/* $NetBSD: if_smsc.c,v 1.18 2014/07/23 06:10:40 skrll Exp $ */ /* $OpenBSD: if_smsc.c,v 1.4 2012/09/27 12:38:11 jsg Exp $ */ /* $FreeBSD: src/sys/dev/usb/net/if_smsc.c,v 1.1 2012/08/15 04:03:55 gonzo Exp $ */ /*- * Copyright (c) 2012 * Ben Gray . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * SMSC LAN9xxx devices (http://www.smsc.com/) * * The LAN9500 & LAN9500A devices are stand-alone USB to Ethernet chips that * support USB 2.0 and 10/100 Mbps Ethernet. * * The LAN951x devices are an integrated USB hub and USB to Ethernet adapter. * The driver only covers the Ethernet part, the standard USB hub driver * supports the hub part. * * This driver is closely modelled on the Linux driver written and copyrighted * by SMSC. * * H/W TCP & UDP Checksum Offloading * --------------------------------- * The chip supports both tx and rx offloading of UDP & TCP checksums, this * feature can be dynamically enabled/disabled. * * RX checksuming is performed across bytes after the IPv4 header to the end of * the Ethernet frame, this means if the frame is padded with non-zero values * the H/W checksum will be incorrect, however the rx code compensates for this. * * TX checksuming is more complicated, the device requires a special header to * be prefixed onto the start of the frame which indicates the start and end * positions of the UDP or TCP frame. This requires the driver to manually * go through the packet data and decode the headers prior to sending. * On Linux they generally provide cues to the location of the csum and the * area to calculate it over, on FreeBSD we seem to have to do it all ourselves, * hence this is not as optimal and therefore h/w TX checksum is currently not * implemented. */ #ifdef _KERNEL_OPT #include "opt_inet.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #include #include #include #include #include #include "ioconf.h" #ifdef USB_DEBUG int smsc_debug = 0; #endif #define ETHER_ALIGN 2 /* * Various supported device vendors/products. */ static const struct usb_devno smsc_devs[] = { { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN89530 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9530 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_LAN9730 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_ALT }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_HAL }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500A_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_ALT }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9500_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_HAL }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505A_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9505_SAL10 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14 }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_ALT }, { USB_VENDOR_SMSC, USB_PRODUCT_SMSC_SMSC9512_14_SAL10 } }; #ifdef USB_DEBUG #define smsc_dbg_printf(sc, fmt, args...) \ do { \ if (smsc_debug > 0) \ printf("debug: " fmt, ##args); \ } while(0) #else #define smsc_dbg_printf(sc, fmt, args...) #endif #define smsc_warn_printf(sc, fmt, args...) \ printf("%s: warning: " fmt, device_xname((sc)->sc_dev), ##args) #define smsc_err_printf(sc, fmt, args...) \ printf("%s: error: " fmt, device_xname((sc)->sc_dev), ##args) /* Function declarations */ int smsc_chip_init(struct smsc_softc *); void smsc_setmulti(struct smsc_softc *); int smsc_setmacaddress(struct smsc_softc *, const uint8_t *); int smsc_match(device_t, cfdata_t, void *); void smsc_attach(device_t, device_t, void *); int smsc_detach(device_t, int); int smsc_activate(device_t, enum devact); int smsc_init(struct ifnet *); void smsc_start(struct ifnet *); int smsc_ioctl(struct ifnet *, u_long, void *); void smsc_stop(struct ifnet *, int); void smsc_reset(struct smsc_softc *); struct mbuf *smsc_newbuf(void); void smsc_tick(void *); void smsc_tick_task(void *); void smsc_miibus_statchg(struct ifnet *); int smsc_miibus_readreg(device_t, int, int); void smsc_miibus_writereg(device_t, int, int, int); int smsc_ifmedia_upd(struct ifnet *); void smsc_ifmedia_sts(struct ifnet *, struct ifmediareq *); void