/* $NetBSD: midway.c,v 1.94 2012/03/13 18:40:31 elad Exp $ */ /* (sync'd to midway.c 1.68) */ /* * Copyright (c) 1996 Charles D. Cranor and Washington University. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * * m i d w a y . c e n i 1 5 5 d r i v e r * * author: Chuck Cranor * started: spring, 1996 (written from scratch). * * notes from the author: * Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's * ENI driver was especially useful in figuring out how this card works. * I would also like to thank Werner for promptly answering email and being * generally helpful. */ /* * 1997/12/02, major update on 1999/04/06 kjc * new features added: * - BPF support (link type is DLT_ATM_RFC1483) * BPF understands only LLC/SNAP!! (because bpf can't * handle variable link header length.) * (bpfwrite should work if atm_pseudohdr and LLC/SNAP are prepended.) * - support vc shaping * - integrate IPv6 support. * - support pvc sub interface * * initial work on per-pvc-interface for ipv6 was done * by Katsushi Kobayashi of the WIDE Project. * some of the extensions for pvc subinterfaces are merged from * the CAIRN project written by Suresh Bhogavilli (suresh@isi.edu). * * code cleanup: * - remove WMAYBE related code. ENI WMAYBE DMA doesn't work. * - remove updating if_lastchange for every packet. */ #include __KERNEL_RCSID(0, "$NetBSD: midway.c,v 1.94 2012/03/13 18:40:31 elad Exp $"); #include "opt_natm.h" #undef EN_DEBUG #undef EN_DEBUG_RANGE /* check ranges on en_read/en_write's? */ #define EN_MBUF_OPT /* try and put more stuff in mbuf? */ #define EN_DIAG #define EN_STAT #ifndef EN_DMA #define EN_DMA 1 /* use DMA? */ #endif #define EN_NOTXDMA 0 /* hook to disable tx DMA only */ #define EN_NORXDMA 0 /* hook to disable rx DMA only */ #define EN_NOWMAYBE 1 /* hook to disable word maybe DMA */ /* XXX: WMAYBE doesn't work, needs debugging */ #define EN_DDBHOOK 1 /* compile in ddb functions */ #if defined(MIDWAY_ADPONLY) #define EN_ENIDMAFIX 0 /* no ENI cards to worry about */ #else #define EN_ENIDMAFIX 1 /* avoid byte DMA on the ENI card (see below) */ #endif /* * note on EN_ENIDMAFIX: the byte aligner on the ENI version of the card * appears to be broken. it works just fine if there is no load... however * when the card is loaded the data get corrupted. to see this, one only * has to use "telnet" over ATM. do the following command in "telnet": * cat /usr/share/misc/termcap * "telnet" seems to generate lots of 1023 byte mbufs (which make great * use of the byte aligner). watch "netstat -s" for checksum errors. * * I further tested this by adding a function that compared the transmit * data on the card's SRAM with the data in the mbuf chain _after_ the * "transmit DMA complete" interrupt. using the "telnet" test I got data * mismatches where the byte-aligned data should have been. using ddb * and en_dumpmem() I verified that the DTQs fed into the card were * absolutely correct. thus, we are forced to concluded that the ENI * hardware is buggy. note that the Adaptec version of the card works * just fine with byte DMA. * * bottom line: we set EN_ENIDMAFIX to 1 to avoid byte DMAs on the ENI * card. */ #if defined(DIAGNOSTIC) && !defined(EN_DIAG) #define EN_DIAG /* link in with master DIAG option */ #endif #ifdef EN_STAT #define EN_COUNT(X) (X)++ #else #define EN_COUNT(X) /* nothing */ #endif #ifdef EN_DEBUG #undef EN_DDBHOOK #define EN_DDBHOOK 1 #define STATIC /* nothing */ #define INLINE /* nothing */ #else /* EN_DEBUG */ #define STATIC static #define INLINE inline #endif /* EN_DEBUG */ #ifdef __FreeBSD__ #include "en.h" #endif #ifdef __NetBSD__ #include "opt_ddb.h" #include "opt_inet.h" #endif #if NEN > 0 || !defined(__FreeBSD__) #include #include #if defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) #include #endif #if defined(__FreeBSD__) #include #else #include #endif #include #include #include #include #include #include #include #include #include #ifdef __NetBSD__ #include #else #include #endif #if defined(INET) || defined(INET6) #include #include #ifdef INET6 #include #endif #endif #ifdef NATM #if !(defined(INET) || defined(INET6)) #include #endif #include #endif #if !defined(__FreeBSD__) #include #endif #if defined(__NetBSD__) || defined(__OpenBSD__) #include #include #if defined(__alpha__) /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vaddr_t)(va)) #endif #elif defined(__FreeBSD__) #include /* for rdtsc proto for clock.h below */ #include /* for DELAY */ #include #include #include /* for vtophys proto */ /* * 2.1.x does not have if_softc. detect this by seeing if IFF_NOTRAILERS * is defined, as per kjc. */ #ifdef IFF_NOTRAILERS #define MISSING_IF_SOFTC #else #define IFF_NOTRAILERS 0 #endif #endif /* __FreeBSD__ */ #ifdef ATM_PVCEXT # ifndef NATM /* this is for for __KAME__ */ # include # endif # if defined (__KAME__) && defined(INET6) # include # endif #endif /*ATM_PVCEXT*/ #include /* * params */ #ifndef EN_TXHIWAT #define EN_TXHIWAT (64*1024) /* max 64 KB waiting to be DMAd out */ #endif #ifndef EN_MINDMA #define EN_MINDMA 32 /* don't DMA anything less than this (bytes) */ #endif #define RX_NONE 0xffff /* recv VC not in use */ #define EN_OBHDR ATM_PH_DRIVER7 /* TBD in first mbuf ! */ #define EN_OBTRL ATM_PH_DRIVER8 /* PDU trailer in last mbuf ! */ #define ENOTHER_FREE 0x01 /* free rxslot */ #define ENOTHER_DRAIN 0x02 /* almost free (drain DRQ DMA) */ #define ENOTHER_RAW 0x04 /* 'raw' access (aka boodi mode) */ #define ENOTHER_SWSL 0x08 /* in software service list */ int en_dma = EN_DMA; /* use DMA (switch off for dbg) */ /* * autoconfig attachments */ extern struct cfdriver en_cd; /* * local structures */ /* * params