/* $NetBSD: armadillo9_machdep.c,v 1.28 2014/09/13 18:08:38 matt Exp $ */ /* * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. * All rights reserved. * * Based on code written by Jason R. Thorpe and Steve C. Woodford for * Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup for Armadillo. */ /* Armadillo-9 physical memory map 0000 0000 - 0fff ffff reserved 1000 0000 - 1000 000f I/O Control Register 1000 0010 - 11dd ffff reserved 1200 0000 - 1200 ffff PC/104 I/O space (8bit) 1201 0000 - 12ff ffff reserved 1300 0000 - 13ff ffff PC/104 Memory space (8bit) 1400 0000 - 1fff ffff reserved 2000 0000 - 21ff ffff reserved 2200 0000 - 2200 ffff PC/104 I/O space (16bit) 2201 0000 - 22ff ffff reserved 2300 0000 - 23ff ffff PC/104 Memory space (16bit) 2400 0000 - 2fff ffff reserved 3000 0000 - 3fff ffff reserved 4000 0000 - 43ff ffff Compact Flash I/O space 4400 0000 - 47ff ffff reserved 4800 0000 - 4bff ffff Compact Flash Attribute space 4c00 0000 - 4fff ffff Compact Flash memory space 5000 0000 - 5fff ffff reserved 6000 0000 - 607f ffff Flash Memory (8MByte) 6080 0000 - 6fff ffff reserved 7000 0000 - 7fff ffff reserved 8000 0000 - 8008 ffff EP9315 Internal Register (AHB) 8009 0000 - 8009 3fff Internal Boot ROM (16kByte) 8009 4000 - 8009 ffff reserved 800a 0000 - 800f ffff EP9315 Internal Register (AHB) 8010 0000 - 807f ffff reserved 8080 0000 - 8094 ffff EP9315 Internal Register (APB) 8095 0000 - 8fff ffff reserved 9000 0000 - bfff ffff reserved c000 0000 - c1ff ffff SDRAM (32MByte) c200 0000 - c3ff ffff reserved c400 0000 - c5ff ffff SDRAM (32MByte) c600 0000 - cfff ffff reserved d000 0000 - ffff ffff reserved */ #include __KERNEL_RCSID(0, "$NetBSD: armadillo9_machdep.c,v 1.28 2014/09/13 18:08:38 matt Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRAM_BLOCKS 4 #include #include #include #include /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 8 #define ABT_STACK_SIZE 8 #define UND_STACK_SIZE 8 #include #include #include #include "epwdog.h" #if NEPWDOG > 0 #include #endif #include #include #include #include "epcom.h" #if NEPCOM > 0 #include #endif #include "isa.h" #if NISA > 0 #include #include #endif #include #include #include struct armadillo_model_t *armadillo_model = 0; static struct armadillo_model_t armadillo_model_table[] = { { DEVCFG_ARMADILLO9, "Armadillo-9" }, { DEVCFG_ARMADILLO210, "Armadillo-210" }, { 0, "Armadillo(unknown model)" } }; #include "ksyms.h" /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xc1000000 - 0xccffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xf0000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0c000000 BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; char *boot_file = NULL; vaddr_t physical_start; vaddr_t physical_freestart; vaddr_t physical_freeend; vaddr_t physical_freeend_low; vaddr_t physical_end; u_int free_pages; paddr_t msgbufphys; static struct arm32_dma_range armadillo9_dma_ranges[4]; #if NISA > 0 extern void isa_armadillo9_init(u_int, u_int); #endif #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */ #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 4 /* L2 tables for mapping kernel VM */ #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; /* Prototypes */ void consinit(void); /* * Define the default console speed for the machine. */ #if NEPCOM > 0 #ifndef CONSPEED #define CONSPEED B115200 #endif /* ! CONSPEED */ #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif #ifndef CONUNIT #define CONUNIT 0 #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; const unsigned long