.rn '' }` ''' ''' .de Sh .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp .if t .sp .5v .if n .sp .. .de Ip .br .ie \\n(.$>=3 .ne \\$3 .el .ne 3 .IP "\\$1" \\$2 .. .de Vb .ft CW .nf .ne \\$1 .. .de Ve .ft R .fi .. ''' ''' ''' Set up \*(-- to give an unbreakable dash; ''' string Tr holds user defined translation string. ''' Bell System Logo is used as a dummy character. ''' .tr \(*W-|\(bv\*(Tr .ie n \{\ .ds -- \(*W- .ds PI pi .if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch .if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch .ds L" "" .ds R" "" ''' \*(M", \*(S", \*(N" and \*(T" are the equivalent of ''' \*(L" and \*(R", except that they are used on ".xx" lines, ''' such as .IP and .SH, which do another additional levels of ''' double-quote interpretation .ds M" """ .ds S" """ .ds N" """"" .ds T" """"" .ds L' ' .ds R' ' .ds M' ' .ds S' ' .ds N' ' .ds T' ' 'br\} .el\{\ .ds -- \(em\| .tr \*(Tr .ds L" `` .ds R" '' .ds M" `` .ds S" '' .ds N" `` .ds T" '' .ds L' ` .ds R' ' .ds M' ` .ds S' ' .ds N' ` .ds T' ' .ds PI \(*p 'br\} .\" If the F register is turned on, we'll generate .\" index entries out stderr for the following things: .\" TH Title .\" SH Header .\" Sh Subsection .\" Ip Item .\" X<> Xref (embedded .\" Of course, you have to process the output yourself .\" in some meaninful fashion. .if \nF \{ .de IX .tm Index:\\$1\t\\n%\t"\\$2" .. .nr % 0 .rr F .\} .TH EVP_EncryptInit 3 "0.9.5a" "22/Jul/100" "OpenSSL" .UC .if n .hy 0 .if n .na .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .de CQ \" put $1 in typewriter font .ft CW 'if n "\c 'if t \\&\\$1\c 'if n \\&\\$1\c 'if n \&" \\&\\$2 \\$3 \\$4 \\$5 \\$6 \\$7 '.ft R .. .\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2 . \" AM - accent mark definitions .bd B 3 . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds ? ? . ds ! ! . ds / . ds q .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds ? \s-2c\h'-\w'c'u*7/10'\u\h'\*(#H'\zi\d\s+2\h'\w'c'u*8/10' . ds ! \s-2\(or\s+2\h'-\w'\(or'u'\v'-.8m'.\v'.8m' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' . ds q o\h'-\w'o'u*8/10'\s-4\v'.4m'\z\(*i\v'-.4m'\s+4\h'\w'o'u*8/10' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds v \\k:\h'-(\\n(.wu*9/10-\*(#H)'\v'-\*(#V'\*(#[\s-4v\s0\v'\*(#V'\h'|\\n:u'\*(#] .ds _ \\k:\h'-(\\n(.wu*9/10-\*(#H+(\*(#F*2/3))'\v'-.4m'\z\(hy\v'.4m'\h'|\\n:u' .ds . \\k:\h'-(\\n(.wu*8/10)'\v'\*(#V*4/10'\z.\v'-\*(#V*4/10'\h'|\\n:u' .ds 3 \*(#[\v'.2m'\s-2\&3\s0\v'-.2m'\*(#] .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E .ds oe o\h'-(\w'o'u*4/10)'e .ds Oe O\h'-(\w'O'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds v \h'-1'\o'\(aa\(ga' . ds _ \h'-1'^ . ds . \h'-1'. . ds 3 3 . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE . ds oe oe . ds Oe OE .\} .rm #[ #] #H #V #F C .SH "NAME" EVP_EncryptInit, EVP_EncryptUpdate, EVP_EncryptFinal \- EVP cipher routines .SH "LIBRARY" libcrypto, -lcrypto .SH "SYNOPSIS" .PP .Vb 1 \& #include .Ve .Vb 6 \& void EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, \& unsigned char *key, unsigned char *iv); \& void EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, \& int *outl, unsigned char *in, int inl); \& void EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, \& int *outl); .Ve .Vb 6 \& void EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, \& unsigned char *key, unsigned char *iv); \& void EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, \& int *outl, unsigned char *in, int inl); \& int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, \& int *outl); .Ve .Vb 6 \& void EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, \& unsigned char *key, unsigned char *iv, int enc); \& void EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, \& int *outl, unsigned char *in, int inl); \& int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, \& int *outl); .Ve .Vb 1 \& void EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a); .Ve .Vb 3 \& const EVP_CIPHER *EVP_get_cipherbyname(const char *name); \& #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a)) \& #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a)) .Ve .Vb 4 \& #define EVP_CIPHER_nid(e) ((e)->nid) \& #define EVP_CIPHER_block_size(e) ((e)->block_size) \& #define EVP_CIPHER_key_length(e) ((e)->key_len) \& #define EVP_CIPHER_iv_length(e) ((e)->iv_len) .Ve .Vb 7 \& int EVP_CIPHER_type(const EVP_CIPHER *ctx); \& #define EVP_CIPHER_CTX_cipher(e) ((e)->cipher) \& #define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid) \& #define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size) \& #define