/* $NetBSD: bus.h,v 1.10 2001/03/07 22:42:17 thorpej Exp $ */ /* NetBSD: bus.h,v 1.27 2000/03/15 16:44:50 drochner Exp */ /* $OpenBSD: bus.h,v 1.15 1999/08/11 23:15:21 niklas Exp $ */ /*- * Copyright (c) 1996, 1997, 1998, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997 Per Fogelstrom. All rights reserved. * Copyright (c) 1996 Niklas Hallqvist. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _ARC_BUS_H_ #define _ARC_BUS_H_ #ifdef _KERNEL #include #ifdef BUS_SPACE_DEBUG #include /* for printf() prototype */ /* * Macros for checking the aligned-ness of pointers passed to bus * space ops. Strict alignment is required by the MIPS architecture, * and a trap will occur if unaligned access is performed. These * may aid in the debugging of a broken device driver by displaying * useful information about the problem. */ #define __BUS_SPACE_ALIGNED_ADDRESS(p, t) \ ((((u_long)(p)) & (sizeof(t)-1)) == 0) #define __BUS_SPACE_ADDRESS_SANITY(p, t, d) \ ({ \ if (__BUS_SPACE_ALIGNED_ADDRESS((p), t) == 0) { \ printf("%s 0x%lx not aligned to %d bytes %s:%d\n", \ d, (u_long)(p), sizeof(t), __FILE__, __LINE__); \ } \ (void) 0; \ }) #define BUS_SPACE_ALIGNED_POINTER(p, t) __BUS_SPACE_ALIGNED_ADDRESS(p, t) #else #define __BUS_SPACE_ADDRESS_SANITY(p,t,d) (void) 0 #define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t) #endif /* BUS_SPACE_DEBUG */ /* * Utility macro; do not use outside this file. */ #ifdef __STDC__ #define __CONCAT3(a,b,c) a##b##c #else #define __CONCAT3(a,b,c) a/**/b/**/c #endif /* * Bus address and size types */ typedef u_long bus_addr_t; typedef u_long bus_size_t; /* * Access methods for bus resources and address space. */ typedef u_int32_t bus_space_handle_t; typedef struct arc_bus_space *bus_space_tag_t; struct arc_bus_space { const char *bs_name; struct extent *bs_extent; bus_addr_t bs_start; bus_size_t bs_size; paddr_t bs_pbase; vaddr_t bs_vbase; /* sparse addressing shift count */ u_int8_t bs_stride_1; u_int8_t bs_stride_2; u_int8_t bs_stride_4; u_int8_t bs_stride_8; /* compose a bus_space handle from tag/handle/addr/size/flags (MD) */ int (*bs_compose_handle) __P((bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *)); /* dispose a bus_space handle (MD) */ int (*bs_dispose_handle) __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); /* convert bus_space tag/handle to physical address (MD) */ int (*bs_paddr) __P((bus_space_tag_t, bus_space_handle_t, paddr_t *)); /* mapping/unmapping */ int (*bs_map) __P((bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *)); void (*bs_unmap) __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); int (*bs_subregion) __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *)); /* allocation/deallocation */ int (*bs_alloc) __P((bus_space_tag_t, bus_addr_t, bus_addr_t, bus_size_t, bus_size_t, bus_size_t, int, bus_addr_t *, bus_space_handle_t *)); void (*bs_free) __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); void *bs_aux; }; /* vaddr_t argument of arc_bus_space_init() */ #define ARC_BUS_SPACE_UNMAPPED ((vaddr_t)0) /* machine dependent utility function for bus_space users */ void arc_bus_space_malloc_set_safe __P((void)); void arc_bus_space_init __P((bus_space_tag_t, const char *, paddr_t, vaddr_t, bus_addr_t, bus_size_t)); void arc_bus_space_init_extent __P((bus_space_tag_t, caddr_t, size_t)); void arc_bus_space_set_aligned_stride __P((bus_space_tag_t, unsigned int)); void arc_sparse_bus_space_init __P((bus_space_tag_t, const char *, paddr_t, bus_addr_t, bus_size_t)); void arc_large_bus_space_init __P((bus_space_tag_t, const char *, paddr_t, bus_addr_t, bus_size_t)); /* machine dependent utility function for bus_space implementations */ int arc_bus_space_extent_malloc_flag __P((void)); /* these are provided for subclasses which override base bus_space. */ int arc_bus_space_compose_handle __P((bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *)); int arc_bus_space_dispose_handle __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); int arc_bus_space_paddr __P((bus_space_tag_t, bus_space_handle_t, paddr_t *)); int arc_sparse_bus_space_compose_handle __P((bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *)); int arc_sparse_bus_space_dispose_handle __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); int arc_sparse_bus_space_paddr __P((bus_space_tag_t, bus_space_handle_t, paddr_t *)); int arc_bus_space_map __P((bus_space_tag_t, bus_addr_t, bus_size_t, int, bus_space_handle_t *)); void arc_bus_space_unmap __P((bus_space_tag_t, bus_space_handle_t, bus_size_t)); int arc_bus_space_subregion __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *)); int arc_bus_space_alloc __P((bus_space_tag_t, bus_addr_t, bus_addr_t, bus_size_t, bus_size_t, bus_size_t, int, bus_addr_t *, bus_space_handle_t *)); #define arc_bus_space_free arc_bus_space_unmap /* * int bus_space_compose_handle __P((bus_space_tag_t t, bus_addr_t addr, * bus_size_t size, int flags, bus_space_handle_t *bshp)); * * MACHINE DEPENDENT, NOT PORTABLE INTERFACE: * Compose a bus_space handle from tag/handle/addr/size/flags. * A helper function for bus_space_map()/bus_space_alloc() implementation. */ #define bus_space_compose_handle(bst, addr, size, flags, bshp) \ (*(bst)->bs_compose_handle)(bst, addr, size, flags, bshp) /* * int bus_space_dispose_handle __P((bus_space_tag_t t, bus_addr_t addr, * bus_space_handle_t bsh, bus_size_t size)); * * MACHINE DEPENDENT, NOT PORTABLE INTERFACE: * Dispose a bus_space handle. * A helper function for bus_space_unmap()/bus_space_free() implementation. */ #define bus_space_dispose_handle(bst, bsh, size) \ (*(bst)->bs_dispose_handle)(bst, bsh, size) /* * int bus_space_paddr __P((bus_space_tag_t tag, * bus_space_handle_t bsh, paddr_t *pap)); * * MACHINE DEPENDENT, NOT PORTABLE INTERFACE: * (cannot be implemented on e.g. I/O space on i386, non-linear space on alpha) * Return physical address of a region. * A helper function for device mmap entry. */ #define bus_space_paddr(bst, bsh, pap) \ (*(bst)->bs_paddr)(bst, bsh, pap) /* * void *bus_space_vaddr __P((bus_space_tag_t, bus_space_handle_t)); * * Get the kernel virtual address for the mapped bus space. * Only allowed for regions mapped with BUS_SPACE_MAP_LINEAR. * (XXX not enforced) */ #define bus_space_vaddr(bst, bsh) \ ((void *)(bsh)) /* * int bus_space_map __P((bus_space_tag_t t, bus_addr_t addr, * bus_size_t size, int flags, bus_space_handle_t *bshp)); * * Map a region of bus space. */ #define BUS_SPACE_MAP_CACHEABLE 0x01 #define BUS_SPACE_MAP_LINEAR 0x02 #define BUS_SPACE_MAP_PREFETCHABLE 0x04 #define bus_space_map(t, a, s, f, hp) \ (*(t)->bs_map)((t), (a), (s), (f), (hp)) /* * void bus_space_unmap __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t size)); * * Unmap a region of bus space. */ #define bus_space_unmap(t, h, s) \ (*(t)->bs_unmap)((t), (h), (s)) /* * int bus_space_subregion __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t offset, bus_size_t size, * bus_space_handle_t *nbshp)); * * Get a new handle for a subregion of an already-mapped area of bus space. */ #define bus_space_subregion(t, h, o, s, hp) \ (*(t)->bs_subregion)((t), (h), (o), (s), (hp)) /* * int bus_space_alloc __P((bus_space_tag_t t, bus_addr_t, rstart, * bus_addr_t rend, bus_size_t size, bus_size_t align, * bus_size_t boundary, int flags, bus_addr_t *addrp, * bus_space_handle_t *bshp)); * * Allocate a region of bus space. */ #define bus_space_alloc(t, rs, re, s, a, b, f, ap, hp) \ (*(t)->bs_alloc)((t), (rs), (re), (s), (a), (b), (f), (ap), (hp)) /* * int bus_space_free __P((bus_space_tag_t t, * bus_space_handle_t bsh, bus_size_t size)); * * Free a region of bus space. */ #define bus_space_free(t, h, s) \ (*(t)->bs_free)((t), (h), (s)) /* * u_intN_t bus_space_read_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset)); * * Read a 1, 2, 4, or 8 byte quantity from bus space * described by tag/handle/offset. */ #define bus_space_read(BYTES,BITS) \ static __inline __CONCAT3(u_int,BITS,_t) \ __CONCAT(bus_space_read_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset) \ { \ return (*(volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES)))); \ } bus_space_read(1,8) bus_space_read(2,16) bus_space_read(4,32) bus_space_read(8,64) /* * void