smsc_lock_mii(struct smsc_softc *); void smsc_unlock_mii(struct smsc_softc *); int smsc_tx_list_init(struct smsc_softc *); int smsc_rx_list_init(struct smsc_softc *); int smsc_encap(struct smsc_softc *, struct mbuf *, int); void smsc_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); void smsc_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); int smsc_read_reg(struct smsc_softc *, uint32_t, uint32_t *); int smsc_write_reg(struct smsc_softc *, uint32_t, uint32_t); int smsc_wait_for_bits(struct smsc_softc *, uint32_t, uint32_t); int smsc_sethwcsum(struct smsc_softc *); CFATTACH_DECL_NEW(usmsc, sizeof(struct smsc_softc), smsc_match, smsc_attach, smsc_detach, smsc_activate); int smsc_read_reg(struct smsc_softc *sc, uint32_t off, uint32_t *data) { usb_device_request_t req; uint32_t buf; usbd_status err; req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = SMSC_UR_READ_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = usbd_do_request(sc->sc_udev, &req, &buf); if (err != 0) smsc_warn_printf(sc, "Failed to read register 0x%0x\n", off); *data = le32toh(buf); return (err); } int smsc_write_reg(struct smsc_softc *sc, uint32_t off, uint32_t data) { usb_device_request_t req; uint32_t buf; usbd_status err; buf = htole32(data); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = SMSC_UR_WRITE_REG; USETW(req.wValue, 0); USETW(req.wIndex, off); USETW(req.wLength, 4); err = usbd_do_request(sc->sc_udev, &req, &buf); if (err != 0) smsc_warn_printf(sc, "Failed to write register 0x%0x\n", off); return (err); } int smsc_wait_for_bits(struct smsc_softc *sc, uint32_t reg, uint32_t bits) { uint32_t val; int err, i; for (i = 0; i < 100; i++) { if ((err = smsc_read_reg(sc, reg, &val)) != 0) return (err); if (!(val & bits)) return (0); DELAY(5); } return (1); } int smsc_miibus_readreg(device_t dev, int phy, int reg) { struct smsc_softc *sc = device_private(dev); uint32_t addr; uint32_t val = 0; smsc_lock_mii(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(sc, "MII is busy\n"); goto done; } addr = (phy << 11) | (reg << 6) | SMSC_MII_READ; smsc_write_reg(sc, SMSC_MII_ADDR, addr); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) smsc_warn_printf(sc, "MII read timeout\n"); smsc_read_reg(sc, SMSC_MII_DATA, &val); done: smsc_unlock_mii(sc); return (val & 0xFFFF); } void smsc_miibus_writereg(device_t dev, int phy, int reg, int val) { struct smsc_softc *sc = device_private(dev); uint32_t addr; if (sc->sc_phyno != phy) return; smsc_lock_mii(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) { smsc_warn_printf(sc, "MII is busy\n"); smsc_unlock_mii(sc); return; } smsc_write_reg(sc, SMSC_MII_DATA, val); addr = (phy << 11) | (reg << 6) | SMSC_MII_WRITE; smsc_write_reg(sc, SMSC_MII_ADDR, addr); smsc_unlock_mii(sc); if (smsc_wait_for_bits(sc, SMSC_MII_ADDR, SMSC_MII_BUSY) != 0) smsc_warn_printf(sc, "MII write timeout\n"); } void smsc_miibus_statchg(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; int err; uint32_t flow; uint32_t afc_cfg; if (mii == NULL || ifp == NULL || (ifp->if_flags & IFF_RUNNING) == 0) return; /* Use the MII status to determine link status */ sc->sc_flags &= ~SMSC_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= SMSC_FLAG_LINK; break; case IFM_1000_T: /* Gigabit ethernet not supported by chipset */ break; default: break; } } /* Lost link, do nothing. */ if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) { smsc_dbg_printf(sc, "link flag not set\n"); return; } err = smsc_read_reg(sc, SMSC_AFC_CFG, &afc_cfg); if (err) { smsc_warn_printf(sc, "failed to read initial AFC_CFG, " "error %d\n", err); return; } /* Enable/disable full duplex operation and TX/RX pause */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { smsc_dbg_printf(sc, "full duplex operation\n"); sc->sc_mac_csr &= ~SMSC_MAC_CSR_RCVOWN; sc->sc_mac_csr |= SMSC_MAC_CSR_FDPX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) flow = 0xffff0002; else flow = 0; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) afc_cfg |= 0xf; else afc_cfg &= ~0xf; } else { smsc_dbg_printf(sc, "half duplex operation\n"); sc->sc_mac_csr &= ~SMSC_MAC_CSR_FDPX; sc->sc_mac_csr |= SMSC_MAC_CSR_RCVOWN; flow = 0; afc_cfg |= 0xf; } err = smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); err += smsc_write_reg(sc, SMSC_FLOW, flow); err += smsc_write_reg(sc, SMSC_AFC_CFG, afc_cfg); if (err) smsc_warn_printf(sc, "media change failed, error %d\n", err); } int smsc_ifmedia_upd(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; int err; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } err = mii_mediachg(mii); return (err); } void smsc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct smsc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static inline uint32_t smsc_hash(uint8_t addr[ETHER_ADDR_LEN]) { return (ether_crc32_be(addr, ETHER_ADDR_LEN) >> 26) & 0x3f; } void smsc_setmulti(struct smsc_softc *sc) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct ether_multi *enm; struct ether_multistep step; uint32_t hashtbl[2] = { 0, 0 }; uint32_t hash; if (sc->sc_dying) return; if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { allmulti: smsc_dbg_printf(sc, "receive all multicast enabled\n"); sc->sc_mac_csr |= SMSC_MAC_CSR_MCPAS; sc->sc_mac_csr &= ~SMSC_MAC_CSR_HPFILT; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); return; } else { sc->sc_mac_csr |= SMSC_MAC_CSR_HPFILT; sc->sc_mac_csr &= ~(SMSC_MAC_CSR_PRMS | SMSC_MAC_CSR_MCPAS); } ETHER_FIRST_MULTI(step, &sc->sc_ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; hash = smsc_hash(enm->enm_addrlo); hashtbl[hash >> 5] |= 1 << (hash & 0x1F); ETHER_NEXT_MULTI(step, enm); } /* Debug */ if (sc->sc_mac_csr & SMSC_MAC_CSR_HPFILT) { smsc_dbg_printf(sc, "receive select group of macs\n"); } else { smsc_dbg_printf(sc, "receive own packets only\n"); } /* Write the hash table and mac control registers */ ifp->if_flags &= ~IFF_ALLMULTI; smsc_write_reg(sc, SMSC_HASHH, hashtbl[1]); smsc_write_reg(sc, SMSC_HASHL, hashtbl[0]); smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); } int smsc_sethwcsum(struct smsc_softc *sc) { struct ifnet *ifp = &sc->sc_ec.ec_if; uint32_t val; int err; if (!ifp) return EIO; err = smsc_read_reg(sc, SMSC_COE_CTRL, &val); if (err != 0) { smsc_warn_printf(sc, "failed to read SMSC_COE_CTRL (err=%d)\n", err); return (err); } /* Enable/disable the Rx checksum */ if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) val |= (SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE); else val &= ~(SMSC_COE_CTRL_RX_EN | SMSC_COE_CTRL_RX_MODE); /* Enable/disable the Tx checksum (currently not supported) */ if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) val |= SMSC_COE_CTRL_TX_EN; else val &= ~SMSC_COE_CTRL_TX_EN; sc->sc_coe_ctrl = val; err = smsc_write_reg(sc, SMSC_COE_CTRL, val); if (err != 0) { smsc_warn_printf(sc, "failed to write SMSC_COE_CTRL (err=%d)\n", err); return (err); } return (0); } int smsc_setmacaddress(struct smsc_softc *sc, const uint8_t *addr) { int err; uint32_t val; smsc_dbg_printf(sc, "setting mac address to " "%02x:%02x:%02x:%02x:%02x:%02x\n", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; if ((err = smsc_write_reg(sc, SMSC_MAC_ADDRL, val)) != 0) goto done; val = (addr[5] << 8) | addr[4]; err = smsc_write_reg(sc, SMSC_MAC_ADDRH, val); done: return (err); } void smsc_reset(struct smsc_softc *sc) { if (sc->sc_dying) return; /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* Reinitialize controller to achieve full reset. */ smsc_chip_init(sc); } int smsc_init(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct smsc_chain *c; usbd_status err; int s, i; if (sc->sc_dying) return EIO; s = splnet(); /* Cancel pending I/O */ if (ifp->if_flags & IFF_RUNNING) smsc_stop(ifp, 1); /* Reset the ethernet interface. */ smsc_reset(sc); /* Init RX ring. */ if (smsc_rx_list_init(sc) == ENOBUFS) { aprint_error_dev(sc->sc_dev, "rx list init failed\n"); splx(s); return EIO; } /* Init TX ring. */ if (smsc_tx_list_init(sc) == ENOBUFS) { aprint_error_dev(sc->sc_dev, "tx list init failed\n"); splx(s); return EIO; } /* Load the multicast filter. */ smsc_setmulti(sc); /* TCP/UDP checksum offload engines. */ smsc_sethwcsum(sc); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->sc_ep[SMSC_ENDPT_RX]); if (err) { printf("%s: