnodes) { error = vfs_drainvnodes(new_vnodes, l); if (error) { desiredvnodes = old_vnodes; return (error); } } vfs_reinit(); nchreinit(); return (0); } /* * sysctl helper routine for rtc_offset - set time after changes */ static int sysctl_kern_rtc_offset(SYSCTLFN_ARGS) { struct timespec ts, delta; int error, new_rtc_offset; struct sysctlnode node; new_rtc_offset = rtc_offset; node = *rnode; node.sysctl_data = &new_rtc_offset; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (securelevel > 0) return (EPERM); if (rtc_offset == new_rtc_offset) return (0); /* if we change the offset, adjust the time */ nanotime(&ts); delta.tv_sec = 60 * (new_rtc_offset - rtc_offset); delta.tv_nsec = 0; timespecadd(&ts, &delta, &ts); rtc_offset = new_rtc_offset; settime(l->l_proc, &ts); return (0); } /* * sysctl helper routine for kern.maxproc. ensures that the new * values are not too low or too high. */ static int sysctl_kern_maxproc(SYSCTLFN_ARGS) { int error, nmaxproc; struct sysctlnode node; nmaxproc = maxproc; node = *rnode; node.sysctl_data = &nmaxproc; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (nmaxproc < 0 || nmaxproc >= PID_MAX) return (EINVAL); #ifdef __HAVE_CPU_MAXPROC if (nmaxproc > cpu_maxproc()) return (EINVAL); #endif maxproc = nmaxproc; return (0); } /* * sysctl helper function for kern.hostid. the hostid is a long, but * we export it as an int, so we need to give it a little help. */ static int sysctl_kern_hostid(SYSCTLFN_ARGS) { int error, inthostid; struct sysctlnode node; inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */ node = *rnode; node.sysctl_data = &inthostid; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); hostid = (unsigned)inthostid; return (0); } /* * sysctl helper function for kern.hostname and kern.domainnname. * resets the relevant recorded length when the underlying name is * changed. */ static int sysctl_setlen(SYSCTLFN_ARGS) { int error; error = sysctl_lookup(SYSCTLFN_CALL(rnode)); if (error || newp == NULL) return (error); switch (rnode->sysctl_num) { case KERN_HOSTNAME: hostnamelen = strlen((const char*)rnode->sysctl_data); break; case KERN_DOMAINNAME: domainnamelen = strlen((const char*)rnode->sysctl_data); break; } return (0); } /* * sysctl helper routine for kern.clockrate. assembles a struct on * the fly to be returned to the caller. */ static int sysctl_kern_clockrate(SYSCTLFN_ARGS) { struct clockinfo clkinfo; struct sysctlnode node; clkinfo.tick = tick; clkinfo.tickadj = tickadj; clkinfo.hz = hz; clkinfo.profhz = profhz; clkinfo.stathz = stathz ? stathz : hz; node = *rnode; node.sysctl_data = &clkinfo; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } /* * sysctl helper routine for kern.file pseudo-subtree. */ static int sysctl_kern_file(SYSCTLFN_ARGS) { int error; size_t buflen; struct file *fp; char *start, *where; start = where = oldp; buflen = *oldlenp; if (where == NULL) { /* * overestimate by 10 files */ *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file); return (0); } /* * first copyout filehead */ if (buflen < sizeof(filehead)) { *oldlenp = 0; return (0); } error = copyout(&filehead, where, sizeof(filehead)); if (error) return (error); buflen -= sizeof(filehead); where += sizeof(filehead); /* * followed by an array of file structures */ LIST_FOREACH(fp, &filehead, f_list) { if (CURTAIN(kauth_cred_geteuid(l->l_proc->p_cred), kauth_cred_geteuid(fp->f_cred))) continue; if (buflen < sizeof(struct file)) { *oldlenp = where - start; return (ENOMEM); } error = copyout(fp, where, sizeof(struct file)); if (error) return (error); buflen -= sizeof(struct file); where += sizeof(struct file); } *oldlenp = where - start; return (0); } /* * sysctl helper routine for kern.autonicetime and kern.autoniceval. * asserts that the assigned value is in the correct range. */ static int sysctl_kern_autonice(SYSCTLFN_ARGS) { int error, t = 0; struct sysctlnode node; node = *rnode; t = *(int*)node.sysctl_data; node.sysctl_data = &t; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); switch (node.sysctl_num) { case KERN_AUTONICETIME: if (t >= 0) autonicetime = t; break; case KERN_AUTONICEVAL: if (t < PRIO_MIN) t = PRIO_MIN; else if (t > PRIO_MAX) t = PRIO_MAX; autoniceval = t; break; } return (0); } /* * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the * former it merely checks the message buffer is set up. for the latter, * it also copies out the data if necessary. */ static int sysctl_msgbuf(SYSCTLFN_ARGS) { char *where = oldp; size_t len, maxlen; long beg, end; int error; if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) { msgbufenabled = 0; return (ENXIO); } switch (rnode->sysctl_num) { case KERN_MSGBUFSIZE: { struct sysctlnode node = *rnode; int msg_bufs = (int)msgbufp->msg_bufs; node.sysctl_data = &msg_bufs; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } case KERN_MSGBUF: break; default: return (EOPNOTSUPP); } if (newp != NULL) return (EPERM); if (oldp == NULL) { /* always return full buffer size */ *oldlenp = msgbufp->msg_bufs; return (0); } error = 0; maxlen = MIN(msgbufp->msg_bufs, *oldlenp); /* * First, copy