comaddr[] = { EP93XX_APB_UART1, EP93XX_APB_UART2 }; #endif #if KGDB #ifndef KGDB_DEVNAME #error Must define KGDB_DEVNAME #endif const char kgdb_devname[] = KGDB_DEVNAME; #ifndef KGDB_DEVADDR #error Must define KGDB_DEVADDR #endif unsigned long kgdb_devaddr = KGDB_DEVADDR; #ifndef KGDB_DEVRATE #define KGDB_DEVRATE CONSPEED #endif int kgdb_devrate = KGDB_DEVRATE; #ifndef KGDB_DEVMODE #define KGDB_DEVMODE CONMODE #endif int kgdb_devmode = KGDB_DEVMODE; #endif /* KGDB */ /* * MAC address for the built-in Ethernet. */ uint8_t armadillo9_ethaddr[ETHER_ADDR_LEN]; static void armadillo9_device_register(device_t dev, void *aux) { /* MAC address for the built-in Ethernet. */ if (device_is_a(dev, "epe")) { prop_data_t pd = prop_data_create_data_nocopy( armadillo9_ethaddr, ETHER_ADDR_LEN); KASSERT(pd != NULL); if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) { printf("WARNING: unable to set mac-addr property " "for %s\n", device_xname(dev)); } prop_object_release(pd); } } /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); pmf_system_shutdown(boothowto); printf("\r\n"); printf("The operating system has halted.\r\n"); printf("Please press any key to reboot.\r\n"); cngetc(); printf("\r\nrebooting...\r\n"); goto reset; } /* Disable console buffering */ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("\r\n"); printf("The operating system has halted.\r\n"); printf("Please press any key to reboot.\r\n"); cngetc(); } printf("\r\nrebooting...\r\n"); reset: /* * Make really really sure that all interrupts are disabled, * and poke the Internal Bus and Peripheral Bus reset lines. */ (void) disable_interrupts(I32_bit|F32_bit); #if NEPWDOG > 0 epwdog_reset(); #else { uint32_t ctrl = EP93XX_APB_VBASE + EP93XX_APB_WDOG + EP93XX_WDOG_Ctrl; uint32_t val = EP93XX_WDOG_ENABLE; __asm volatile ( "str %1, [%0]\n" : : "r" (ctrl), "r" (val) ); } #endif for (;;); } /* Static device mappings. */ static const struct pmap_devmap armadillo9_devmap[] = { { EP93XX_AHB_VBASE, EP93XX_AHB_HWBASE, EP93XX_AHB_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { EP93XX_APB_VBASE, EP93XX_APB_HWBASE, EP93XX_APB_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { EP93XX_PCMCIA0_VBASE, EP93XX_PCMCIA0_HWBASE, EP93XX_PCMCIA_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* * IO8 and IO16 space *must* be mapped contiguously with * IO8_VA == IO16_VA - 64 Mbytes. ISA busmap driver depends * on that! */ { ARMADILLO9_IO8_VBASE, ARMADILLO9_IO8_HWBASE, ARMADILLO9_IO8_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ARMADILLO9_IO16_VBASE, ARMADILLO9_IO16_HWBASE, ARMADILLO9_IO16_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Initialising interrupt controllers to a sane default state */ u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; struct bootparam_tag *bootparam_p; unsigned long devcfg; /* * Since we map the on-board devices VA==PA, and the kernel * is running VA==PA, it's possible for us to initialize * the console now. */ consinit(); /* identify model */ devcfg = *((volatile unsigned long*)(EP93XX_APB_HWBASE + EP93XX_APB_SYSCON + EP93XX_SYSCON_DeviceCfg)); for (armadillo_model = &armadillo_model_table[0]; armadillo_model->devcfg; armadillo_model++) if (devcfg == armadillo_model->devcfg) break; /* Talk to the user */ printf("\nNetBSD/%s booting ...