to en_txlaunch() function */ struct en_launch { u_int32_t tbd1; /* TBD 1 */ u_int32_t tbd2; /* TBD 2 */ u_int32_t pdu1; /* PDU 1 (aal5) */ int nodma; /* don't use DMA */ int need; /* total space we need (pad out if less data) */ int mlen; /* length of mbuf (for dtq) */ struct mbuf *t; /* data */ u_int32_t aal; /* aal code */ u_int32_t atm_vci; /* vci */ u_int8_t atm_flags; /* flags */ }; /* * DMA table (index by # of words) * * plan A: use WMAYBE * plan B: avoid WMAYBE */ struct en_dmatab { u_int8_t bcode; /* code */ u_int8_t divshift; /* byte divisor */ }; static struct en_dmatab en_dma_planA[] = { { 0, 0 }, /* 0 */ { MIDDMA_WORD, 2 }, /* 1 */ { MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_4WMAYBE, 2}, /* 3 */ { MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_8WMAYBE, 2}, /* 5 */ { MIDDMA_8WMAYBE, 2}, /* 6 */ { MIDDMA_8WMAYBE, 2}, /* 7 */ { MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_16WMAYBE, 2}, /* 9 */ { MIDDMA_16WMAYBE,2}, /* 10 */ { MIDDMA_16WMAYBE, 2}, /* 11 */ { MIDDMA_16WMAYBE,2}, /* 12 */ { MIDDMA_16WMAYBE, 2}, /* 13 */ { MIDDMA_16WMAYBE,2}, /* 14 */ { MIDDMA_16WMAYBE, 2}, /* 15 */ { MIDDMA_16WORD, 6}, /* 16 */ }; static struct en_dmatab en_dma_planB[] = { { 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */ { MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */ { MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */ { MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */ { MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */ { MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */ { MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */ { MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */ { MIDDMA_16WORD, 6}, /* 16 */ }; static struct en_dmatab *en_dmaplan = en_dma_planA; /* * prototypes */ STATIC INLINE int en_b2sz(int) __unused; #ifdef EN_DDBHOOK int en_dump(int,int); int en_dumpmem(int,int,int); #endif STATIC void en_dmaprobe(struct en_softc *); STATIC int en_dmaprobe_doit(struct en_softc *, u_int8_t *, u_int8_t *, int); STATIC INLINE int en_dqneed(struct en_softc *, void *, u_int, u_int) __unused; STATIC void en_init(struct en_softc *); STATIC int en_ioctl(struct ifnet *, EN_IOCTL_CMDT, void *); STATIC INLINE int en_k2sz(int) __unused; STATIC void en_loadvc(struct en_softc *, int); STATIC int en_mfix(struct en_softc *, struct mbuf **, struct mbuf *); STATIC INLINE struct mbuf *en_mget(struct en_softc *, u_int, u_int *) __unused; STATIC INLINE u_int32_t en_read(struct en_softc *, u_int32_t) __unused; STATIC int en_rxctl(struct en_softc *, struct atm_pseudoioctl *, int); STATIC void en_txdma(struct en_softc *, int); STATIC void en_txlaunch(struct en_softc *, int, struct en_launch *); STATIC void en_service(struct en_softc *); STATIC void en_start(struct ifnet *); STATIC INLINE int en_sz2b(int) __unused; STATIC INLINE void en_write(struct en_softc *, u_int32_t, u_int32_t) __unused; #ifdef ATM_PVCEXT static void rrp_add(struct en_softc *, struct ifnet *); static struct ifnet *en_pvcattach(struct ifnet *); static int en_txctl(struct en_softc *, int, int, int); static int en_pvctx(struct en_softc *, struct pvctxreq *); static int en_pvctxget(struct en_softc *, struct pvctxreq *); static int en_pcr2txspeed(int); static int en_txspeed2pcr(int); static struct ifnet *en_vci2ifp(struct en_softc *, int); #endif /* * macros/inline */ /* * raw read/write macros */ #define EN_READDAT(SC,R) en_read(SC,R) #define EN_WRITEDAT(SC,R,V) en_write(SC,R,V) /* * cooked read/write macros */ #define EN_READ(SC,R) ntohl(en_read(SC,R)) #define EN_WRITE(SC,R,V) en_write(SC,R, htonl(V)) #define EN_WRAPADD(START,STOP,CUR,VAL) { \ (CUR) = (CUR) + (VAL); \ if ((CUR) >= (STOP)) \ (CUR) = (START) + ((CUR) - (STOP)); \ } #define WORD_IDX(START, X) (((X) - (START)) / sizeof(u_int32_t)) /* we store sc->dtq and sc->drq data in the following format... */ #define EN_DQ_MK(SLOT,LEN) (((SLOT) << 20)|(LEN)|(0x80000)) /* the 0x80000 ensures we != 0 */ #define EN_DQ_SLOT(X) ((X) >> 20) #define EN_DQ_LEN(X) ((X) & 0x3ffff) /* format of DTQ/DRQ word 1 differs between ENI and ADP */ #if defined(MIDWAY_ENIONLY) #define MID_MK_TXQ(SC,CNT,CHAN,END,BCODE) \ EN_WRITE((SC), (SC)->dtq_us, \ MID_MK_TXQ_ENI((CNT), (CHAN), (END), (BCODE))); #define MID_MK_RXQ(SC,CNT,VCI,END,BCODE) \ EN_WRITE((SC), (SC)->drq_us, \ MID_MK_RXQ_ENI((CNT), (VCI), (END), (BCODE))); #elif defined(MIDWAY_ADPONLY) #define MID_MK_TXQ(SC,CNT,CHAN,END,JK) \ EN_WRITE((SC), (SC)->dtq_us, \ MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK))); #define MID_MK_RXQ(SC,CNT,VCI,END,JK) \ EN_WRITE((SC), (SC)->drq_us, \ MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK))); #else #define MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE) { \ if ((SC)->is_adaptec) \ EN_WRITE((SC), (SC)->dtq_us, \ MID_MK_TXQ_ADP((CNT), (CHAN), (END), (JK_OR_BCODE))); \ else \ EN_WRITE((SC), (SC)->dtq_us, \ MID_MK_TXQ_ENI((CNT), (CHAN), (END), (JK_OR_BCODE))); \ } #define MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE) { \ if ((SC)->is_adaptec) \ EN_WRITE((SC), (SC)->drq_us, \ MID_MK_RXQ_ADP((CNT), (VCI), (END), (JK_OR_BCODE))); \ else \ EN_WRITE((SC), (SC)->drq_us, \ MID_MK_RXQ_ENI((CNT), (VCI), (END), (JK_OR_BCODE))); \ } #endif /* add an item to the DTQ */ #define EN_DTQADD(SC,CNT,CHAN,JK_OR_BCODE,ADDR,LEN,END) { \ if (END) \ (SC)->dtq[MID_DTQ_A2REG((SC)->dtq_us)] = EN_DQ_MK(CHAN,LEN); \ MID_MK_TXQ(SC,CNT,CHAN,END,JK_OR_BCODE); \ (SC)->dtq_us += 4; \ EN_WRITE((SC), (SC)->dtq_us, (ADDR)); \ EN_WRAPADD(MID_DTQOFF, MID_DTQEND, (SC)->dtq_us, 4); \ (SC)->dtq_free--; \ if (END) \ EN_WRITE((SC), MID_DMA_WRTX, MID_DTQ_A2REG((SC)->dtq_us)); \ } /* DRQ add macro */ #define EN_DRQADD(SC,CNT,VCI,JK_OR_BCODE,ADDR,LEN,SLOT,END) { \ if (END) \ (SC)->drq[MID_DRQ_A2REG((SC)->drq_us)] = EN_DQ_MK(SLOT,LEN); \ MID_MK_RXQ(SC,CNT,VCI,END,JK_OR_BCODE); \ (SC)->drq_us += 4; \ EN_WRITE((SC), (SC)->drq_us, (ADDR)); \ EN_WRAPADD(MID_DRQOFF, MID_DRQEND, (SC)->drq_us, 4); \ (SC)->drq_free--; \ if (END) \ EN_WRITE((SC), MID_DMA_WRRX, MID_DRQ_A2REG((SC)->drq_us)); \ } /* * the driver code * * the code is arranged in a specific way: * [1] short/inline functions * [2] autoconfig stuff * [3] ioctl stuff * [4] reset -> init -> transmit -> intr -> receive functions * */ /***********************************************************************/ /* * en_read: read a word from the card. this is the only function * that reads from the card. */ STATIC INLINE u_int32_t en_read(struct en_softc *sc, uint32_t r) { #ifdef EN_DEBUG_RANGE if (r > MID_MAXOFF || (r % 4)) panic("en_read out of range, r=0x%x", r); #endif return(bus_space_read_4(sc->en_memt, sc->en_base, r)); } /* * en_write: write a word to the card. this is the only function that * writes to the card. */ STATIC INLINE void en_write(struct en_softc *sc, uint32_t r, uint32_t v) { #ifdef EN_DEBUG_RANGE if (r > MID_MAXOFF || (r % 4)) panic("en_write out of range, r=0x%x", r); #endif bus_space_write_4(sc->en_memt, sc->en_base, r, v); } /* * en_k2sz: convert KBytes to a size parameter (a log2) */ STATIC INLINE int en_k2sz(int k) { switch(k) { case 1: return(0); case 2: return(1); case 4: return(2); case 8: return(3); case 16: return(4); case 32: return(5); case 64: return(6); case 128: return(7); default: panic("en_k2sz"); } return(0); } #define en_log2(X) en_k2sz(X) /* * en_b2sz: convert a DMA burst code to its byte size */ STATIC INLINE int en_b2sz(int b) { switch (b) { case MIDDMA_WORD: return(1*4); case MIDDMA_2WMAYBE: case MIDDMA_2WORD: return(2*4); case MIDDMA_4WMAYBE: case MIDDMA_4WORD: return(4*4); case MIDDMA_8WMAYBE: case MIDDMA_8WORD: return(8*4); case MIDDMA_16WMAYBE: case MIDDMA_16WORD: return(16*4); default: panic("en_b2sz"); } return(0); } /* * en_sz2b: convert a burst size (bytes) to DMA burst code */ STATIC INLINE int en_sz2b(int sz) { switch (sz) { case 1*4: return(MIDDMA_WORD); case 2*4: return(MIDDMA_2WORD); case 4*4: return(MIDDMA_4WORD); case 8*4: return(MIDDMA_8WORD); case 16*4: return(MIDDMA_16WORD); default: panic("en_sz2b"); } return(0); } /* * en_dqneed: calculate number of DTQ/DRQ's needed for a buffer */ STATIC INLINE int en_dqneed(struct en_softc *sc, void *data, u_int len, u_int tx) { int result, needalign, sz; #if !defined(MIDWAY_ENIONLY) #if !defined(MIDWAY_ADPONLY) if (sc->is_adaptec) #endif /* !MIDWAY_ADPONLY */ return(1); /* adaptec can DMA anything in one go */ #endif #if !defined(MIDWAY_ADPONLY) result = 0; if (len < EN_MINDMA) { if (!tx) /* XXX: conservative */ return(1); /* will copy/DMA_JK */ } if (tx) { /* byte burst? */ needalign = (((unsigned long) data) % sizeof(u_int32_t)); if (needalign) { result++; sz = min(len, sizeof(u_int32_t) - needalign); len -= sz; data = (char *)data + sz; } } if (sc->alburst && len) { needalign = (((unsigned long) data) & sc->bestburstmask); if (needalign) { result++; /* alburst */ sz = min(len, sc->bestburstlen - needalign); len -= sz; } } if (len >= sc->bestburstlen) { sz = len / sc->bestburstlen; sz = sz * sc->bestburstlen; len -= sz; result++; /* best shot */ } if (len) { result++; /* clean up */ if (tx && (len % sizeof(u_int32_t)) != 0) result++; /* byte cleanup */ } return(result); #endif /* !MIDWAY_ADPONLY */ } /* * en_mget: get an mbuf chain that can hold totlen bytes and return it * (for recv) [based on am7990_get from if_le and ieget from if_ie] * after this call the sum of all the m_len's in the chain will be totlen. */ STATIC INLINE struct mbuf *en_mget(struct en_softc *sc, u_int totlen, u_int *drqneed) { struct mbuf *m; struct mbuf *top, **mp; *drqneed = 0; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return(NULL); m->m_pkthdr.rcvif = &sc->enif; m->m_pkthdr.len = totlen; m->m_len = MHLEN; top = NULL; mp = ⊤ /* if (top != NULL) then we've already got 1 mbuf on the chain */ while (totlen > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (!m) { m_freem(top); return(NULL); /* out of mbufs */ } m->m_len = MLEN; } if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m_freem(top); return(NULL); /* out of mbuf clusters */ } m->m_len = MCLBYTES; } m->m_len = min(totlen, m->m_len); totlen -= m->m_len; *mp = m; mp = &m->m_next; *drqneed += en_dqneed(sc, m->m_data, m->m_len, 0); } return(top); } /***********************************************************************/ /* * autoconfig stuff */ void en_attach(struct en_softc *sc) { struct ifnet *ifp = &sc->enif; int sz; u_int32_t reg, lcv, check, ptr, sav, midvloc; /* * probe card to determine memory size. the stupid ENI card always * reports to PCI that it needs 4MB of space (2MB regs and 2MB RAM). * if it has less than 2MB RAM the addresses wrap in the RAM address space. * (i.e. on a 512KB card addresses 0x3ffffc, 0x37fffc, and 0x2ffffc * are aliases for 0x27fffc [note that RAM starts at offset 0x200000]). */ if (sc->en_busreset) sc->en_busreset(sc); EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */ for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) { EN_WRITE(sc, lcv, lcv); /* data[address] = address */ for (check = MID_PROBEOFF ; check < lcv ; check += MID_PROBSIZE) { reg = EN_READ(sc, check); if (reg != check) { /* found an alias! */ goto done_probe; /* and quit */ } } } done_probe: lcv -= MID_PROBSIZE; /* take one step back */ sc->en_obmemsz = (lcv + 4) - MID_RAMOFF; /* * determine the largest DMA burst supported */ en_dmaprobe(sc); /* * "hello world" */ if (sc->en_busreset) sc->en_busreset(sc); EN_WRITE(sc, MID_RESID, 0x0); /* reset */ for (lcv = MID_RAMOFF ; lcv < MID_RAMOFF + sc->en_obmemsz ; lcv += 4) EN_WRITE(sc, lcv, 0); /* zero memory */ reg = EN_READ(sc, MID_RESID); aprint_normal_dev(sc->sc_dev, "ATM midway v%d, board IDs %d.