EVP_CIPHER_CTX_key_length(e) ((e)->cipher->key_len) \& #define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len) \& #define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c)) .Ve .Vb 2 \& int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type); \& int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type); .Ve .SH "DESCRIPTION" The EVP cipher routines are a high level interface to certain symmetric ciphers. .PP \fIEVP_EncryptInit()\fR initialises a cipher context \fBctx\fR for encryption with cipher \fBtype\fR. \fBtype\fR is normally supplied by a function such as \fIEVP_des_cbc()\fR . \fBkey\fR is the symmetric key to use and \fBiv\fR is the IV to use (if necessary), the actual number of bytes used for the key and IV depends on the cipher. It is possible to set all parameters to NULL except \fBtype\fR in an initial call and supply the remaining parameters in subsequent calls. This is normally done when the \fIEVP_CIPHER_asn1_to_param()\fR function is called to set the cipher parameters from an ASN1 AlgorithmIdentifier and the key from a different source. .PP \fIEVP_EncryptUpdate()\fR encrypts \fBinl\fR bytes from the buffer \fBin\fR and writes the encrypted version to \fBout\fR. This function can be called multiple times to encrypt successive blocks of data. The amount of data written depends on the block alignment of the encrypted data: as a result the amount of data written may be anything from zero bytes to (inl + cipher_block_size \- 1) so \fBoutl\fR should contain sufficient room. The actual number of bytes written is placed in \fBoutl\fR. .PP \fIEVP_EncryptFinal()\fR encrypts the \*(L"final\*(R" data, that is any data that remains in a partial block. It uses the \f(CWNOTES\fR entry in the \fIstandard block padding|\fR manpage (aka PKCS padding). The encrypted final data is written to \fBout\fR which should have sufficient space for one cipher block. The number of bytes written is placed in \fBoutl\fR. After this function is called the encryption operation is finished and no further calls to \fIEVP_EncryptUpdate()\fR should be made. .PP \fIEVP_DecryptInit()\fR, \fIEVP_DecryptUpdate()\fR and \fIEVP_DecryptFinal()\fR are the corresponding decryption operations. \fIEVP_DecryptFinal()\fR will return an error code if the final block is not correctly formatted. The parameters and restrictions are identical to the encryption operations except that the decrypted data buffer \fBout\fR passed to \fIEVP_DecryptUpdate()\fR should have sufficient room for (\fBinl\fR + cipher_block_size) bytes unless the cipher block size is 1 in which case \fBinl\fR bytes is sufficient. .PP \fIEVP_CipherInit()\fR, \fIEVP_CipherUpdate()\fR and \fIEVP_CipherFinal()\fR are functions that can be used for decryption or encryption. The operation performed depends on the value of the \fBenc\fR parameter. It should be set to 1 for encryption and 0 for decryption. .PP \fIEVP_CIPHER_CTX_cleanup()\fR clears all information from a cipher context. It should be called after all operations using a cipher are complete so sensitive information does not remain in memory. .PP \fIEVP_get_cipherbyname()\fR, \fIEVP_get_cipherbynid()\fR and \fIEVP_get_cipherbyobj()\fR return an EVP_CIPHER structure when passed a cipher name, a NID or an ASN1_OBJECT structure. .PP \fIEVP_CIPHER_nid()\fR and \fIEVP_CIPHER_CTX_nid()\fR return the NID of a cipher when passed an \fBEVP_CIPHER\fR or \fBEVP_CIPHER_CTX\fR structure. The actual NID value is an internal value which may not have a corresponding OBJECT IDENTIFIER. .PP \fIEVP_CIPHER_key_length()\fR and \fIEVP_CIPHER_CTX_key_length()\fR return the key length of a cipher when passed an \fBEVP_CIPHER\fR or \fBEVP_CIPHER_CTX\fR structure. The constant \fBEVP_MAX_KEY_LENGTH\fR is the maximum key length for all ciphers. .PP \fIEVP_CIPHER_iv_length()\fR and \fIEVP_CIPHER_CTX_iv_length()\fR return the IV length of a cipher when passed an \fBEVP_CIPHER\fR or \fBEVP_CIPHER_CTX\fR. It will return zero if the cipher does not use an IV. The constant \fBEVP_MAX_IV_LENGTH\fR is the maximum IV length for all ciphers. .PP \fIEVP_CIPHER_block_size()\fR and \fIEVP_CIPHER_CTX_block_size()\fR return the block size of a cipher when passed an \fBEVP_CIPHER\fR or \fBEVP_CIPHER_CTX\fR structure. The constant \fBEVP_MAX_IV_LENGTH\fR is also the maximum block length for all ciphers. .PP \fIEVP_CIPHER_type()\fR and \fIEVP_CIPHER_CTX_type()\fR return the type of the passed cipher or context. This \*(L"type\*(R" is the actual NID of the cipher OBJECT IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and 128 bit RC2 have the same NID. If