open rx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); splx(s); return EIO; } err = usbd_open_pipe(sc->sc_iface, sc->sc_ed[SMSC_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->sc_ep[SMSC_ENDPT_TX]); if (err) { printf("%s: open tx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); splx(s); return EIO; } /* Start up the receive pipe. */ for (i = 0; i < SMSC_RX_LIST_CNT; i++) { c = &sc->sc_cdata.rx_chain[i]; usbd_setup_xfer(c->sc_xfer, sc->sc_ep[SMSC_ENDPT_RX], c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, smsc_rxeof); usbd_transfer(c->sc_xfer); } /* Indicate we are up and running. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc); return 0; } void smsc_start(struct ifnet *ifp) { struct smsc_softc *sc = ifp->if_softc; struct mbuf *m_head = NULL; /* Don't send anything if there is no link or controller is busy. */ if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) { return; } if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) return; IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) return; if (smsc_encap(sc, m_head, 0)) { ifp->if_flags |= IFF_OACTIVE; return; } IFQ_DEQUEUE(&ifp->if_snd, m_head); bpf_mtap(ifp, m_head); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void smsc_tick(void *xsc) { struct smsc_softc *sc = xsc; if (sc == NULL) return; if (sc->sc_dying) return; usb_add_task(sc->sc_udev, &sc->sc_tick_task, USB_TASKQ_DRIVER); } void smsc_stop(struct ifnet *ifp, int disable) { usbd_status err; struct smsc_softc *sc = ifp->if_softc; int i; smsc_reset(sc); ifp = &sc->sc_ec.ec_if; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); callout_stop(&sc->sc_stat_ch); /* Stop transfers. */ if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]); if (err) { printf("%s: abort rx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_RX]); if (err) { printf("%s: close rx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); } sc->sc_ep[SMSC_ENDPT_RX] = NULL; } if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]); if (err) { printf("%s: abort tx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_TX]); if (err) { printf("%s: close tx pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); } sc->sc_ep[SMSC_ENDPT_TX] = NULL; } if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]); if (err) { printf("%s: abort intr pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); } err = usbd_close_pipe(sc->sc_ep[SMSC_ENDPT_INTR]); if (err) { printf("%s: close intr pipe failed: %s\n", device_xname(sc->sc_dev), usbd_errstr(err)); } sc->sc_ep[SMSC_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < SMSC_RX_LIST_CNT; i++) { if (sc->sc_cdata.rx_chain[i].sc_mbuf != NULL) { m_freem(sc->sc_cdata.rx_chain[i].sc_mbuf); sc->sc_cdata.rx_chain[i].sc_mbuf = NULL; } if (sc->sc_cdata.rx_chain[i].sc_xfer != NULL) { usbd_free_xfer(sc->sc_cdata.rx_chain[i].sc_xfer); sc->sc_cdata.rx_chain[i].sc_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < SMSC_TX_LIST_CNT; i++) { if (sc->sc_cdata.tx_chain[i].sc_mbuf != NULL) { m_freem(sc->sc_cdata.tx_chain[i].sc_mbuf); sc->sc_cdata.tx_chain[i].sc_mbuf = NULL; } if (sc->sc_cdata.tx_chain[i].sc_xfer != NULL) { usbd_free_xfer(sc->sc_cdata.tx_chain[i].sc_xfer); sc->sc_cdata.tx_chain[i].sc_xfer = NULL; } } } int smsc_chip_init(struct smsc_softc *sc) { int err; uint32_t reg_val; int burst_cap; /* Enter H/W config mode */ smsc_write_reg(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST); if ((err = smsc_wait_for_bits(sc, SMSC_HW_CFG, SMSC_HW_CFG_LRST)) != 0) { smsc_warn_printf(sc, "timed-out waiting for reset to " "complete\n"); goto init_failed; } /* Reset the PHY */ smsc_write_reg(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST); if ((err = smsc_wait_for_bits(sc, SMSC_PM_CTRL, SMSC_PM_CTRL_PHY_RST) != 0)) { smsc_warn_printf(sc, "timed-out waiting for phy reset to " "complete\n"); goto init_failed; } usbd_delay_ms(sc->sc_udev, 40); /* Set the mac address */ struct ifnet *ifp = &sc->sc_ec.ec_if; const char *eaddr = CLLADDR(ifp->if_sadl); if ((err = smsc_setmacaddress(sc, eaddr)) != 0) { smsc_warn_printf(sc, "failed to set the MAC address\n"); goto init_failed; } /* * Don't