\n", armadillo_model->name); /* set some informations from bootloader */ bootparam_p = (struct bootparam_tag *)bootparam; bootconfig.dramblocks = 0; while (bootparam_p->hdr.tag != BOOTPARAM_TAG_NONE) { switch (bootparam_p->hdr.tag) { case BOOTPARAM_TAG_MEM: if (bootconfig.dramblocks < DRAM_BLOCKS) { #ifdef VERBOSE_INIT_ARM printf("dram[%d]: address=0x%08lx, size=0x%08lx\n", bootconfig.dramblocks, bootparam_p->u.mem.start, bootparam_p->u.mem.size); #endif bootconfig.dram[bootconfig.dramblocks].address = bootparam_p->u.mem.start; bootconfig.dram[bootconfig.dramblocks].pages = bootparam_p->u.mem.size / PAGE_SIZE; bootconfig.dramblocks++; } break; case BOOTPARAM_TAG_CMDLINE: #ifdef VERBOSE_INIT_ARM printf("cmdline: %s\n", bootparam_p->u.cmdline.cmdline); #endif parse_mi_bootargs(bootparam_p->u.cmdline.cmdline); break; } bootparam_p = bootparam_tag_next(bootparam_p); } /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xc0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = bootconfig.dram[0].address + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0xc0018000UL; physical_freeend = 0xc0200000UL; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K bounaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system vectors page */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables. Save physical_freeend for when we give whats left * of memory below 2Mbyte to UVM. */ physical_freeend_low = physical_freeend; #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, armadillo9_devmap); /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); uvm_page_physload(atop(0xc0000000), atop(physical_freeend_low), atop(0xc0000000), atop(physical_freeend_low), VM_FREELIST_DEFAULT); physmem = bootconfig.dram[0].pages; for (loop = 1; loop < bootconfig.dramblocks; ++loop) { size_t start = bootconfig.dram[loop].address; size_t size = bootconfig.dram[loop].pages * PAGE_SIZE; uvm_page_physload(atop(start), atop(start + size), atop(start), atop(start + size), VM_FREELIST_DEFAULT); physmem += bootconfig.dram[loop].pages; } /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ep93xx_intr_init(); #if NISA > 0 isa_intr_init(); #ifdef VERBOSE_INIT_ARM printf("isa "); #endif isa_armadillo9_init(ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAIO, ARMADILLO9_IO16_VBASE + ARMADILLO9_ISAMEM); #endif #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We have our own device_register() */ evbarm_device_register = armadillo9_device_register; /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void consinit(void) { static int consinit_called; #if NEPCOM > 0 bus_space_handle_t ioh; #endif if (consinit_called != 0) return; consinit_called = 1; /* * Console devices are already mapped in VA. Our devmap reflects * this, so register it now so drivers can map the console * device. */ pmap_devmap_register(armadillo9_devmap); #if NEPCOM > 0 bus_space_map(&ep93xx_bs_tag, EP93XX_APB_HWBASE + comaddr[CONUNIT], EP93XX_APB_UART_SIZE, 0, &ioh); if (epcomcnattach(&ep93xx_bs_tag, EP93XX_APB_HWBASE + comaddr[CONUNIT], ioh, comcnspeed, comcnmode)) { panic("can't init serial console"); } #else panic("serial console not configured"); #endif #if KGDB #if NEPCOM > 0 if (strcmp(kgdb_devname, "epcom") == 0) { com_kgdb_attach(&ep93xx_bs_tag, kgdb_devaddr, kgdb_devrate, kgdb_devmode); } #endif /* NEPCOM > 0 */ #endif /* KGDB */ } bus_dma_tag_t ep93xx_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template) { int i; struct arm32_bus_dma_tag *dmat; for (i = 0; i < bootconfig.dramblocks; i++) { armadillo9_dma_ranges[i].dr_sysbase = bootconfig.dram[i].address; armadillo9_dma_ranges[i].dr_busbase = bootconfig.dram[i].address; armadillo9_dma_ranges[i].dr_len = bootconfig.dram[i].pages * PAGE_SIZE; } dmat = dma_tag_template; dmat->_ranges = armadillo9_dma_ranges; dmat->_nranges = bootconfig.dramblocks; return dmat; }