from the write pointer to the end of * message buffer. */ beg = msgbufp->msg_bufx; end = msgbufp->msg_bufs; while (maxlen > 0) { len = MIN(end - beg, maxlen); if (len == 0) break; error = copyout(&msgbufp->msg_bufc[beg], where, len); if (error) break; where += len; maxlen -= len; /* * ... then, copy from the beginning of message buffer to * the write pointer. */ beg = 0; end = msgbufp->msg_bufx; } return (error); } /* * sysctl helper routine for kern.defcorename. in the case of a new * string being assigned, check that it's not a zero-length string. * (XXX the check in -current doesn't work, but do we really care?) */ static int sysctl_kern_defcorename(SYSCTLFN_ARGS) { int error; char *newcorename; struct sysctlnode node; newcorename = PNBUF_GET(); node = *rnode; node.sysctl_data = &newcorename[0]; memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN); error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) { goto done; } /* * when sysctl_lookup() deals with a string, it's guaranteed * to come back nul terminated. so there. :) */ if (strlen(newcorename) == 0) { error = EINVAL; } else { memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN); error = 0; } done: PNBUF_PUT(newcorename); return error; } /* * sysctl helper routine for kern.cp_time node. adds up cpu time * across all cpus. */ static int sysctl_kern_cptime(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; #ifndef MULTIPROCESSOR if (namelen == 1) { if (name[0] != 0) return (ENOENT); /* * you're allowed to ask for the zero'th processor */ name++; namelen--; } node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time; node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time); return (sysctl_lookup(SYSCTLFN_CALL(&node))); #else /* MULTIPROCESSOR */ uint64_t *cp_time = NULL; int error, n = sysctl_ncpus(), i; struct cpu_info *ci; CPU_INFO_ITERATOR cii; /* * if you specifically pass a buffer that is the size of the * sum, or if you are probing for the size, you get the "sum" * of cp_time (and the size thereof) across all processors. * * alternately, you can pass an additional mib number and get * cp_time for that particular processor. */ switch (namelen) { case 0: if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) { node.sysctl_size = sizeof(uint64_t) * CPUSTATES; n = -1; /* SUM */ } else { node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES; n = -2; /* ALL */ } break; case 1: if (name[0] < 0 || name[0] >= n) return (ENOENT); /* ENOSUCHPROCESSOR */ node.sysctl_size = sizeof(uint64_t) * CPUSTATES; n = name[0]; /* * adjust these so that sysctl_lookup() will be happy */ name++; namelen--; break; default: return (EINVAL); } cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL); if (cp_time == NULL) return (ENOMEM); node.sysctl_data = cp_time; memset(cp_time, 0, node.sysctl_size); for (CPU_INFO_FOREACH(cii, ci)) { if (n <= 0) for (i = 0; i < CPUSTATES; i++) cp_time[i] += ci->ci_schedstate.spc_cp_time[i]; /* * if a specific processor was requested and we just * did it, we're done here */ if (n == 0) break; /* * if doing "all", skip to next cp_time set for next processor */ if (n == -2) cp_time += CPUSTATES; /* * if we're doing a specific processor, we're one * processor closer */ if (n > 0) n--; } error = sysctl_lookup(SYSCTLFN_CALL(&node)); free(node.sysctl_data, M_TEMP); return (error); #endif /* MULTIPROCESSOR */ } #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) /* * sysctl helper routine for kern.sysvipc_info subtree. */ #define FILL_PERM(src, dst) do { \ (dst)._key = (src)._key; \ (dst).uid = (src).uid; \ (dst).gid = (src).gid; \ (dst).cuid = (src).cuid; \ (dst).cgid = (src).cgid; \ (dst).mode = (src).mode; \ (dst)._seq = (src)._seq; \ } while (/*CONSTCOND*/ 0); #define FILL_MSG(src, dst) do { \ FILL_PERM((src).msg_perm, (dst).msg_perm); \ (dst).msg_qnum = (src).msg_qnum; \ (dst).msg_qbytes = (src).msg_qbytes; \ (dst)._msg_cbytes = (src)._msg_cbytes; \ (dst).msg_lspid = (src).msg_lspid; \ (dst).msg_lrpid = (src).msg_lrpid; \ (dst).msg_stime = (src).msg_stime; \ (dst).msg_rtime = (src).msg_rtime; \ (dst).msg_ctime = (src).msg_ctime; \ } while (/*CONSTCOND*/ 0) #define FILL_SEM(src, dst) do { \ FILL_PERM((src).sem_perm, (dst).sem_perm); \ (dst).sem_nsems = (src).sem_nsems; \ (dst).sem_otime = (src).sem_otime; \ (dst).sem_ctime = (src).sem_ctime; \ } while (/*CONSTCOND*/ 0) #define FILL_SHM(src, dst) do { \ FILL_PERM((src).shm_perm, (dst).shm_perm); \ (dst).shm_segsz = (src).shm_segsz; \ (dst).shm_lpid = (src).shm_lpid; \ (dst).shm_cpid = (src).shm_cpid; \ (dst).shm_atime = (src).shm_atime; \ (dst).shm_dtime = (src).shm_dtime; \ (dst).shm_ctime = (src).shm_ctime; \ (dst).shm_nattch = (src).shm_nattch; \ } while (/*CONSTCOND*/ 0) static int sysctl_kern_sysvipc(SYSCTLFN_ARGS) { void *where = oldp; size_t *sizep = oldlenp; #ifdef SYSVMSG struct msg_sysctl_info *msgsi = NULL; #endif #ifdef SYSVSEM struct sem_sysctl_info *semsi = NULL; #endif #ifdef SYSVSHM struct shm_sysctl_info *shmsi = NULL; #endif size_t infosize, dssize, tsize, buflen; void *bf = NULL; char *start; int32_t