bus_space_read_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle/offset and copy into buffer provided. */ #define bus_space_read_multi(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_read_multi_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset, \ __CONCAT3(u_int,BITS,_t) *datap, bus_size_t count) \ { \ volatile __CONCAT3(u_int,BITS,_t) *p = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))); \ \ for (; count > 0; --count) \ *datap++ = *p; \ } bus_space_read_multi(1,8) bus_space_read_multi(2,16) bus_space_read_multi(4,32) bus_space_read_multi(8,64) /* * void bus_space_read_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle and starting at `offset' and copy into * buffer provided. */ #define bus_space_read_region(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_read_region_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset, \ __CONCAT3(u_int,BITS,_t) *datap, bus_size_t count) \ { \ int stride = 1 << __CONCAT(bst->bs_stride_,BYTES); \ volatile __CONCAT3(u_int,BITS,_t) *p = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))); \ \ for (; count > 0; --count) { \ *datap++ = *p; \ p += stride; \ } \ } bus_space_read_region(1,8) bus_space_read_region(2,16) bus_space_read_region(4,32) bus_space_read_region(8,64) /* * void bus_space_write_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t value)); * * Write the 1, 2, 4, or 8 byte value `value' to bus space * described by tag/handle/offset. */ #define bus_space_write(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_write_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, \ bus_size_t offset, __CONCAT3(u_int,BITS,_t) data) \ { \ *(volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))) = data; \ } bus_space_write(1,8) bus_space_write(2,16) bus_space_write(4,32) bus_space_write(8,64) /* * void bus_space_write_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer * provided to bus space described by tag/handle/offset. */ #define bus_space_write_multi(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_write_multi_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset, \ const __CONCAT3(u_int,BITS,_t) *datap, bus_size_t count) \ { \ volatile __CONCAT3(u_int,BITS,_t) *p = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))); \ \ for (; count > 0; --count) \ *p = *datap++; \ } bus_space_write_multi(1,8) bus_space_write_multi(2,16) bus_space_write_multi(4,32) bus_space_write_multi(8,64) /* * void bus_space_write_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer provided * to bus space described by tag/handle starting at `offset'. */ #define bus_space_write_region(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_write_region_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset, \ const __CONCAT3(u_int,BITS,_t) *datap, bus_size_t count) \ { \ int stride = 1 << __CONCAT(bst->bs_stride_,BYTES); \ volatile __CONCAT3(u_int,BITS,_t) *p = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))); \ \ for (; count > 0; --count) { \ *p = *datap++; \ p += stride; \ } \ } bus_space_write_region(1,8) bus_space_write_region(2,16) bus_space_write_region(4,32) bus_space_write_region(8,64) /* * void bus_space_set_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write the 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle/offset `count' times. */ #define bus_space_set_multi(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_set_multi_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset, \ const __CONCAT3(u_int,BITS,_t) data, bus_size_t count) \ { \ volatile __CONCAT3(u_int,BITS,_t) *p = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))); \ \ for (; count > 0; --count) \ *p = data; \ } bus_space_set_multi(1,8) bus_space_set_multi(2,16) bus_space_set_multi(4,32) bus_space_set_multi(8,64) /* * void bus_space_set_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * size_t count)); * * Write `count' 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle starting at `offset'. */ #define bus_space_set_region(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_set_region_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t