know what the HW_CFG_BIR bit is, but following the reset * sequence as used in the Linux driver. */ if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) != 0) { smsc_warn_printf(sc, "failed to read HW_CFG: %d\n", err); goto init_failed; } reg_val |= SMSC_HW_CFG_BIR; smsc_write_reg(sc, SMSC_HW_CFG, reg_val); /* * There is a so called 'turbo mode' that the linux driver supports, it * seems to allow you to jam multiple frames per Rx transaction. * By default this driver supports that and therefore allows multiple * frames per USB transfer. * * The xfer buffer size needs to reflect this as well, therefore based * on the calculations in the Linux driver the RX bufsize is set to * 18944, * bufsz = (16 * 1024 + 5 * 512) * * Burst capability is the number of URBs that can be in a burst of * data/ethernet frames. */ if (sc->sc_udev->speed == USB_SPEED_HIGH) burst_cap = 37; else burst_cap = 128; smsc_write_reg(sc, SMSC_BURST_CAP, burst_cap); /* Set the default bulk in delay (magic value from Linux driver) */ smsc_write_reg(sc, SMSC_BULK_IN_DLY, 0x00002000); /* * Initialise the RX interface */ if ((err = smsc_read_reg(sc, SMSC_HW_CFG, ®_val)) < 0) { smsc_warn_printf(sc, "failed to read HW_CFG: (err = %d)\n", err); goto init_failed; } /* * The following settings are used for 'turbo mode', a.k.a multiple * frames per Rx transaction (again info taken form Linux driver). */ reg_val |= (SMSC_HW_CFG_MEF | SMSC_HW_CFG_BCE); /* * set Rx data offset to ETHER_ALIGN which will make the IP header * align on a word boundary. */ reg_val |= ETHER_ALIGN << SMSC_HW_CFG_RXDOFF_SHIFT; smsc_write_reg(sc, SMSC_HW_CFG, reg_val); /* Clear the status register ? */ smsc_write_reg(sc, SMSC_INTR_STATUS, 0xffffffff); /* Read and display the revision register */ if ((err = smsc_read_reg(sc, SMSC_ID_REV, &sc->sc_rev_id)) < 0) { smsc_warn_printf(sc, "failed to read ID_REV (err = %d)\n", err); goto init_failed; } /* GPIO/LED setup */ reg_val = SMSC_LED_GPIO_CFG_SPD_LED | SMSC_LED_GPIO_CFG_LNK_LED | SMSC_LED_GPIO_CFG_FDX_LED; smsc_write_reg(sc, SMSC_LED_GPIO_CFG, reg_val); /* * Initialise the TX interface */ smsc_write_reg(sc, SMSC_FLOW, 0); smsc_write_reg(sc, SMSC_AFC_CFG, AFC_CFG_DEFAULT); /* Read the current MAC configuration */ if ((err = smsc_read_reg(sc, SMSC_MAC_CSR, &sc->sc_mac_csr)) < 0) { smsc_warn_printf(sc, "failed to read MAC_CSR (err=%d)\n", err); goto init_failed; } /* disable pad stripping, collides with checksum offload */ sc->sc_mac_csr &= ~SMSC_MAC_CSR_PADSTR; /* Vlan */ smsc_write_reg(sc, SMSC_VLAN1, (uint32_t)ETHERTYPE_VLAN); /* * Start TX */ sc->sc_mac_csr |= SMSC_MAC_CSR_TXEN; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); smsc_write_reg(sc, SMSC_TX_CFG, SMSC_TX_CFG_ON); /* * Start RX */ sc->sc_mac_csr |= SMSC_MAC_CSR_RXEN; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); return (0); init_failed: smsc_err_printf(sc, "smsc_chip_init failed (err=%d)\n", err); return (err); } int smsc_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct smsc_softc *sc = ifp->if_softc; struct ifreq /*const*/ *ifr = data; int s, error = 0; if (sc->sc_dying) return EIO; s = splnet(); switch(cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { case IFF_RUNNING: smsc_stop(ifp, 1); break; case IFF_UP: smsc_init(ifp); break; case IFF_UP | IFF_RUNNING: if (ifp->if_flags & IFF_PROMISC && !(sc->sc_if_flags & IFF_PROMISC)) { sc->sc_mac_csr |= SMSC_MAC_CSR_PRMS; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); smsc_setmulti(sc); } else if (!(ifp->if_flags & IFF_PROMISC) && sc->sc_if_flags & IFF_PROMISC) { sc->sc_mac_csr &= ~SMSC_MAC_CSR_PRMS; smsc_write_reg(sc, SMSC_MAC_CSR, sc->sc_mac_csr); smsc_setmulti(sc); } else { smsc_init(ifp); } break; } sc->sc_if_flags = ifp->if_flags; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) smsc_setmulti(sc); } splx(s); return error; } int smsc_match(device_t parent, cfdata_t match, void *aux) { struct usb_attach_arg *uaa = aux; return (usb_lookup(smsc_devs, uaa->vendor, uaa->product) != NULL) ? UMATCH_VENDOR_PRODUCT : UMATCH_NONE; } void smsc_attach(device_t parent, device_t self, void *aux) { struct smsc_softc *sc = device_private(self); struct usb_attach_arg *uaa = aux; usbd_device_handle dev = uaa->device; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; char *devinfop; struct mii_data *mii; struct ifnet *ifp; int err, s, i; uint32_t mac_h, mac_l; sc->sc_dev = self; sc->sc_udev = dev; aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(sc->sc_udev, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); err = usbd_set_config_no(dev, SMSC_CONFIG_INDEX, 1); if (err) { aprint_error_dev(self, "failed to set configuration" ", err=%s\n", usbd_errstr(err)); return; } /* Setup the endpoints for the SMSC LAN95xx device(s) */ usb_init_task(&sc->sc_tick_task, smsc_tick_task, sc, 0); usb_init_task(&sc->sc_stop_task, (void (*)(void *))smsc_stop, sc, 0); mutex_init(&sc->sc_mii_lock, MUTEX_DEFAULT, IPL_NONE); err = usbd_device2interface_handle(dev, SMSC_IFACE_IDX, &sc->sc_iface); if (err) { aprint_error_dev(self, "getting interface handle failed\n"); return; } id = usbd_get_interface_descriptor(sc->sc_iface); if (sc->sc_udev->speed >= USB_SPEED_HIGH) sc->sc_bufsz = SMSC_MAX_BUFSZ; else sc->sc_bufsz = SMSC_MIN_BUFSZ; /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i); if (!ed) { aprint_error_dev(self, "couldn't get ep %d\n", i); return; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->sc_ed[SMSC_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) { sc->sc_ed[SMSC_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) { sc->sc_ed[SMSC_ENDPT_INTR] = ed->bEndpointAddress; } } s = splnet(); ifp = &sc->sc_ec.ec_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = smsc_init; ifp->if_ioctl = smsc_ioctl; ifp->if_start = smsc_start; ifp->if_stop = smsc_stop; #ifdef notyet /* * We can do TCPv4, and UDPv4 checksums in hardware. */ ifp->if_capabilities |= /*IFCAP_CSUM_TCPv4_Tx |*/ IFCAP_CSUM_TCPv4_Rx | /*IFCAP_CSUM_UDPv4_Tx |*/ IFCAP_CSUM_UDPv4_Rx; #endif sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU; /* Setup some of the basics */ sc->sc_phyno = 1; /* * Attempt to get the mac address, if an EEPROM is not attached this * will just return FF:FF:FF:FF:FF:FF, so in such cases we invent a MAC * address based on urandom. */ memset(sc->sc_enaddr, 0xff, ETHER_ADDR_LEN); prop_dictionary_t dict = device_properties(self); prop_data_t eaprop = prop_dictionary_get(dict, "mac-address"); if (eaprop != NULL) { KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA); KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN); memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop), ETHER_ADDR_LEN); } else /* Check if there is already a MAC address in the register */ if ((smsc_read_reg(sc, SMSC_MAC_ADDRL, &mac_l) == 0) && (smsc_read_reg(sc, SMSC_MAC_ADDRH, &mac_h) == 0)) { sc->sc_enaddr[5] = (uint8_t)((mac_h >> 8) & 0xff); sc->sc_enaddr[4] = (uint8_t)((mac_h) & 0xff); sc->sc_enaddr[3] = (uint8_t)((mac_l >> 24) & 0xff); sc->sc_enaddr[2] = (uint8_t)((mac_l >> 16) & 0xff); sc->sc_enaddr[1] = (uint8_t)((mac_l >> 8) & 0xff); sc->sc_enaddr[0] = (uint8_t)((mac_l) & 0xff); } aprint_normal_dev(self, " Ethernet address %s\n", ether_sprintf(sc->sc_enaddr)); IFQ_SET_READY(&ifp->if_snd); /* Initialize MII/media info. */ mii = &sc->sc_mii; mii->mii_ifp = ifp; mii->mii_readreg = smsc_miibus_readreg; mii->mii_writereg = smsc_miibus_writereg; mii->mii_statchg = smsc_miibus_statchg; mii->mii_flags = MIIF_AUTOTSLEEP; sc->sc_ec.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, smsc_ifmedia_upd, smsc_ifmedia_sts); mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp, sc->sc_enaddr); rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, 0); callout_init(&sc->sc_stat_ch, 0); splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); } int smsc_detach(device_t self, int flags) { struct smsc_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ec.ec_if; int s; callout_stop(&sc->sc_stat_ch); if (sc->sc_ep[SMSC_ENDPT_TX] != NULL) usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_TX]); if (sc->sc_ep[SMSC_ENDPT_RX] != NULL) usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_RX]); if (sc->sc_ep[SMSC_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->sc_ep[SMSC_ENDPT_INTR]); /* * Remove