nds; int i, error, ret; if (namelen != 1) return (EINVAL); start = where; buflen = *sizep; switch (*name) { case KERN_SYSVIPC_MSG_INFO: #ifdef SYSVMSG infosize = sizeof(msgsi->msginfo); nds = msginfo.msgmni; dssize = sizeof(msgsi->msgids[0]); break; #else return (EINVAL); #endif case KERN_SYSVIPC_SEM_INFO: #ifdef SYSVSEM infosize = sizeof(semsi->seminfo); nds = seminfo.semmni; dssize = sizeof(semsi->semids[0]); break; #else return (EINVAL); #endif case KERN_SYSVIPC_SHM_INFO: #ifdef SYSVSHM infosize = sizeof(shmsi->shminfo); nds = shminfo.shmmni; dssize = sizeof(shmsi->shmids[0]); break; #else return (EINVAL); #endif default: return (EINVAL); } /* * Round infosize to 64 bit boundary if requesting more than just * the info structure or getting the total data size. */ if (where == NULL || *sizep > infosize) infosize = ((infosize + 7) / 8) * 8; tsize = infosize + nds * dssize; /* Return just the total size required. */ if (where == NULL) { *sizep = tsize; return (0); } /* Not enough room for even the info struct. */ if (buflen < infosize) { *sizep = 0; return (ENOMEM); } bf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK); memset(bf, 0, min(tsize, buflen)); switch (*name) { #ifdef SYSVMSG case KERN_SYSVIPC_MSG_INFO: msgsi = (struct msg_sysctl_info *)bf; msgsi->msginfo = msginfo; break; #endif #ifdef SYSVSEM case KERN_SYSVIPC_SEM_INFO: semsi = (struct sem_sysctl_info *)bf; semsi->seminfo = seminfo; break; #endif #ifdef SYSVSHM case KERN_SYSVIPC_SHM_INFO: shmsi = (struct shm_sysctl_info *)bf; shmsi->shminfo = shminfo; break; #endif } buflen -= infosize; ret = 0; if (buflen > 0) { /* Fill in the IPC data structures. */ for (i = 0; i < nds; i++) { if (buflen < dssize) { ret = ENOMEM; break; } switch (*name) { #ifdef SYSVMSG case KERN_SYSVIPC_MSG_INFO: FILL_MSG(msqids[i], msgsi->msgids[i]); break; #endif #ifdef SYSVSEM case KERN_SYSVIPC_SEM_INFO: FILL_SEM(sema[i], semsi->semids[i]); break; #endif #ifdef SYSVSHM case KERN_SYSVIPC_SHM_INFO: FILL_SHM(shmsegs[i], shmsi->shmids[i]); break; #endif } buflen -= dssize; } } *sizep -= buflen; error = copyout(bf, start, *sizep); /* If copyout succeeded, use return code set earlier. */ if (error == 0) error = ret; if (bf) free(bf, M_TEMP); return (error); } #undef FILL_PERM #undef FILL_MSG #undef FILL_SEM #undef FILL_SHM #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */ #if NPTY > 0 /* * sysctl helper routine for kern.maxptys. ensures that any new value * is acceptable to the pty subsystem. */ static int sysctl_kern_maxptys(SYSCTLFN_ARGS) { int pty_maxptys(int, int); /* defined in kern/tty_pty.c */ int error, xmax; struct sysctlnode node; /* get current value of maxptys */ xmax = pty_maxptys(0, 0); node = *rnode; node.sysctl_data = &xmax; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (xmax != pty_maxptys(xmax, 1)) return (EINVAL); return (0); } #endif /* NPTY > 0 */ /* * sysctl helper routine for kern.sbmax. basically just ensures that * any new value is not too small. */ static int sysctl_kern_sbmax(SYSCTLFN_ARGS) { int error, new_sbmax; struct sysctlnode node; new_sbmax = sb_max; node = *rnode; node.sysctl_data = &new_sbmax; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); error = sb_max_set(new_sbmax); return (error); } /* * sysctl helper routine for kern.urandom node. picks a random number * for you. */ static int sysctl_kern_urnd(SYSCTLFN_ARGS) { #if NRND > 0 int v; if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) { struct sysctlnode node = *rnode; node.sysctl_data = &v; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } else return (EIO); /*XXX*/ #else return (EOPNOTSUPP); #endif } /* * sysctl helper routine to do kern.lwp.* work. */ static int sysctl_kern_lwp(SYSCTLFN_ARGS) { struct kinfo_lwp klwp; struct proc *p; struct lwp *l2; char *where, *dp; int pid, elem_size, elem_count; int buflen, needed, error; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); dp = where = oldp; buflen = where != NULL ? *oldlenp : 0; error = needed = 0; if (newp != NULL || namelen != 3) return (EINVAL); pid = name[0]; elem_size = name[1]; elem_count = name[2]; p = pfind(pid); if (p == NULL) return (ESRCH); LIST_FOREACH(l2, &p->p_lwps, l_sibling) { if (buflen >= elem_size && elem_count > 0) { fill_lwp(l2, &klwp); /* * Copy out elem_size, but not larger than * the size of a struct kinfo_proc2. */ error = copyout(&klwp, dp, min(sizeof(klwp), elem_size)); if (error) goto cleanup; dp += elem_size; buflen -= elem_size; elem_count--; } needed += elem_size; } if (where != NULL) { *oldlenp = dp - where; if (needed > *oldlenp) return (ENOMEM); } else { needed += KERN_LWPSLOP; *oldlenp = needed; } return (0); cleanup: return (error); } /* * sysctl helper routine for kern.forkfsleep node. ensures that the * given value is not too large or two small, and is at least one * timer tick if not zero. */ static int sysctl_kern_forkfsleep(SYSCTLFN_ARGS) { /* userland sees value in ms, internally is in ticks */ extern int forkfsleep; /* defined in kern/kern_fork.c */ int error, timo, lsleep; struct sysctlnode node; lsleep = forkfsleep * 1000 / hz; node = *rnode; node.sysctl_data = &lsleep; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); /* refuse negative values, and overly 'long time' */ if (lsleep < 0 || lsleep > MAXSLP * 1000) return (EINVAL); timo = mstohz(lsleep); /* if the interval is >0 ms && <1 tick, use 1 tick */ if (lsleep != 0 && timo == 0) forkfsleep = 1; else forkfsleep = timo; return (0); } /* * sysctl helper routine for kern.root_partition */ static int sysctl_kern_root_partition(SYSCTLFN_ARGS) { int rootpart = DISKPART(rootdev); struct sysctlnode node = *rnode; node.sysctl_data = &rootpart; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } /* * sysctl helper function for kern.drivers */ static int sysctl_kern_drivers(SYSCTLFN_ARGS) { int error; size_t buflen; struct kinfo_drivers kd; char *start, *where; const char *dname; int i; extern struct devsw_conv *devsw_conv; extern int max_devsw_convs; if (newp != NULL || namelen != 0) return (EINVAL); start = where = oldp; buflen = *oldlenp; if (where == NULL) { *oldlenp = max_devsw_convs * sizeof kd; return 0; } /* * An array of kinfo_drivers structures */ error = 0; for (i = 0; i < max_devsw_convs; i++) { dname = devsw_conv[i].d_name; if (dname == NULL) continue; if (buflen < sizeof kd) { error = ENOMEM; break; } memset(&kd, 0, sizeof(kd)); kd.d_bmajor = devsw_conv[i].d_bmajor; kd.d_cmajor = devsw_conv[i].d_cmajor; strlcpy(kd.d_name, dname, sizeof kd.d_name); error = copyout(&kd, where, sizeof kd); if (error != 0) break; buflen -= sizeof kd; where += sizeof kd; } *oldlenp = where - start; return error; } /* * sysctl helper function for kern.file2 */ static int sysctl_kern_file2(SYSCTLFN_ARGS) { struct proc *p; struct file *fp; struct filedesc *fd; struct kinfo_file kf; char *dp; u_int i, op; size_t len, needed, elem_size, out_size; int error, arg, elem_count; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); if (namelen != 4) return (EINVAL); error = 0; dp = oldp; len = (oldp != NULL) ? *oldlenp : 0; op = name[0]; arg = name[1]; elem_size = name[2]; elem_count = name[3]; out_size = MIN(sizeof(kf), elem_size); needed = 0; if (elem_size < 1 || elem_count < 0) return (EINVAL); switch (op) { case KERN_FILE_BYFILE: /* * doesn't use arg so it must be zero */ if (arg != 0) return (EINVAL); LIST_FOREACH(fp, &filehead, f_list) { if (CURTAIN(kauth_cred_geteuid(l->l_proc->p_cred), kauth_cred_geteuid(fp->f_cred))) continue; if (len >= elem_size && elem_count > 0) { fill_file(&kf, fp, NULL, 0); error = copyout(&kf, dp, out_size); if (error) break; dp += elem_size; len -= elem_size; } if (elem_count > 0) { needed += elem_size; if (elem_count != INT_MAX) elem_count--; } } break; case KERN_FILE_BYPID: if (arg < -1) /* -1 means all processes */ return (EINVAL); proclist_lock_read(); PROCLIST_FOREACH(p, &allproc) { if (p->p_stat == SIDL) /* skip embryonic processes */ continue; if (kauth_authorize_process(l->l_proc->p_cred, KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL) != 0) continue; if (arg > 0 && p->p_pid != arg) /* pick only the one we want */ /* XXX want 0 to mean "kernel files" */ continue; fd = p->p_fd; for (i = 0; i < fd->fd_nfiles; i++) { fp = fd->fd_ofiles[i]; if (fp == NULL || !FILE_IS_USABLE(fp)) continue; if (len >= elem_size && elem_count > 0) { fill_file(&kf, fd->fd_ofiles[i], p, i); error = copyout(&kf, dp, out_size); if (error) break; dp += elem_size; len -= elem_size; } if (elem_count > 0) { needed += elem_size; if (elem_count != INT_MAX) elem_count--; } } } proclist_unlock_read(); break; default: return (EINVAL); } if (oldp == NULL) needed += KERN_FILESLOP * elem_size; *oldlenp = needed; return (error); } static void fill_file(struct kinfo_file *kp, const struct file *fp, struct proc *p, int i) { memset(kp, 0, sizeof(*kp)); kp->ki_fileaddr = PTRTOUINT64(fp); kp->ki_flag = fp->f_flag; kp->ki_iflags = fp->f_iflags; kp->ki_ftype = fp->f_type; kp->ki_count = fp->f_count; kp->ki_msgcount = fp->f_msgcount; kp->ki_usecount = fp->f_usecount; kp->ki_fucred = PTRTOUINT64(fp->f_cred); kp->ki_fuid = kauth_cred_geteuid(fp->f_cred); kp->ki_fgid = kauth_cred_getegid(fp->f_cred); kp->ki_fops = PTRTOUINT64(fp->f_ops); kp->ki_foffset = fp->f_offset; kp->ki_fdata = PTRTOUINT64(fp->f_data); /* vnode information to glue this file to something */ if (fp->f_type == DTYPE_VNODE) { struct vnode *vp = (struct vnode *)fp->f_data; kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket); kp->ki_vsize = vp->v_size; kp->ki_vtype = vp->v_type; kp->ki_vtag = vp->v_tag; kp->ki_vdata = PTRTOUINT64(vp->v_data); } /* process information when retrieved via KERN_FILE_BYPID */ if (p) { kp->ki_pid = p->p_pid; kp->ki_fd = i; kp->ki_ofileflags = p->p_fd->fd_ofileflags[i]; } } static int sysctl_doeproc(SYSCTLFN_ARGS) { struct eproc *eproc; struct kinfo_proc2 *kproc2; struct kinfo_proc *dp; struct proc *p; const struct proclist_desc *pd; char *where, *dp2; int type, op, arg; u_int elem_size, elem_count; size_t buflen, needed; int error; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); dp = oldp; dp2 = where = oldp; buflen = where != NULL ? *oldlenp : 0; error = 0; needed = 