bsh, bus_size_t offset, \ __CONCAT3(u_int,BITS,_t) data, bus_size_t count) \ { \ int stride = 1 << __CONCAT(bst->bs_stride_,BYTES); \ volatile __CONCAT3(u_int,BITS,_t) *p = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (bsh + (offset << __CONCAT(bst->bs_stride_,BYTES))); \ \ for (; count > 0; --count) { \ *p = data; \ p += stride; \ } \ } bus_space_set_region(1,8) bus_space_set_region(2,16) bus_space_set_region(4,32) bus_space_set_region(8,64) /* * void bus_space_copy_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh1, bus_size_t off1, * bus_space_handle_t bsh2, bus_size_t off2, * size_t count)); * * Copy `count' 1, 2, 4, or 8 byte values from bus space starting * at tag/bsh1/off1 to bus space starting at tag/bsh2/off2. */ #define bus_space_copy_region(BYTES,BITS) \ static __inline void \ __CONCAT(bus_space_copy_region_,BYTES)(bus_space_tag_t bst, \ bus_space_handle_t srcbsh, bus_size_t srcoffset, \ bus_space_handle_t dstbsh, bus_size_t dstoffset, bus_size_t count) \ { \ int stride = 1 << __CONCAT(bst->bs_stride_,BYTES); \ volatile __CONCAT3(u_int,BITS,_t) *srcp = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (srcbsh + (srcoffset << __CONCAT(bst->bs_stride_,BYTES))); \ volatile __CONCAT3(u_int,BITS,_t) *dstp = \ (volatile __CONCAT3(u_int,BITS,_t) *) \ (dstbsh + (dstoffset << __CONCAT(bst->bs_stride_,BYTES))); \ bus_size_t offset; \ \ if (srcp >= dstp) { \ /* src after dest: copy forward */ \ for (offset = 0; count > 0; --count, offset += stride) \ dstp[offset] = srcp[offset]; \ } else { \ /* dest after src: copy backward */ \ offset = (count << __CONCAT(bst->bs_stride_,BYTES)) \ - stride; \ for (; count > 0; --count, offset -= stride) \ dstp[offset] = srcp[offset]; \ } \ } bus_space_copy_region(1,8) bus_space_copy_region(2,16) bus_space_copy_region(4,32) bus_space_copy_region(8,64) /* * Operations which handle byte stream data on word access. * * These functions are defined to resolve endian mismatch, by either * - When normal (i.e. stream-less) operations perform byte swap * to resolve endian mismatch, these functions bypass the byte swap. * or * - When bus bridge performs automatic byte swap, these functions * perform byte swap once more, to cancel the bridge's behavior. * * Currently these are just same as normal operations, since all * supported buses are same endian with CPU (i.e. little-endian). * */ #define __BUS_SPACE_HAS_STREAM_METHODS #define bus_space_read_stream_2(tag, bsh, offset) \ bus_space_read_2(tag, bsh, offset) #define bus_space_read_stream_4(tag, bsh, offset) \ bus_space_read_4(tag, bsh, offset) #define bus_space_read_stream_8(tag, bsh, offset) \ bus_space_read_8(tag, bsh, offset) #define bus_space_read_multi_stream_2(tag, bsh, offset, datap, count) \ bus_space_read_multi_2(tag, bsh, offset, datap, count) #define bus_space_read_multi_stream_4(tag, bsh, offset, datap, count) \ bus_space_read_multi_4(tag, bsh, offset, datap, count) #define bus_space_read_multi_stream_8(tag, bsh, offset, datap, count) \ bus_space_read_multi_8(tag, bsh, offset, datap, count) #define bus_space_read_region_stream_2(tag, bsh, offset, datap, count) \ bus_space_read_region_2(tag, bsh, offset, datap, count) #define bus_space_read_region_stream_4(tag, bsh, offset, datap, count) \ bus_space_read_region_4(tag, bsh, offset, datap, count) #define bus_space_read_region_stream_8(tag, bsh, offset, datap, count) \ bus_space_read_region_8(tag, bsh, offset, datap, count) #define bus_space_write_stream_2(tag, bsh, offset, data) \ bus_space_write_2(tag, bsh, offset, data) #define bus_space_write_stream_4(tag, bsh, offset, data) \ bus_space_write_4(tag, bsh, offset, data) #define bus_space_write_stream_8(tag, bsh, offset, data) \ bus_space_write_8(tag, bsh, offset, data) #define bus_space_write_multi_stream_2(tag, bsh, offset, datap, count) \ bus_space_write_multi_2(tag, bsh, offset, datap, count) #define bus_space_write_multi_stream_4(tag, bsh, offset, datap, count) \ bus_space_write_multi_4(tag, bsh, offset, datap, count) #define bus_space_write_multi_stream_8(tag, bsh, offset, datap, count) \ bus_space_write_multi_8(tag, bsh, offset, datap, count) #define