any pending tasks. They cannot be executing because they run * in the same thread as detach. */ usb_rem_task(sc->sc_udev, &sc->sc_tick_task); usb_rem_task(sc->sc_udev, &sc->sc_stop_task); s = splusb(); if (--sc->sc_refcnt >= 0) { /* Wait for processes to go away */ usb_detach_waitold(sc->sc_dev); } if (ifp->if_flags & IFF_RUNNING) smsc_stop(ifp ,1); rnd_detach_source(&sc->sc_rnd_source); mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); if (ifp->if_softc != NULL) { ether_ifdetach(ifp); if_detach(ifp); } #ifdef DIAGNOSTIC if (sc->sc_ep[SMSC_ENDPT_TX] != NULL || sc->sc_ep[SMSC_ENDPT_RX] != NULL || sc->sc_ep[SMSC_ENDPT_INTR] != NULL) printf("%s: detach has active endpoints\n", device_xname(sc->sc_dev)); #endif if (--sc->sc_refcnt >= 0) { /* Wait for processes to go away. */ usb_detach_waitold(sc->sc_dev); } splx(s); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); mutex_destroy(&sc->sc_mii_lock); return (0); } void smsc_tick_task(void *xsc) { int s; struct smsc_softc *sc = xsc; struct ifnet *ifp; struct mii_data *mii; if (sc == NULL) return; if (sc->sc_dying) return; ifp = &sc->sc_ec.ec_if; mii = &sc->sc_mii; if (mii == NULL) return; s = splnet(); mii_tick(mii); if ((sc->sc_flags & SMSC_FLAG_LINK) == 0) smsc_miibus_statchg(ifp); callout_reset(&sc->sc_stat_ch, hz, smsc_tick, sc); splx(s); } int smsc_activate(device_t self, enum devact act) { struct smsc_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ec.ec_if); sc->sc_dying = 1; return 0; default: return EOPNOTSUPP; } return (0); } void smsc_lock_mii(struct smsc_softc *sc) { sc->sc_refcnt++; mutex_enter(&sc->sc_mii_lock); } void smsc_unlock_mii(struct smsc_softc *sc) { mutex_exit(&sc->sc_mii_lock); if (--sc->sc_refcnt < 0) usb_detach_wakeupold(sc->sc_dev); } void smsc_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct smsc_chain *c = (struct smsc_chain *)priv; struct smsc_softc *sc = c->sc_sc; struct ifnet *ifp = &sc->sc_ec.ec_if; u_char *buf = c->sc_buf; uint32_t total_len; uint32_t rxhdr; uint16_t pktlen; struct mbuf *m; int s; if (sc->sc_dying) return; if (!(ifp->if_flags & IFF_RUNNING)) return; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) return; if (usbd_ratecheck(&sc->sc_rx_notice)) { printf("%s: usb errors on rx: %s\n", device_xname(sc->sc_dev), usbd_errstr(status)); } if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); smsc_dbg_printf(sc, "xfer status total_len %d\n", total_len); while (total_len != 0) { if (total_len < sizeof(rxhdr)) { smsc_dbg_printf(sc, "total_len %d < sizeof(rxhdr) %zu\n", total_len, sizeof(rxhdr)); ifp->if_ierrors++; goto done; } memcpy(&rxhdr, buf, sizeof(rxhdr)); rxhdr = le32toh(rxhdr); buf += sizeof(rxhdr); total_len -= sizeof(rxhdr); if (rxhdr & SMSC_RX_STAT_ERROR) { smsc_dbg_printf(sc, "rx error (hdr 0x%08x)\n", rxhdr); ifp->if_ierrors++; goto done; } pktlen = (uint16_t)SMSC_RX_STAT_FRM_LENGTH(rxhdr); smsc_dbg_printf(sc, "rxeof total_len %d pktlen %d rxhdr " "0x%08x\n", total_len, pktlen, rxhdr); pktlen += ETHER_ALIGN; if (pktlen > MCLBYTES) { smsc_dbg_printf(sc, "pktlen %d > MCLBYTES %d\n", pktlen, MCLBYTES); ifp->if_ierrors++; goto done; } if (pktlen > total_len) { smsc_dbg_printf(sc, "pktlen %d > total_len %d\n", pktlen, total_len); ifp->if_ierrors++; goto done; } m = smsc_newbuf(); if (m == NULL) { smsc_dbg_printf(sc, "smc_newbuf returned NULL\n"); ifp->if_ierrors++; goto done; } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = pktlen; m->m_flags |= M_HASFCS; m_adj(m, ETHER_ALIGN); KASSERT(m->m_len < MCLBYTES); memcpy(mtod(m, char *), buf + ETHER_ALIGN, m->m_len); /* Check if RX TCP/UDP checksumming is being offloaded */ if (sc->sc_coe_ctrl & SMSC_COE_CTRL_RX_EN) { smsc_dbg_printf(sc,"RX checksum offload checking\n"); struct ether_header *eh; eh = mtod(m, struct ether_header *); /* Remove the extra 2 bytes of the csum */ m_adj(m, -2); /* * The checksum appears to be simplistically calculated * over the udp/tcp header and data up to the end of the * eth frame. Which means if the eth frame is padded * the csum calculation is incorrectly performed over * the padding bytes as well. Therefore to be safe we * ignore the