0; type = rnode->sysctl_num; if (type == KERN_PROC) { if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL)) return (EINVAL); op = name[0]; if (op != KERN_PROC_ALL) arg = name[1]; else arg = 0; /* Quell compiler warning */ elem_size = elem_count = 0; /* Ditto */ } else { if (namelen != 4) return (EINVAL); op = name[0]; arg = name[1]; elem_size = name[2]; elem_count = name[3]; } if (type == KERN_PROC) { eproc = malloc(sizeof(*eproc), M_TEMP, M_WAITOK); kproc2 = NULL; } else { eproc = NULL; kproc2 = malloc(sizeof(*kproc2), M_TEMP, M_WAITOK); } proclist_lock_read(); pd = proclists; again: PROCLIST_FOREACH(p, pd->pd_list) { /* * Skip embryonic processes. */ if (p->p_stat == SIDL) continue; if (kauth_authorize_process(l->l_proc->p_cred, KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL) != 0) continue; /* * TODO - make more efficient (see notes below). * do by session. */ switch (op) { case KERN_PROC_PID: /* could do this with just a lookup */ if (p->p_pid != (pid_t)arg) continue; break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp->pg_id != (pid_t)arg) continue; break; case KERN_PROC_SESSION: if (p->p_session->s_sid != (pid_t)arg) continue; break; case KERN_PROC_TTY: if (arg == (int) KERN_PROC_TTY_REVOKE) { if ((p->p_flag & P_CONTROLT) == 0 || p->p_session->s_ttyp == NULL || p->p_session->s_ttyvp != NULL) continue; } else if ((p->p_flag & P_CONTROLT) == 0 || p->p_session->s_ttyp == NULL) { if ((dev_t)arg != KERN_PROC_TTY_NODEV) continue; } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) continue; break; case KERN_PROC_UID: if (kauth_cred_geteuid(p->p_cred) != (uid_t)arg) continue; break; case KERN_PROC_RUID: if (kauth_cred_getuid(p->p_cred) != (uid_t)arg) continue; break; case KERN_PROC_GID: if (kauth_cred_getegid(p->p_cred) != (uid_t)arg) continue; break; case KERN_PROC_RGID: if (kauth_cred_getgid(p->p_cred) != (uid_t)arg) continue; break; case KERN_PROC_ALL: /* allow everything */ break; default: error = EINVAL; goto cleanup; } if (type == KERN_PROC) { if (buflen >= sizeof(struct kinfo_proc)) { fill_eproc(p, eproc); error = copyout(p, &dp->kp_proc, sizeof(struct proc)); if (error) goto cleanup; error = copyout(eproc, &dp->kp_eproc, sizeof(*eproc)); if (error) goto cleanup; dp++; buflen -= sizeof(struct kinfo_proc); } needed += sizeof(struct kinfo_proc); } else { /* KERN_PROC2 */ if (buflen >= elem_size && elem_count > 0) { fill_kproc2(p, kproc2); /* * Copy out elem_size, but not larger than * the size of a struct kinfo_proc2. */ error = copyout(kproc2, dp2, min(sizeof(*kproc2), elem_size)); if (error) goto cleanup; dp2 += elem_size; buflen -= elem_size; elem_count--; } needed += elem_size; } } pd++; if (pd->pd_list != NULL) goto again; proclist_unlock_read(); if (where != NULL) { if (type == KERN_PROC) *oldlenp = (char *)dp - where; else *oldlenp = dp2 - where; if (needed > *oldlenp) { error = ENOMEM; goto out; } } else { needed += KERN_PROCSLOP; *oldlenp = needed; } if (kproc2) free(kproc2, M_TEMP); if (eproc) free(eproc, M_TEMP); return 0; cleanup: proclist_unlock_read(); out: if (kproc2) free(kproc2, M_TEMP); if (eproc) free(eproc, M_TEMP); return error; } /* * sysctl helper routine for kern.proc_args pseudo-subtree. */ static int sysctl_kern_proc_args(SYSCTLFN_ARGS) { struct ps_strings pss; struct proc *p, *up = l->l_proc; size_t len, upper_bound, xlen, i; struct uio auio; struct iovec aiov; vaddr_t argv; pid_t pid; int nargv, type, error; char *arg; char *tmp; struct vmspace *vmspace; vaddr_t psstr_addr; vaddr_t offsetn; vaddr_t offsetv; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); if (newp != NULL || namelen != 2) return (EINVAL); pid = name[0]; type = name[1]; switch (type) { case KERN_PROC_ARGV: case KERN_PROC_NARGV: case KERN_PROC_ENV: case KERN_PROC_NENV: /* ok */ break; default: return (EINVAL); } proclist_lock_read(); /* check pid */ if ((p = p_find(pid, PFIND_LOCKED)) == NULL) { error = EINVAL; goto out_locked; } error = kauth_authorize_process(l->l_proc->p_cred, KAUTH_PROCESS_CANSEE, p, NULL, NULL, NULL); if (error) { goto out_locked; } /* only root or same user change look at the environment */ if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) { if (kauth_cred_geteuid(up->p_cred) != 0) { if (kauth_cred_getuid(up->p_cred) != kauth_cred_getuid(p->p_cred) || kauth_cred_getuid(up->p_cred) != kauth_cred_getsvuid(p->p_cred)) { error = EPERM; goto out_locked; } } } if (oldp == NULL) { if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) *oldlenp = sizeof (int); else *oldlenp = ARG_MAX; /* XXX XXX XXX */ error = 0; goto out_locked; } /* * Zombies don't have a stack, so we can't read their psstrings. * System processes also don't have a user stack. */ if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0) { error = EINVAL; goto out_locked; } /* * Lock the process down in memory. */ /* XXXCDC: how should locking work here? */ if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1)) { error = EFAULT; goto out_locked; } psstr_addr = (vaddr_t)p->p_psstr; if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) { offsetn = p->p_psnargv; offsetv = p->p_psargv; } else { offsetn = p->p_psnenv; offsetv = p->p_psenv; } vmspace = p->p_vmspace; vmspace->vm_refcnt++; /* XXX */ proclist_unlock_read(); /* * Allocate a temporary buffer to hold the arguments. */ arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK); /* * Read in the ps_strings structure. */ aiov.iov_base = &pss; aiov.iov_len = sizeof(pss); auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = psstr_addr; auio.uio_resid = sizeof(pss); auio.uio_rw = UIO_READ; UIO_SETUP_SYSSPACE(&auio); error = uvm_io(&vmspace->vm_map, &auio); if (error) goto done; memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv)); if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { error = copyout(&nargv, oldp, sizeof(nargv)); *oldlenp = sizeof(nargv); goto done; } /* * Now read the address of the argument vector. */ switch (type) { case KERN_PROC_ARGV: /* XXX compat32 stuff here */ /* FALLTHROUGH */ case KERN_PROC_ENV: memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp)); break; default: return (EINVAL); } auio.uio_offset = (off_t)(unsigned long)tmp; aiov.iov_base = &argv; aiov.iov_len = sizeof(argv); auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_resid = sizeof(argv); auio.uio_rw = UIO_READ; UIO_SETUP_SYSSPACE(&auio); error = uvm_io(&vmspace->vm_map, &auio); if (error) goto done; /* * Now copy in the actual argument vector, one page at a time, * since we don't know how long the vector is (though, we do * know how many NUL-terminated strings are in the vector). */ len = 0; upper_bound = *oldlenp; for (; nargv != 0 && len < upper_bound; len += xlen) { aiov.iov_base = arg; aiov.iov_len = PAGE_SIZE; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; auio.uio_offset = argv + len; xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK); auio.uio_resid = xlen; auio.uio_rw = UIO_READ; UIO_SETUP_SYSSPACE(&auio); error = uvm_io(&vmspace->vm_map, &auio); if (error) goto done; for (i = 0; i < xlen && nargv != 0; i++) { if (arg[i] == '\0') nargv--; /* one full string */ } /* * Make sure we don't copyout past the end of the user's * buffer. */ if (len + i > upper_bound) i = upper_bound - len; error = copyout(arg, (char *)oldp + len, i); if (error) break; if (nargv == 0) { len += i; break; } } *oldlenp = len; done: uvmspace_free(vmspace); free(arg, M_TEMP); return error; out_locked: proclist_unlock_read(); return error; } /* * Sysctl helper routine for Verified Exec. */ #ifdef VERIFIED_EXEC static int sysctl_kern_veriexec(SYSCTLFN_ARGS) { int newval, error; int *var = NULL, raise_only = 0; struct sysctlnode node; node = *rnode; switch (rnode->sysctl_num) { case VERIEXEC_STRICT: raise_only = 1; var = &veriexec_strict; break; case VERIEXEC_ALGORITHMS: node.sysctl_data = veriexec_fp_names; node.sysctl_size = strlen(veriexec_fp_names) + 1; return (sysctl_lookup(SYSCTLFN_CALL(&node))); default: return (EINVAL); } newval = *var; node.sysctl_data = &newval; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) { return (error); } if (raise_only && (newval < *var)) return (EPERM); *var = newval; return (error); } #endif /* VERIFIED_EXEC */ static int sysctl_security_setidcore(SYSCTLFN_ARGS) { int newsize, error; struct sysctlnode node; node = *rnode; node.sysctl_data = &newsize; newsize = *(int *)rnode->sysctl_data; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; if (securelevel > 0) return (EPERM); *(int *)rnode->sysctl_data = newsize; return 0; } static int sysctl_security_setidcorename(SYSCTLFN_ARGS) { int error; char *newsetidcorename; struct sysctlnode node; newsetidcorename = PNBUF_GET(); node = *rnode; node.sysctl_data = newsetidcorename; memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN); error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) { goto out; } if (securelevel > 0) { error = EPERM; goto out; } if (strlen(newsetidcorename) == 0) { error = EINVAL; goto out; } memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN); out: PNBUF_PUT(newsetidcorename); return error; } /* * sysctl helper routine for kern.cp_id node. maps cpus to their * cpuids. */ static int sysctl_kern_cpid(SYSCTLFN_ARGS) { struct sysctlnode node = *rnode; #ifndef MULTIPROCESSOR uint64_t id; if (namelen == 1) { if (name[0] != 0) return (ENOENT); /* * you're allowed to ask for the zero'th processor */ name++; namelen--; } node.sysctl_data = &id; node.sysctl_size = sizeof(id); id = cpu_number(); return (sysctl_lookup(SYSCTLFN_CALL(&node))); #else /* MULTIPROCESSOR */ uint64_t *cp_id = NULL; int error, n = sysctl_ncpus(); struct cpu_info *ci; CPU_INFO_ITERATOR cii; /* * here you may either retrieve a single cpu id or the whole * set. the size you get back when probing depends on what * you ask for. */ switch (namelen) { case 0: node.sysctl_size = n * sizeof(uint64_t); n = -2; /* ALL */ break; case 1: if (name[0] < 0 || name[0] >= n) return (ENOENT); /* ENOSUCHPROCESSOR */ node.sysctl_size = sizeof(uint64_t); n = name[0]; /* * adjust these so that sysctl_lookup() will be happy */ name++; namelen--; break; default: return (EINVAL); } cp_id = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL); if (cp_id == NULL) return (ENOMEM); node.sysctl_data = cp_id; memset(cp_id, 0, node.sysctl_size); for (CPU_INFO_FOREACH(cii, ci)) { if (n <= 0) cp_id[0] = ci->ci_cpuid; /* * if a specific processor was requested and we just * did it, we're done here */ if (n == 0) break; /* * if doing "all", skip to next cp_id slot for next processor */ if (n == -2) cp_id++; /* * if we're doing a specific processor, we're one * processor closer */ if (n > 0) n--; } error = sysctl_lookup(SYSCTLFN_CALL(&node)); free(node.sysctl_data, M_TEMP); return (error); #endif /* MULTIPROCESSOR */ } /* * sysctl helper routine for hw.usermem and hw.usermem64. values are * calculate on the fly taking into account integer overflow and the * current wired count. */ static int sysctl_hw_usermem(SYSCTLFN_ARGS) { u_int ui; u_quad_t uq; struct sysctlnode node; node = *rnode; switch (rnode->sysctl_num) { case HW_USERMEM: if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE)) ui = UINT_MAX; else ui *= PAGE_SIZE; node.sysctl_data = &ui; break; case HW_USERMEM64: uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE; node.sysctl_data = &uq; break; default: return (EINVAL); } return (sysctl_lookup(SYSCTLFN_CALL(&node))); } /* * sysctl helper routine for kern.cnmagic node. pulls the old value * out, encoded, and stuffs the new value in for decoding. */ static int sysctl_hw_cnmagic(SYSCTLFN_ARGS) { char magic[CNS_LEN]; int error; struct sysctlnode node; if (oldp) cn_get_magic(magic, CNS_LEN); node = *rnode; node.sysctl_data = &magic[0]; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); return (cn_set_magic(magic)); } static int sysctl_hw_ncpu(SYSCTLFN_ARGS) { int ncpu; struct sysctlnode node; ncpu = sysctl_ncpus(); node = *rnode; node.sysctl_data = &ncpu; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } /* * ******************************************************************** * section 3: public helper routines that are used for more than one * node * ******************************************************************** */ /* * sysctl helper routine for the kern.root_device node and some ports' * machdep.root_device nodes. */ int sysctl_root_device(SYSCTLFN_ARGS) { struct sysctlnode node; node = *rnode; node.sysctl_data = root_device->dv_xname; node.sysctl_size = strlen(root_device->dv_xname) + 1; return (sysctl_lookup(SYSCTLFN_CALL(&node))); } /* * sysctl helper routine for kern.consdev, dependent on the current * state of the console. also used for machdep.console_device on some * ports. */ int sysctl_consdev(SYSCTLFN_ARGS) { dev_t consdev; struct sysctlnode node; if (cn_tab != NULL) consdev = cn_tab->cn_dev; else consdev = NODEV; node = *rnode; node.sysctl_data = &consdev; node.sysctl_size = sizeof(consdev); return (sysctl_lookup(SYSCTLFN_CALL(&node))); } /* * ******************************************************************** * section 4: support for some helpers * ******************************************************************** */ /* * Fill in a kinfo_proc2 structure for the specified process. */ static void fill_kproc2(struct proc *p, struct kinfo_proc2 *ki) { struct tty *tp; struct lwp *l; struct timeval ut, st; memset(ki, 0, sizeof(*ki)); ki->p_paddr = PTRTOUINT64(p); ki->p_fd = PTRTOUINT64(p->p_fd); ki->p_cwdi = PTRTOUINT64(p->p_cwdi); ki->p_stats = PTRTOUINT64(p->p_stats); ki->p_limit = PTRTOUINT64(p->p_limit); ki->p_vmspace = PTRTOUINT64(p->p_vmspace); ki->p_sigacts = PTRTOUINT64(p->p_sigacts); ki->p_sess = PTRTOUINT64(p->p_session); ki->p_tsess = 0; /* may be changed if controlling tty below */ ki->p_ru = PTRTOUINT64(p->p_ru); ki->p_eflag = 0; ki->p_exitsig = p->p_exitsig; ki->p_flag = p->p_flag; ki->p_pid = p->p_pid; if (p->p_pptr) ki->p_ppid = p->p_pptr->p_pid; else ki->p_ppid = 0; ki->p_sid = p->p_session->s_sid; ki->p__pgid = p->p_pgrp->pg_id; ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ ki->p_uid = kauth_cred_geteuid(p->p_cred); ki->p_ruid = kauth_cred_getuid(p->p_cred); ki->p_gid = kauth_cred_getegid(p->p_cred); ki->p_rgid = kauth_cred_getgid(p->p_cred); ki->p_svuid = kauth_cred_getsvuid(p->p_cred); ki->p_svgid = kauth_cred_getsvgid(p->p_cred); ki->p_ngroups = kauth_cred_ngroups(p->p_cred); kauth_cred_getgroups(p->p_cred, ki->p_groups, min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0]))); ki->p_jobc = p->p_pgrp->pg_jobc; if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) { ki->p_tdev = tp->t_dev; ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; ki->p_tsess = PTRTOUINT64(tp->t_session); } else { ki->p_tdev = NODEV; } ki->p_estcpu = p->p_estcpu; ki->p_rtime_sec = p->p_rtime.tv_sec; ki->p_rtime_usec = p->p_rtime.tv_usec; ki->p_cpticks = p->p_cpticks; ki->p_pctcpu = p->p_pctcpu; ki->p_uticks = p->p_uticks; ki->p_sticks = p->p_sticks; ki->p_iticks = p->p_iticks; ki->p_tracep = PTRTOUINT64(p->p_tracep); ki->p_traceflag = p->p_traceflag; memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t)); memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t)); memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ ki->p_realstat = p->p_stat; ki->p_nice = p->p_nice; ki->p_xstat = p->p_xstat; ki->p_acflag = p->p_acflag; strncpy(ki->p_comm, p->p_comm, min(sizeof(ki->p_comm), sizeof(p->p_comm))); strncpy(ki->p_login, p->p_session->s_login, min(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); ki->p_nlwps = p->p_nlwps; ki->p_nrlwps = p->p_nrlwps; ki->p_realflag = p->p_flag; if (p->p_stat == SIDL || P_ZOMBIE(p)) { ki->p_vm_rssize = 0; ki->p_vm_tsize = 0; ki->p_vm_dsize = 0; ki->p_vm_ssize = 0; l = NULL; } else { struct vmspace *vm = p->p_vmspace; ki->p_vm_rssize = vm_resident_count(vm); ki->p_vm_tsize = vm->vm_tsize; ki->p_vm_dsize = vm->vm_dsize; ki->p_vm_ssize = vm->vm_ssize; /* Pick a "representative" LWP */ l = proc_representative_lwp(p); ki->p_forw = PTRTOUINT64(l->l_forw); ki->p_back = PTRTOUINT64(l->l_back); ki->p_addr = PTRTOUINT64(l->l_addr); ki->p_stat = l->l_stat; ki->p_flag |= l->l_flag & P_SHARED; ki->p_swtime = l->l_swtime; ki->p_slptime = l->l_slptime; if (l->l_stat == LSONPROC) { KDASSERT(l->l_cpu != NULL); ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; } else ki->p_schedflags = 0; ki->p_holdcnt = l->l_holdcnt; ki->p_priority = l->l_priority; ki->p_usrpri = l->l_usrpri; if (l->l_wmesg) strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); ki->p_wchan = PTRTOUINT64(l->l_wchan); } if (p->p_session->s_ttyvp) ki->p_eflag |= EPROC_CTTY; if (SESS_LEADER(p)) ki->p_eflag |= EPROC_SLEADER; /* XXX Is this double check necessary? */ if (P_ZOMBIE(p)) { ki->p_uvalid = 0; } else { ki->p_uvalid = 1; ki->p_ustart_sec = p->p_stats->p_start.tv_sec; ki->p_ustart_usec = p->p_stats->p_start.tv_usec; calcru(p, &ut, &st, 0); ki->p_uutime_sec = ut.tv_sec; ki->p_uutime_usec = ut.tv_usec; ki->p_ustime_sec = st.tv_sec; ki->p_ustime_usec = st.tv_usec; ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss; ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss; ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss; ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss; ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt; ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt; ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap; ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock; ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock; ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd; ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv; ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals; ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw; ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw; timeradd(&p->p_stats->p_cru.ru_utime, &p->p_stats->p_cru.ru_stime, &ut); ki->p_uctime_sec = ut.tv_sec; ki->p_uctime_usec = ut.tv_usec; } #ifdef MULTIPROCESSOR if (l && l->l_cpu != NULL) ki->p_cpuid = l->l_cpu->ci_cpuid; else #endif ki->p_cpuid = KI_NOCPU; } /* * Fill in a kinfo_lwp structure for the specified lwp. */ static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl) { kl->l_forw = PTRTOUINT64(l->l_forw); kl->l_back = PTRTOUINT64(l->l_back); kl->l_laddr = PTRTOUINT64(l); kl->l_addr = PTRTOUINT64(l->l_addr); kl->l_stat = l->l_stat; kl->l_lid = l->l_lid; kl->l_flag = l->l_flag; kl->l_swtime = l->l_swtime; kl->l_slptime = l->l_slptime; if (l->l_stat == LSONPROC) { KDASSERT(l->l_cpu != NULL); kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags; } else kl->l_schedflags = 0; kl->l_holdcnt = l->l_holdcnt; kl->l_priority = l->l_priority; kl->l_usrpri = l->l_usrpri; if (l->l_wmesg) strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg)); kl->l_wchan = PTRTOUINT64(l->l_wchan); #ifdef MULTIPROCESSOR if (l->l_cpu != NULL) kl->l_cpuid = l->l_cpu->ci_cpuid; else #endif kl->l_cpuid = KI_NOCPU; } /* * Fill in an eproc structure for the specified process. */ void fill_eproc(struct proc *p, struct eproc *ep) { struct tty *tp; struct lwp *l; struct pcred pc; struct ucred uc; ep->e_paddr = p; ep->e_sess = p->p_session; kauth_cred_topcred(p->p_cred, &pc); kauth_cred_toucred(p->p_cred, &uc); ep->e_pcred = pc; ep->e_ucred = uc; if (p->p_stat == SIDL || P_ZOMBIE(p)) { ep->e_vm.vm_rssize = 0; ep->e_vm.vm_tsize = 0; ep->e_vm.vm_dsize = 0; ep->e_vm.vm_ssize = 0; /* ep->e_vm.vm_pmap = XXX; */ } else { struct vmspace *vm = p->p_vmspace; ep->e_vm.vm_rssize = vm_resident_count(vm); ep->e_vm.vm_tsize = vm->vm_tsize; ep->e_vm.vm_dsize = vm->vm_dsize; ep->e_vm.vm_ssize = vm->vm_ssize; /* Pick a "representative" LWP */ l = proc_representative_lwp(p); if (l->l_wmesg) strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); } if (p->p_pptr) ep->e_ppid = p->p_pptr->p_pid; else ep->e_ppid = 0; ep->e_pgid = p->p_pgrp->pg_id; ep->e_sid = ep->e_sess->s_sid; ep->e_jobc = p->p_pgrp->pg_jobc; if ((p->p_flag & P_CONTROLT) && (tp = ep->e_sess->s_ttyp)) { ep->e_tdev = tp->t_dev; ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; ep->e_tsess = tp->t_session; } else ep->e_tdev = NODEV; ep->e_xsize = ep->e_xrssize = 0; ep->e_xccount = ep->e_xswrss = 0; ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0; if (SESS_LEADER(p)) ep->e_flag |= EPROC_SLEADER; strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME); }