bus_space_write_region_stream_2(tag, bsh, offset, datap, count) \ bus_space_write_region_2(tag, bsh, offset, datap, count) #define bus_space_write_region_stream_4(tag, bsh, offset, datap, count) \ bus_space_write_region_4(tag, bsh, offset, datap, count) #define bus_space_write_region_stream_8(tag, bsh, offset, datap, count) \ bus_space_write_region_8(tag, bsh, offset, datap, count) #define bus_space_write_region_stream_2(tag, bsh, offset, datap, count) \ bus_space_write_region_2(tag, bsh, offset, datap, count) #define bus_space_write_region_stream_4(tag, bsh, offset, datap, count) \ bus_space_write_region_4(tag, bsh, offset, datap, count) #define bus_space_write_region_stream_8(tag, bsh, offset, datap, count) \ bus_space_write_region_8(tag, bsh, offset, datap, count) #define bus_space_set_multi_stream_2(tag, bsh, offset, data, count) \ bus_space_set_multi_2(tag, bsh, offset, data, count) #define bus_space_set_multi_stream_4(tag, bsh, offset, data, count) \ bus_space_set_multi_4(tag, bsh, offset, data, count) #define bus_space_set_multi_stream_8(tag, bsh, offset, data, count) \ bus_space_set_multi_8(tag, bsh, offset, data, count) #define bus_space_set_region_stream_2(tag, bsh, offset, data, count) \ bus_space_set_region_2(tag, bsh, offset, data, count) #define bus_space_set_region_stream_4(tag, bsh, offset, data, count) \ bus_space_set_region_4(tag, bsh, offset, data, count) #define bus_space_set_region_stream_8(tag, bsh, offset, data, count) \ bus_space_set_region_8(tag, bsh, offset, data, count) /* * Bus read/write barrier methods. * * void bus_space_barrier __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * bus_size_t len, int flags)); * * On the MIPS, we just flush the write buffer. */ #define bus_space_barrier(t, h, o, l, f) \ ((void)((void)(t), (void)(h), (void)(o), (void)(l), (void)(f)), \ wbflush()) #define BUS_SPACE_BARRIER_READ 0x01 #define BUS_SPACE_BARRIER_WRITE 0x02 /* * Flags used in various bus DMA methods. */ #define BUS_DMA_WAITOK 0x00 /* safe to sleep (pseudo-flag) */ #define BUS_DMA_NOWAIT 0x01 /* not safe to sleep */ #define BUS_DMA_ALLOCNOW 0x02 /* perform resource allocation now */ #define BUS_DMA_COHERENT 0x04 /* hint: map memory DMA coherent */ #define BUS_DMA_STREAMING 0x08 /* hint: sequential, unidirectional */ #define BUS_DMA_BUS1 0x10 /* placeholders for bus functions... */ #define BUS_DMA_BUS2 0x20 #define BUS_DMA_BUS3 0x40 #define BUS_DMA_BUS4 0x80 #define ARC_DMAMAP_COHERENT 0x100 /* no cache flush necessary on sync */ /* Forwards needed by prototypes below. */ struct mbuf; struct uio; /* * Operations performed by bus_dmamap_sync(). */ #define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */ #define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */ #define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */ #define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */ typedef struct arc_bus_dma_tag *bus_dma_tag_t; typedef struct arc_bus_dmamap *bus_dmamap_t; /* * bus_dma_segment_t * * Describes a single contiguous DMA transaction. Values * are suitable for programming into DMA registers. */ struct arc_bus_dma_segment { /* * PUBLIC MEMBERS: these are used by device drivers. */ bus_addr_t ds_addr; /* DMA address */ bus_size_t ds_len; /* length of transfer */ /* * PRIVATE MEMBERS for the DMA back-end.: not for use by drivers. */ vaddr_t _ds_paddr; /* CPU physical address */ vaddr_t _ds_vaddr; /* virtual address, 0 if invalid */ }; typedef struct arc_bus_dma_segment bus_dma_segment_t; /* * bus_dma_tag_t * * A machine-dependent opaque type describing the implementation of * DMA for a given bus. */ struct arc_bus_dma_tag { bus_addr_t dma_offset; /* * DMA mapping methods. */ int (*_dmamap_create) __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void (*_dmamap_destroy) __P((bus_dma_tag_t, bus_dmamap_t)); int (*_dmamap_load) __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int (*_dmamap_load_mbuf) __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int (*_dmamap_load_uio) __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int (*_dmamap_load_raw) __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void (*_dmamap_unload) __P((bus_dma_tag_t, bus_dmamap_t)); void (*_dmamap_sync) __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); /* * DMA memory utility functions. */ int (*_dmamem_alloc) __P((bus_dma_tag_t, bus_size_t, bus_size_t, bus_size_t, bus_dma_segment_t *, int, int *, int)); void (*_dmamem_free) __P((bus_dma_tag_t, bus_dma_segment_t *, int)); int (*_dmamem_map) __P((bus_dma_tag_t, bus_dma_segment_t *, int, size_t, caddr_t *, int)); void (*_dmamem_unmap) __P((bus_dma_tag_t, caddr_t, size_t)); paddr_t (*_dmamem_mmap) __P((bus_dma_tag_t, bus_dma_segment_t *, int, off_t, int, int)); }; #define bus_dmamap_create(t, s, n, m, b, f, p) \ (*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p)) #define bus_dmamap_destroy(t, p) \ (*(t)->_dmamap_destroy)((t), (p)) #define bus_dmamap_load(t, m, b, s, p, f) \ (*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f)) #define bus_dmamap_load_mbuf(t, m, b, f) \ (*(t)->_dmamap_load_mbuf)((t), (m), (b), (f)) #define bus_dmamap_load_uio(t, m, u, f) \ (*(t)->_dmamap_load_uio)((t), (m), (u), (f)) #define bus_dmamap_load_raw(t, m, sg, n, s, f) \ (*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f)) #define bus_dmamap_unload(t, p) \ (*(t)->_dmamap_unload)((t), (p)) #define bus_dmamap_sync(t, p, o, l, ops) \ (*(t)->_dmamap_sync)((t), (p), (o), (l), (ops)) #define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \ (*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f)) #define bus_dmamem_free(t, sg, n) \ (*(t)->_dmamem_free)((t), (sg), (n)) #define bus_dmamem_map(t, sg, n, s, k, f) \ (*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f)) #define bus_dmamem_unmap(t, k, s) \ (*(t)->_dmamem_unmap)((t), (k), (s)) #define bus_dmamem_mmap(t, sg, n, o, p, f) \ (*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f)) /* * bus_dmamap_t * * Describes a DMA mapping. */ struct arc_bus_dmamap { /* * PRIVATE MEMBERS: not for use by machine-independent code. */ bus_size_t _dm_size; /* largest DMA transfer mappable */ int _dm_segcnt; /* number of segs this map can map */ bus_size_t _dm_maxsegsz; /* largest possible segment */ bus_size_t _dm_boundary; /* don't cross this */ int _dm_flags; /* misc. flags */ /* * Private cookie to be used by the DMA back-end. */ void *_dm_cookie; /* * PUBLIC MEMBERS: these are used by machine-independent code. */ bus_size_t dm_mapsize; /* size of the mapping */ int dm_nsegs; /* # valid segments in mapping */ bus_dma_segment_t dm_segs[1]; /* segments; variable length */ }; #ifdef _ARC_BUS_DMA_PRIVATE int _bus_dmamap_create __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void _bus_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t)); int _bus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int _bus_dmamap_load_mbuf __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int _bus_dmamap_load_uio __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int _bus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void _bus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t)); void _mips1_bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); void _mips3_bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); int _bus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)); int _bus_dmamem_alloc_range(bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, paddr_t low, paddr_t high); void _bus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs)); int _bus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, size_t size, caddr_t *kvap, int flags)); void _bus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva, size_t size)); paddr_t _bus_dmamem_mmap __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, off_t off, int prot, int flags)); int _bus_dmamem_alloc_range __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, paddr_t low, paddr_t high)); #endif /* _ARC_BUS_DMA_PRIVATE */ void _bus_dma_tag_init __P((bus_dma_tag_t tag)); void jazz_bus_dma_tag_init __P((bus_dma_tag_t tag)); void isadma_bounce_tag_init __P((bus_dma_tag_t tag)); #endif /* _KERNEL */ #endif /* _ARC_BUS_H_ */