H/W csum on frames less than or equal to * 64 bytes. * * Ignore H/W csum for non-IPv4 packets. */ smsc_dbg_printf(sc,"Ethertype %02x pktlen %02x\n", be16toh(eh->ether_type), pktlen); if (be16toh(eh->ether_type) == ETHERTYPE_IP && pktlen > ETHER_MIN_LEN) { m->m_pkthdr.csum_flags |= (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA); /* * Copy the TCP/UDP checksum from the last 2 * bytes of the transfer and put in the * csum_data field. */ memcpy(&m->m_pkthdr.csum_data, buf + pktlen - 2, 2); /* * The data is copied in network order, but the * csum algorithm in the kernel expects it to be * in host network order. */ m->m_pkthdr.csum_data = ntohs(m->m_pkthdr.csum_data); smsc_dbg_printf(sc, "RX checksum offloaded (0x%04x)\n", m->m_pkthdr.csum_data); } } /* round up to next longword */ pktlen = (pktlen + 3) & ~0x3; /* total_len does not include the padding */ if (pktlen > total_len) pktlen = total_len; buf += pktlen; total_len -= pktlen; /* push the packet up */ s = splnet(); bpf_mtap(ifp, m); ifp->if_input(ifp, m); splx(s); } done: /* Setup new transfer. */ usbd_setup_xfer(xfer, sc->sc_ep[SMSC_ENDPT_RX], c, c->sc_buf, sc->sc_bufsz, USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, smsc_rxeof); usbd_transfer(xfer); return; } void smsc_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct smsc_softc *sc; struct smsc_chain *c; struct ifnet *ifp; int s; c = priv; sc = c->sc_sc; ifp = &sc->sc_ec.ec_if; if (sc->sc_dying) return; s = splnet(); ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { splx(s); return; } ifp->if_oerrors++; printf("%s: usb error on tx: %s\n", device_xname(sc->sc_dev), usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall_async(sc->sc_ep[SMSC_ENDPT_TX]); splx(s); return; } ifp->if_opackets++; m_freem(c->sc_mbuf); c->sc_mbuf = NULL; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) smsc_start(ifp); splx(s); } int smsc_tx_list_init(struct smsc_softc *sc) { struct smsc_cdata *cd; struct smsc_chain *c; int i; cd = &sc->sc_cdata; for (i = 0; i < SMSC_TX_LIST_CNT; i++) { c = &cd->tx_chain[i]; c->sc_sc = sc; c->sc_idx = i; c->sc_mbuf = NULL; if (c->sc_xfer == NULL) { c->sc_xfer = usbd_alloc_xfer(sc->sc_udev); if (c->sc_xfer == NULL) return (ENOBUFS); c->sc_buf = usbd_alloc_buffer(c->sc_xfer, sc->sc_bufsz); if (c->sc_buf == NULL) { usbd_free_xfer(c->sc_xfer); return (ENOBUFS); } } } return (0); } int smsc_rx_list_init(struct smsc_softc *sc) { struct smsc_cdata *cd; struct smsc_chain *c; int i; cd = &sc->sc_cdata; for (i = 0; i < SMSC_RX_LIST_CNT; i++) { c = &cd->rx_chain[i]; c->sc_sc = sc; c->sc_idx = i; c->sc_mbuf = NULL; if (c->sc_xfer == NULL) { c->sc_xfer = usbd_alloc_xfer(sc->sc_udev); if (c->sc_xfer == NULL) return (ENOBUFS); c->sc_buf = usbd_alloc_buffer(c->sc_xfer, sc->sc_bufsz); if (c->sc_buf == NULL) { usbd_free_xfer(c->sc_xfer); return (ENOBUFS); } } } return (0); } struct mbuf * smsc_newbuf(void) { struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (NULL); MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return (NULL); } return (m); } int smsc_encap(struct smsc_softc *sc, struct mbuf *m, int idx) { struct ifnet *ifp = &sc->sc_ec.ec_if; struct smsc_chain *c; usbd_status err; uint32_t txhdr; uint32_t frm_len = 0; c = &sc->sc_cdata.tx_chain[idx]; /* * Each frame is prefixed with two 32-bit values describing the * length of the packet and buffer. */ txhdr = SMSC_TX_CTRL_0_BUF_SIZE(m->m_pkthdr.len) | SMSC_TX_CTRL_0_FIRST_SEG | SMSC_TX_CTRL_0_LAST_SEG; txhdr = htole32(txhdr); memcpy(c->sc_buf, &txhdr, sizeof(txhdr)); txhdr = SMSC_TX_CTRL_1_PKT_LENGTH(m->m_pkthdr.len); txhdr = htole32(txhdr); memcpy(c->sc_buf + 4, &txhdr, sizeof(txhdr)); frm_len += 8; /* Next copy in the actual packet */ m_copydata(m, 0, m->m_pkthdr.len, c->sc_buf + frm_len); frm_len += m->m_pkthdr.len; c->sc_mbuf = m; usbd_setup_xfer(c->sc_xfer, sc->sc_ep[SMSC_ENDPT_TX], c, c->sc_buf, frm_len, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 10000, smsc_txeof); err = usbd_transfer(c->sc_xfer); /* XXXNH get task to stop interface */ if (err != USBD_IN_PROGRESS) { smsc_stop(ifp, 0); return (EIO); } sc->sc_cdata.tx_cnt++; return (0); }