the cipher does not have an object identifier or does not have ASN1 support this function will return \fBNID_undef\fR. .PP \fIEVP_CIPHER_CTX_cipher()\fR returns the \fBEVP_CIPHER\fR structure when passed an \fBEVP_CIPHER_CTX\fR structure. .PP \fIEVP_CIPHER_param_to_asn1()\fR sets the AlgorithmIdentifier \*(L"parameter\*(R" based on the passed cipher. This will typically include any parameters and an IV. The cipher IV (if any) must be set when this call is made. This call should be made before the cipher is actually \*(L"used\*(R" (before any \fIEVP_EncryptUpdate()\fR, \fIEVP_DecryptUpdate()\fR calls for example). This function may fail if the cipher does not have any ASN1 support. .PP \fIEVP_CIPHER_asn1_to_param()\fR sets the cipher parameters based on an ASN1 AlgorithmIdentifier \*(L"parameter\*(R". The precise effect depends on the cipher In the case of RC2, for example, it will set the IV and effective key length. This function should be called after the base cipher type is set but before the key is set. For example \fIEVP_CipherInit()\fR will be called with the IV and key set to NULL, \fIEVP_CIPHER_asn1_to_param()\fR will be called and finally \fIEVP_CipherInit()\fR again with all parameters except the key set to NULL. It is possible for this function to fail if the cipher does not have any ASN1 support or the parameters cannot be set (for example the RC2 effective key length does not have an \fBEVP_CIPHER\fR structure). .SH "RETURN VALUES" \fIEVP_EncryptInit()\fR, \fIEVP_EncryptUpdate()\fR and \fIEVP_EncryptFinal()\fR do not return values. .PP \fIEVP_DecryptInit()\fR and \fIEVP_DecryptUpdate()\fR do not return values. \fIEVP_DecryptFinal()\fR returns 0 if the decrypt failed or 1 for success. .PP \fIEVP_CipherInit()\fR and \fIEVP_CipherUpdate()\fR do not return values. \fIEVP_CipherFinal()\fR returns 1 for a decryption failure or 1 for success, if the operation is encryption then it always returns 1. .PP \fIEVP_CIPHER_CTX_cleanup()\fR does not return a value. .PP \fIEVP_get_cipherbyname()\fR, \fIEVP_get_cipherbynid()\fR and \fIEVP_get_cipherbyobj()\fR return an \fBEVP_CIPHER\fR structure or NULL on error. .PP \fIEVP_CIPHER_nid()\fR and \fIEVP_CIPHER_CTX_nid()\fR return a NID. .PP \fIEVP_CIPHER_block_size()\fR and \fIEVP_CIPHER_CTX_block_size()\fR return the block size. .PP \fIEVP_CIPHER_key_length()\fR and \fIEVP_CIPHER_CTX_key_length()\fR return the key length. .PP \fIEVP_CIPHER_iv_length()\fR and \fIEVP_CIPHER_CTX_iv_length()\fR return the IV length or zero if the cipher does not use an IV. .PP \fIEVP_CIPHER_type()\fR and \fIEVP_CIPHER_CTX_type()\fR return the NID of the cipher's OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER. .PP \fIEVP_CIPHER_CTX_cipher()\fR returns an \fBEVP_CIPHER\fR structure. .PP \fIEVP_CIPHER_param_to_asn1()\fR and \fIEVP_CIPHER_asn1_to_param()\fR return 1 for success or zero for failure. .SH "NOTES" Where possible the \fBEVP\fR interface to symmetric ciphers should be used in preference to the low level interfaces. This is because the code then becomes transparent to the cipher used and much more flexible. .PP PKCS padding works by adding \fBn\fR padding bytes of value \fBn\fR to make the total length of the encrypted data a multiple of the block size. Padding is always added so if the data is already a multiple of the block size \fBn\fR will equal the block size. For example if the block size is 8 and 11 bytes are to be encrypted then 5 padding bytes of value 5 will be added. .PP When decrypting the final block is checked to see if it has the correct form. .PP Although the decryption operation can produce an error, it is not a strong test that the input data or key is correct. A random block has better than 1 in 256 chance of being of the correct format and problems with the input data earlier on will not produce a final decrypt error. .SH "BUGS" The current \fBEVP\fR cipher interface is not as flexible as it should be. Only certain \*(L"spot\*(R" encryption algorithms can be used for ciphers which have various parameters associated with them (RC2, RC5 for example) this is inadequate. .PP Several of the functions do not return error codes because the software versions can never fail. This is not true of hardware versions. .SH "SEE ALSO" the \fIevp(3)|evp(3)\fR manpage .SH "HISTORY" .rn }` '' .IX Title "EVP_EncryptInit 3" .IX Name "EVP_EncryptInit, EVP_EncryptUpdate, EVP_EncryptFinal - EVP cipher routines" .IX Header "NAME" .IX Header "SYNOPSIS" .IX Header "DESCRIPTION" .IX Header "RETURN VALUES" .IX Header "NOTES" .IX Header "BUGS" .IX Header "SEE ALSO" .IX Header "HISTORY"