%d, %s%s%s, %ldKB on-board RAM\n", MID_VER(reg), MID_MID(reg), MID_DID(reg), (MID_IS_SABRE(reg)) ? "sabre controller, " : "", (MID_IS_SUNI(reg)) ? "SUNI" : "Utopia", (!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "", (u_long)sc->en_obmemsz / 1024); if (sc->is_adaptec) { if (sc->bestburstlen == 64 && sc->alburst == 0) aprint_normal_dev(sc->sc_dev, "passed 64 byte DMA test\n"); else aprint_error_dev(sc->sc_dev, "FAILED DMA TEST: burst=%d, alburst=%d\n", sc->bestburstlen, sc->alburst); } else { aprint_normal_dev(sc->sc_dev, "maximum DMA burst length = %d bytes%s\n", sc->bestburstlen, (sc->alburst) ? " (must align)" : ""); } #if 0 /* WMAYBE doesn't work, don't complain about it */ /* check if en_dmaprobe disabled wmaybe */ if (en_dmaplan == en_dma_planB) aprint_normal_dev(sc->sc_dev, "note: WMAYBE DMA has been disabled\n"); #endif /* * link into network subsystem and prepare card */ #if defined(__NetBSD__) || defined(__OpenBSD__) strlcpy(sc->enif.if_xname, device_xname(sc->sc_dev), IFNAMSIZ); #endif #if !defined(MISSING_IF_SOFTC) sc->enif.if_softc = sc; #endif ifp->if_flags = IFF_SIMPLEX|IFF_NOTRAILERS; ifp->if_ioctl = en_ioctl; ifp->if_output = atm_output; ifp->if_start = en_start; IFQ_SET_READY(&ifp->if_snd); /* * init softc */ for (lcv = 0 ; lcv < MID_N_VC ; lcv++) { sc->rxvc2slot[lcv] = RX_NONE; sc->txspeed[lcv] = 0; /* full */ sc->txvc2slot[lcv] = 0; /* full speed == slot 0 */ } sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF); ptr = sav = MID_BUFOFF; ptr = roundup(ptr, EN_TXSZ * 1024); /* align */ sz = sz - (ptr - sav); if (EN_TXSZ*1024 * EN_NTX > sz) { aprint_error_dev(sc->sc_dev, "EN_NTX/EN_TXSZ too big\n"); return; } for (lcv = 0 ; lcv < EN_NTX ; lcv++) { sc->txslot[lcv].mbsize = 0; sc->txslot[lcv].start = ptr; ptr += (EN_TXSZ * 1024); sz -= (EN_TXSZ * 1024); sc->txslot[lcv].stop = ptr; sc->txslot[lcv].nref = 0; #ifdef ATM_PVCEXT sc->txrrp = NULL; #endif memset(&sc->txslot[lcv].indma, 0, sizeof(sc->txslot[lcv].indma)); memset(&sc->txslot[lcv].q, 0, sizeof(sc->txslot[lcv].q)); #ifdef EN_DEBUG aprint_debug_dev(sc->sc_dev, "tx%d: start 0x%x, stop 0x%x\n", lcv, sc->txslot[lcv].start, sc->txslot[lcv].stop); #endif } sav = ptr; ptr = roundup(ptr, EN_RXSZ * 1024); /* align */ sz = sz - (ptr - sav); sc->en_nrx = sz / (EN_RXSZ * 1024); if (sc->en_nrx <= 0) { aprint_error_dev(sc->sc_dev, "EN_NTX/EN_TXSZ/EN_RXSZ too big\n"); return; } /* * ensure that there is always one VC slot on the service list free * so that we can tell the difference between a full and empty list. */ if (sc->en_nrx >= MID_N_VC) sc->en_nrx = MID_N_VC - 1; for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) { sc->rxslot[lcv].rxhand = NULL; sc->rxslot[lcv].oth_flags = ENOTHER_FREE; memset(&sc->rxslot[lcv].indma, 0, sizeof(sc->rxslot[lcv].indma)); memset(&sc->rxslot[lcv].q, 0, sizeof(sc->rxslot[lcv].q)); midvloc = sc->rxslot[lcv].start = ptr; ptr += (EN_RXSZ * 1024); sz -= (EN_RXSZ * 1024); sc->rxslot[lcv].stop = ptr; midvloc = midvloc - MID_RAMOFF; midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2; /* mask, cvt to words */ midvloc = midvloc >> MIDV_LOCTOPSHFT; /* we only want the top 11 bits */ midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT; sc->rxslot[lcv].mode = midvloc | (en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH; #ifdef EN_DEBUG aprint_debug_dev(sc->sc_dev, "rx%d: start 0x%x, stop 0x%x, mode 0x%x\n", lcv, sc->rxslot[lcv].start, sc->rxslot[lcv].stop, sc->rxslot[lcv].mode); #endif } #ifdef EN_STAT sc->vtrash = sc->otrash = sc->mfix = sc->txmbovr = sc->dmaovr = 0; sc->txoutspace = sc->txdtqout = sc->launch = sc->lheader = sc->ltail = 0; sc->hwpull = sc->swadd = sc->rxqnotus = sc->rxqus = sc->rxoutboth = 0; sc->rxdrqout = sc->ttrash = sc->rxmbufout = sc->mfixfail = 0; sc->headbyte = sc->tailbyte = sc->tailflush = 0; #endif sc->need_drqs = sc->need_dtqs = 0; aprint_normal_dev(sc->sc_dev, "%d %dKB receive buffers, %d %dKB transmit buffers allocated\n", sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ); aprint_normal_dev(sc->sc_dev, "End Station Identifier (mac address) %s\n", ether_sprintf(sc->macaddr)); /* * final commit */ if_attach(ifp); atm_ifattach(ifp); #ifdef ATM_PVCEXT rrp_add(sc, ifp); #endif } /* * en_dmaprobe: helper function for en_attach. * * see how the card handles DMA by running a few DMA tests. we need * to figure out the largest number of bytes we can DMA in one burst * ("bestburstlen"), and if the starting address for a burst needs to * be aligned on any sort of boundary or not ("alburst"). * * typical findings: * sparc1: bestburstlen=4, alburst=0 (ick, broken DMA!) * sparc2: bestburstlen=64, alburst=1 * p166: bestburstlen=64, alburst=0 */ STATIC void en_dmaprobe(struct en_softc *sc) { u_int32_t srcbuf[64], dstbuf[64]; u_int8_t *sp, *dp; int bestalgn, bestnotalgn, lcv, try, fail; sc->alburst = 0; sp = (u_int8_t *) srcbuf; while ((((unsigned long) sp) % MIDDMA_MAXBURST) != 0) sp += 4; dp = (u_int8_t *) dstbuf; while ((((unsigned long) dp) % MIDDMA_MAXBURST) != 0) dp += 4; bestalgn = bestnotalgn = en_dmaprobe_doit(sc, sp, dp, 0); for (lcv = 4 ; lcv < MIDDMA_MAXBURST ; lcv += 4) { try = en_dmaprobe_doit(sc, sp+lcv, dp+lcv, 0); if (try < bestnotalgn) bestnotalgn = try; } if (bestalgn != bestnotalgn) /* need bursts aligned */ sc->alburst = 1; sc->bestburstlen = bestalgn; sc->bestburstshift = en_log2(bestalgn); sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */ sc->bestburstcode = en_sz2b(bestalgn); if (sc->bestburstlen <= 2*sizeof(u_int32_t)) return; /* won't be using WMAYBE */ /* * adaptec does not have (or need) wmaybe. do not bother testing * for it. */ if (sc->is_adaptec) { /* XXX, actually don't need a DMA plan: adaptec is smarter than that */ en_dmaplan = en_dma_planB; return; } /* * test that WMAYBE DMA works like we think it should * (i.e. no alignment restrictions on host address other than alburst) */ try = sc->bestburstlen - 4; fail = 0; fail += en_dmaprobe_doit(sc, sp, dp, try); for (lcv = 4 ; lcv < sc->bestburstlen ; lcv += 4) { fail += en_dmaprobe_doit(sc, sp+lcv, dp+lcv, try); if (sc->alburst) try -= 4; } if (EN_NOWMAYBE || fail) { if (fail) aprint_error_dev(sc->sc_dev, "WARNING: WMAYBE DMA test failed %d time(s)\n", fail); en_dmaplan = en_dma_planB; /* fall back to plan B */ } } /* * en_dmaprobe_doit: do actual testing */ int en_dmaprobe_doit(struct en_softc *sc, uint8_t *sp, uint8_t *dp, int wmtry) { int lcv, retval = 4, cnt, count; u_int32_t reg, bcode, midvloc; /* * set up a 1k buffer at MID_BUFOFF */ if (sc->en_busreset) sc->en_busreset(sc); EN_WRITE(sc, MID_RESID, 0x0); /* reset card before touching RAM */ midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(u_int32_t)) >> MIDV_LOCTOPSHFT; EN_WRITE(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc)); EN_WRITE(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT) | (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH); EN_WRITE(sc, MID_DST_RP(0), 0); EN_WRITE(sc, MID_WP_ST_CNT(0), 0); for (lcv = 0 ; lcv < 68 ; lcv++) /* set up sample data */ sp[lcv] = lcv+1; EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* enable DMA (only) */ sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)); sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)); /* * try it now . . . DMA it out, then DMA it back in and compare * * note: in order to get the DMA stuff to reverse directions it wants * the "end" flag set! since we are not DMA'ing valid data we may * get an ident mismatch interrupt (which we will ignore). * * note: we've got two different tests rolled up in the same loop * if (wmtry) * then we are doing a wmaybe test and wmtry is a byte count * else we are doing a burst test */ for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) { /* zero SRAM and dest buffer */ for (cnt = 0 ; cnt < 1024; cnt += 4) EN_WRITE(sc, MID_BUFOFF+cnt, 0); /* zero memory */ for (cnt = 0 ; cnt < 68 ; cnt++) dp[cnt] = 0; if (wmtry) { count = (sc->bestburstlen - sizeof(u_int32_t)) / sizeof(u_int32_t); bcode = en_dmaplan[count].bcode; count = wmtry >> en_dmaplan[count].divshift; } else { bcode = en_sz2b(lcv); count = 1; } if (sc->is_adaptec) EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0)); else EN_WRITE(sc, sc->dtq_chip, MID_MK_TXQ_ENI(count, 0, MID_DMA_END, bcode)); EN_WRITE(sc, sc->dtq_chip+4, vtophys((vaddr_t)sp)); EN_WRITE(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip+8)); cnt = 1000; while (EN_READ(sc, MID_DMA_RDTX) == MID_DTQ_A2REG(sc->dtq_chip)) { DELAY(1); cnt--; if (cnt == 0) { aprint_error_dev(sc->sc_dev, "unexpected timeout in tx DMA test\n"); return(retval); /* timeout, give up */ } } EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8); reg = EN_READ(sc, MID_INTACK); if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) { aprint_error_dev(sc->sc_dev, "unexpected status in tx DMA test: 0x%x\n", reg); return(retval); } EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */ /* "return to sender..." address is known ... */ if (sc->is_adaptec) EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0)); else EN_WRITE(sc, sc->drq_chip, MID_MK_RXQ_ENI(count, 0, MID_DMA_END, bcode)); EN_WRITE(sc, sc->drq_chip+4, vtophys((vaddr_t)dp)); EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip+8)); cnt = 1000; while (EN_READ(sc, MID_DMA_RDRX) == MID_DRQ_A2REG(sc->drq_chip)) { DELAY(1); cnt--; if (cnt == 0) { aprint_error_dev(sc->sc_dev, "unexpected timeout in rx DMA test\n"); return(retval); /* timeout, give up */ } } EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8); reg = EN_READ(sc, MID_INTACK); if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) { aprint_error_dev(sc->sc_dev, "unexpected status in rx DMA test: 0x%x\n", reg); return(retval); } EN_WRITE(sc, MID_MAST_CSR, MID_MCSR_ENDMA); /* re-enable DMA (only) */ if (wmtry) { return(memcmp(sp, dp, wmtry)); /* wmtry always exits here, no looping */ } if (memcmp(sp, dp, lcv)) return(retval); /* failed, use last value */ retval = lcv; } return(retval); /* studly 64 byte DMA present! oh baby!! */ } /***********************************************************************/ /* * en_ioctl: handle ioctl requests * * NOTE: if you add an ioctl to set txspeed, you should choose a new * TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref * value, subtract one from sc->txslot[0].nref, add one to the * sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set * txspeed[vci]. */ STATIC int en_ioctl(struct ifnet *ifp, EN_IOCTL_CMDT cmd, void *data) { #ifdef MISSING_IF_SOFTC struct en_softc *sc = (struct en_softc *)device_lookup_private(&en_cd, ifp->if_unit); #else struct en_softc *sc = (struct en_softc *) ifp->if_softc; #endif struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; struct atm_pseudoioctl *api = (struct atm_pseudoioctl *)data; #ifdef NATM struct atm_rawioctl *ario = (struct atm_rawioctl *)data; int slot; #endif int s, error = 0; s = splnet(); switch (cmd) { case SIOCATMENA: /* enable circuit for recv */ error = en_rxctl(sc, api, 1); break; case SIOCATMDIS: /* disable circuit for recv */ error = en_rxctl(sc, api, 0); break; #ifdef NATM case SIOCXRAWATM: if ((slot = sc->rxvc2slot[ario->npcb->npcb_vci]) == RX_NONE) { error = EINVAL; break; } if (ario->rawvalue > EN_RXSZ*1024) ario->rawvalue = EN_RXSZ*1024; if (ario->rawvalue) { sc->rxslot[slot].oth_flags |= ENOTHER_RAW; sc->rxslot[slot].raw_threshold = ario->rawvalue; } else { sc->rxslot[slot].oth_flags &= (~ENOTHER_RAW); sc->rxslot[slot].raw_threshold = 0; } #ifdef EN_DEBUG printf("%s: rxvci%d: turn %s raw (boodi) mode\n", device_xname(sc->sc_dev), ario->npcb->npcb_vci, (ario->rawvalue) ? "on" : "off"); #endif break; #endif case SIOCINITIFADDR: ifp->if_flags |= IFF_UP; en_reset(sc); en_init(sc); switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifa->ifa_rtrequest = atm_rtrequest; /* ??? */ break; #endif #ifdef INET6 case AF_INET6: ifa->ifa_rtrequest = atm_rtrequest; /* ??? */ break; #endif default: /* what to do if not INET? */ break; } break; case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; #ifdef ATM_PVCEXT /* point-2-point pvc is allowed to change if_flags */ if (((ifp->if_flags & IFF_UP) && !(ifp->if_flags & IFF_RUNNING)) || (!(ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))) { en_reset(sc); en_init(sc); } #else error = EINVAL; #endif break; #if defined(SIOCSIFMTU) /* ??? copied from if_de */ #if !defined(ifr_mtu) #define ifr_mtu ifr_metric #endif case SIOCSIFMTU: /* * Set the interface MTU. */ #ifdef notsure if (ifr->ifr_mtu > ATMMTU) { error = EINVAL; break; } #endif if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) { error = 0; /* XXXCDC: do we really need to reset on MTU size change? */ en_reset(sc); en_init(sc); } break; #endif /* SIOCSIFMTU */ #ifdef ATM_PVCEXT case SIOCADDMULTI: case SIOCDELMULTI: if (ifp == &sc->enif || ifr == 0) { error = EAFNOSUPPORT; /* XXX */ break; } switch (ifreq_getaddr(cmd, ifr)->sa_family) { #ifdef INET case AF_INET: break; #endif #ifdef INET6 case AF_INET6: break; #endif default: error = EAFNOSUPPORT; break; } break; case SIOCGPVCSIF: if (ifp != &sc->enif) { #ifdef __NetBSD__ strlcpy(ifr->ifr_name, sc->enif.if_xname, sizeof(ifr->ifr_name)); #else snprintf(ifr->ifr_name, sizeof(ifr->ifr_name), "%s%d", sc->enif.if_name, sc->enif.if_unit); #endif } else error = EINVAL; break; case SIOCSPVCSIF: if (ifp == &sc->enif) { struct ifnet *sifp; if ((error = kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE_PVC, KAUTH_REQ_NETWORK_INTERFACE_PVC_ADD, NULL, NULL, NULL)) != 0) break; if ((sifp = en_pvcattach(ifp)) != NULL) { #ifdef __NetBSD__ strlcpy(ifr->ifr_name, sifp->if_xname, sizeof(ifr->ifr_name)); #else snprintf(ifr->ifr_name, sizeof(ifr->ifr_name), "%s%d", sifp->if_name, sifp->if_unit); #endif #if defined(__KAME__) && defined(INET6) /* get EUI64 for PVC, from ATM hardware interface */ in6_ifattach(sifp, ifp); #endif } else error = ENOMEM; } else error = EINVAL; break; case SIOCGPVCTX: error = en_pvctxget(sc, (struct pvctxreq *)data); break; case SIOCSPVCTX: if ((error = kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), NULL)) == 0) error = en_pvctx(sc, (struct pvctxreq *)data); break; #endif /* ATM_PVCEXT */ default: error = ifioctl_common(ifp, cmd, data); break; } splx(s); return error; } /* * en_rxctl: turn on and off VCs for recv. */ STATIC int en_rxctl(struct en_softc *sc, struct atm_pseudoioctl *pi, int on) { u_int s, vci, flags, slot; u_int32_t oldmode, newmode; vci = ATM_PH_VCI(&pi->aph); flags = ATM_PH_FLAGS(&pi->aph); #ifdef EN_DEBUG printf("%s: %s vpi=%d, vci=%d, flags=%d\n", device_xname(sc->sc_dev), (on) ? "enable" : "disable", ATM_PH_VPI(&pi->aph), vci, flags); #endif if (ATM_PH_VPI(&pi->aph) || vci >= MID_N_VC) return(EINVAL); /* * turn on VCI! */ if (on) { if (sc->rxvc2slot[vci] != RX_NONE) return(EINVAL); for (slot = 0 ; slot < sc->en_nrx ; slot++) if (sc->rxslot[slot].oth_flags & ENOTHER_FREE) break; if (slot == sc->en_nrx) return(ENOSPC); sc->rxvc2slot[vci] = slot; sc->rxslot[slot].rxhand = NULL; oldmode = sc->rxslot[slot].mode; newmode = (flags & ATM_PH_AAL5) ? MIDV_AAL5 : MIDV_NOAAL; sc->rxslot[slot].mode = MIDV_SETMODE(oldmode, newmode); sc->rxslot[slot].atm_vci = vci; sc->rxslot[slot].atm_flags = flags; sc->rxslot[slot].oth_flags = 0; sc->rxslot[slot].rxhand = pi->rxhand; if (sc->rxslot[slot].indma.ifq_head || sc->rxslot[slot].q.ifq_head) panic("en_rxctl: left over mbufs on enable"); sc->txspeed[vci] = 0; /* full speed to start */ sc->txvc2slot[vci] = 0; /* init value */ sc->txslot[0].nref++; /* bump reference count */ en_loadvc(sc, vci); /* does debug printf for us */ return(0); } /* * turn off VCI */ if (sc->rxvc2slot[vci] == RX_NONE) return(EINVAL); slot = sc->rxvc2slot[vci]; if ((sc->rxslot[slot].oth_flags & (ENOTHER_FREE|ENOTHER_DRAIN)) != 0) return(EINVAL); s = splnet(); /* block out enintr() */ oldmode = EN_READ(sc, MID_VC(vci)); newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE; EN_WRITE(sc, MID_VC(vci), (newmode | (oldmode & MIDV_INSERVICE))); /* halt in tracks, be careful to preserve inserivce bit */ DELAY(27); sc->rxslot[slot].rxhand = NULL; sc->rxslot[slot].mode = newmode; sc->txslot[sc->txvc2slot[vci]].nref--; sc->txspeed[vci] = 0; sc->txvc2slot[vci] = 0; /* if stuff is still going on we are going to have to drain it out */ if (sc->rxslot[slot].indma.ifq_head || sc->rxslot[slot].q.ifq_head || (sc->rxslot[slot].oth_flags & ENOTHER_SWSL) != 0) { sc->rxslot[slot].oth_flags |= ENOTHER_DRAIN; } else { sc->rxslot[slot].oth_flags = ENOTHER_FREE; sc->rxslot[slot].atm_vci = RX_NONE; sc->rxvc2slot[vci] = RX_NONE; } splx(s); /* enable enintr() */ #ifdef EN_DEBUG printf("%s: rx%d: VCI %d is now %s\n", device_xname(sc->sc_dev), slot, vci, (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) ? "draining" : "free"); #endif return(0); } /***********************************************************************/ /* * en_reset: reset the board, throw away work in progress. * must en_init to recover. */ void en_reset(struct en_softc *sc) { struct mbuf *m; int lcv, slot; #ifdef EN_DEBUG printf("%s: reset\n", device_xname(sc->sc_dev)); #endif if (sc->en_busreset) sc->en_busreset(sc); EN_WRITE(sc, MID_RESID, 0x0); /* reset hardware */ /* * recv: dump any mbufs we are DMA'ing into, if DRAINing, then a reset * will free us! */ for (lcv = 0 ; lcv < MID_N_VC ; lcv++) { if (sc->rxvc2slot[lcv] == RX_NONE) continue; slot = sc->rxvc2slot[lcv]; while (1) { IF_DEQUEUE(&sc->rxslot[slot].indma, m); if (m == NULL) break; /* >>> exit 'while(1)' here <<< */ m_freem(m); } while (1) { IF_DEQUEUE(&sc->rxslot[slot].q, m); if (m == NULL) break; /* >>> exit 'while(1)' here <<< */ m_freem(m); } sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL; if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) { sc->rxslot[slot].oth_flags = ENOTHER_FREE; sc->rxvc2slot[lcv] = RX_NONE; #ifdef EN_DEBUG printf("%s: rx%d: VCI %d is now free\n", device_xname(sc->sc_dev), slot, lcv); #endif } } /* * xmit: dump everything */ for (lcv = 0 ; lcv < EN_NTX ; lcv++) { while (1) { IF_DEQUEUE(&sc->txslot[lcv].indma, m); if (m == NULL) break; /* >>> exit 'while(1)' here <<< */ m_freem(m); } while (1) { IF_DEQUEUE(&sc->txslot[lcv].q, m); if (m == NULL) break; /* >>> exit 'while(1)' here <<< */ m_freem(m); } sc->txslot[lcv].mbsize = 0; } return; } /* * en_init: init board and sync the card with the data in the softc. */ STATIC void en_init(struct en_softc *sc) { int vc, slot; u_int32_t loc; #ifdef ATM_PVCEXT struct pvcsif *pvcsif; #endif if ((sc->enif.if_flags & IFF_UP) == 0) { #ifdef ATM_PVCEXT LIST_FOREACH(pvcsif, &sc->sif_list, sif_links) { if (pvcsif->sif_if.if_flags & IFF_UP) { /* * down the device only when there is no active pvc subinterface. * if there is, we have to go through the init sequence to reflect * the software states to the device. */ goto up; } } #endif #ifdef EN_DEBUG printf("%s: going down\n", device_xname(sc->sc_dev)); #endif en_reset(sc); /* to be safe */ sc->enif.if_flags &= ~IFF_RUNNING; /* disable */ return; } #ifdef ATM_PVCEXT up: #endif #ifdef EN_DEBUG printf("%s: going up\n", device_xname(sc->sc_dev)); #endif sc->enif.if_flags |= IFF_RUNNING; /* enable */ #ifdef ATM_PVCEXT LIST_FOREACH(pvcsif, &sc->sif_list, sif_links) { pvcsif->sif_if.if_flags |= IFF_RUNNING; } #endif if (sc->en_busreset) sc->en_busreset(sc); EN_WRITE(sc, MID_RESID, 0x0); /* reset */ /* * init obmem data structures: vc tab, DMA q's, slist. * * note that we set drq_free/dtq_free to one less than the total number * of DTQ/DRQs present. we do this because the card uses the condition * (drq_chip == drq_us) to mean "list is empty"... but if you allow the * circular list to be completely full then (drq_chip == drq_us) [i.e. * the drq_us pointer will wrap all the way around]. by restricting * the number of active requests to (N - 1) we prevent the list from * becoming completely full. note that the card will sometimes give * us an interrupt for a DTQ/DRQ we have already processes... this helps * keep that interrupt from messing us up. */ for (vc = 0 ; vc < MID_N_VC ; vc++) en_loadvc(sc, vc); memset(&sc->drq, 0, sizeof(sc->drq)); sc->drq_free = MID_DRQ_N - 1; /* N - 1 */ sc->drq_chip = MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)); EN_WRITE(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip)); /* ensure zero queue */ sc->drq_us = sc->drq_chip; memset(&sc->dtq, 0, sizeof(sc->dtq)); sc->dtq_free = MID_DTQ_N - 1; /* N - 1 */ sc->dtq_chip = MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)); EN_WRITE(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip)); /* ensure zero queue */ sc->dtq_us = sc->dtq_chip; sc->hwslistp = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE)); sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0; #ifdef EN_DEBUG printf("%s: drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, hwslist: 0x%x\n", device_xname(sc->sc_dev), sc->drq_free, sc->drq_chip, sc->dtq_free, sc->dtq_chip, sc->hwslistp); #endif for (slot = 0 ; slot < EN_NTX ; slot++) { sc->txslot[slot].bfree = EN_TXSZ * 1024; EN_WRITE(sc, MIDX_READPTR(slot), 0); EN_WRITE(sc, MIDX_DESCSTART(slot), 0); loc = sc->txslot[slot].cur = sc->txslot[slot].start; loc = loc - MID_RAMOFF; loc = (loc & ~((EN_TXSZ*1024) - 1)) >> 2; /* mask, cvt to words */ loc = loc >> MIDV_LOCTOPSHFT; /* top 11 bits */ EN_WRITE(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ), loc)); #ifdef EN_DEBUG printf("%s: tx%d: place 0x%x\n", device_xname(sc->sc_dev), slot, EN_READ(sc, MIDX_PLACE(slot))); #endif } /* * enable! */ EN_WRITE(sc, MID_INTENA, MID_INT_TX|MID_INT_DMA_OVR|MID_INT_IDENT| MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_DMA_RX|MID_INT_DMA_TX| MID_INT_SERVICE| /* >>> MID_INT_SUNI| XXXCDC<<< */ MID_INT_STATS); EN_WRITE(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl)|MID_MCSR_ENDMA| MID_MCSR_ENTX|MID_MCSR_ENRX); } /* * en_loadvc: load a vc tab entry from a slot */ STATIC void en_loadvc(struct en_softc *sc, int vc) { int slot; u_int32_t reg = EN_READ(sc, MID_VC(vc)); reg = MIDV_SETMODE(reg, MIDV_TRASH); EN_WRITE(sc, MID_VC(vc), reg); DELAY(27); if ((slot = sc->rxvc2slot[vc]) == RX_NONE) return; /* no need to set CRC */ EN_WRITE(sc, MID_DST_RP(vc), 0); /* read pointer = 0, desc. start = 0 */ EN_WRITE(sc, MID_WP_ST_CNT(vc), 0); /* write pointer = 0 */ EN_WRITE(sc, MID_VC(vc), sc->rxslot[slot].mode); /* set mode, size, loc */ sc->rxslot[slot].cur = sc->rxslot[slot].start; #ifdef EN_DEBUG printf("%s: rx%d: assigned to VCI %d\n", device_xname(sc->sc_dev), slot, vc); #endif } /* * en_start: start transmitting the next packet that needs to go out * if there is one. note that atm_output() has already splnet()'d us. */ STATIC void en_start(struct ifnet *ifp) { #ifdef MISSING_IF_SOFTC struct en_softc *sc = (struct en_softc *)device_lookup_private(&en_cd, ifp->if_unit); #else struct en_softc *sc = (struct en_softc *) ifp->if_softc; #endif struct mbuf *m, *lastm, *prev; struct atm_pseudohdr *ap, *new_ap; int txchan, mlen, got, need, toadd, cellcnt, first; u_int32_t atm_vpi, atm_vci, atm_flags, *dat, aal; u_int8_t *cp; if ((ifp->if_flags & IFF_RUNNING) == 0) return; /* * remove everything from interface queue since we handle all queueing * locally ... */ while (1) { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) return; /* EMPTY: >>> exit here <<< */ /* * calculate size of packet (in bytes) * also, if we are not doing transmit DMA we eliminate all stupid * (non-word) alignments here using en_mfix(). calls to en_mfix() * seem to be due to tcp retransmits for the most part. * * after this loop mlen total length of mbuf chain (including atm_ph), * and lastm is a pointer to the last mbuf on the chain. */ lastm = m; mlen = 0; prev = NULL; while (1) { /* no DMA? */ if ((!sc->is_adaptec && EN_ENIDMAFIX) || EN_NOTXDMA || !en_dma) { if ( (mtod(lastm, unsigned long) % sizeof(u_int32_t)) != 0 || ((lastm->m_len % sizeof(u_int32_t)) != 0 && lastm->m_next)) { first = (lastm == m); if (en_mfix(sc, &lastm, prev) == 0) { /* failed? */ m_freem(m); m = NULL; break; } if (first) m = lastm; /* update */ } prev = lastm; } mlen += lastm->m_len; if (lastm->m_next == NULL) break; lastm = lastm->m_next; } if (m == NULL) /* happens only if mfix fails */ continue; ap = mtod(m, struct atm_pseudohdr *); atm_vpi = ATM_PH_VPI(ap); atm_vci = ATM_PH_VCI(ap); atm_flags = ATM_PH_FLAGS(ap) & ~(EN_OBHDR|EN_OBTRL); aal = ((atm_flags & ATM_PH_AAL5) != 0) ? MID_TBD_AAL5 : MID_TBD_NOAAL5; /* * check that vpi/vci is one we can use */ if (atm_vpi || atm_vci >= MID_N_VC) { printf("%s: output vpi=%d, vci=%d out of card range, dropping...\n", device_xname(sc->sc_dev), atm_vpi, atm_vci); m_freem(m); continue; } /* * computing how much padding we need on the end of the mbuf, then * see if we can put the TBD at the front of the mbuf where the * link header goes (well behaved protocols will reserve room for us). * last, check if room for PDU tail. * * got = number of bytes of data we have * cellcnt = number of cells in this mbuf * need = number of bytes of data + padding we need (excludes TBD) * toadd = number of bytes of data we need to add to end of mbuf, * [including AAL5 PDU, if AAL5] */ got = mlen - sizeof(struct atm_pseudohdr); toadd = (aal == MID_TBD_AAL5) ? MID_PDU_SIZE : 0; /* PDU */ cellcnt = (got + toadd + (MID_ATMDATASZ - 1)) / MID_ATMDATASZ; need = cellcnt * MID_ATMDATASZ; toadd = need - got; /* recompute, including zero padding */ #ifdef EN_DEBUG printf("%s: txvci%d: mlen=%d, got=%d, need=%d, toadd=%d, cell#=%d\n", device_xname(sc->sc_dev), atm_vci, mlen, got, need, toadd, cellcnt); printf(" leading_space=%d, trailing_space=%d\n", M_LEADINGSPACE(m), M_TRAILINGSPACE(lastm)); #endif #ifdef EN_MBUF_OPT /* * note: external storage (M_EXT) can be shared between mbufs * to avoid copying (see m_copym()). this means that the same * data buffer could be shared by several mbufs, and thus it isn't * a good idea to try and write TBDs or PDUs to M_EXT data areas. */ if (M_LEADINGSPACE(m) >= MID_TBD_SIZE && (m->m_flags & M_EXT) == 0) { m->m_data -= MID_TBD_SIZE; m->m_len += MID_TBD_SIZE; mlen += MID_TBD_SIZE; new_ap = mtod(m, struct atm_pseudohdr *); *new_ap = *ap; /* move it back */ ap = new_ap; dat = ((u_int32_t *) ap) + 1; /* make sure the TBD is in proper byte order */ *dat++ = htonl(MID_TBD_MK1(aal, sc->txspeed[atm_vci], cellcnt)); *dat = htonl(MID_TBD_MK2(atm_vci, 0, 0)); atm_flags |= EN_OBHDR; } if (toadd && (lastm->m_flags & M_EXT) == 0 && M_TRAILINGSPACE(lastm) >= toadd) { cp = mtod(lastm, u_int8_t *) + lastm->m_len; lastm->m_len += toadd; mlen += toadd; if (aal == MID_TBD_AAL5) { memset(cp, 0, toadd - MID_PDU_SIZE); dat = (u_int32_t *)(cp + toadd - MID_PDU_SIZE); /* make sure the PDU is in proper byte order */ *dat = htonl(MID_PDU_MK1(0, 0, got)); } else { memset(cp, 0, toadd); } atm_flags |= EN_OBTRL; } ATM_PH_FLAGS(ap) = atm_flags; /* update EN_OBHDR/EN_OBTRL bits */ #endif /* EN_MBUF_OPT */ /* * get assigned channel (will be zero unless txspeed[atm_vci] is set) */ txchan = sc->txvc2slot[atm_vci]; if (sc->txslot[txchan].mbsize > EN_TXHIWAT) { EN_COUNT(sc->txmbovr); m_freem(m); #ifdef EN_DEBUG printf("%s: tx%d: buffer space shortage\n", device_xname(sc->sc_dev), txchan); #endif continue; } sc->txslot[txchan].mbsize += mlen; #ifdef EN_DEBUG printf("%s: tx%d: VPI=%d, VCI=%d, FLAGS=0x%x, speed=0x%x\n", device_xname(sc->sc_dev), txchan, atm_vpi, atm_vci, atm_flags, sc->txspeed[atm_vci]); printf(" adjusted mlen=%d, mbsize=%d\n", mlen, sc->txslot[txchan].mbsize); #endif IF_ENQUEUE(&sc->txslot[txchan].q, m); en_txdma(sc, txchan); } /*NOTREACHED*/ } /* * en_mfix: fix a stupid mbuf */ #ifndef __FreeBSD__ STATIC int en_mfix(struct en_softc *sc, struct mbuf **mm, struct mbuf *prev) { struct mbuf *m, *new; u_char *d, *cp; int off; struct mbuf *nxt; m = *mm; EN_COUNT(sc->mfix); /* count # of calls */ #ifdef EN_DEBUG printf("%s: mfix mbuf m_data=%p, m_len=%d\n", device_xname(sc->sc_dev), m->m_data, m->m_len); #endif d = mtod(m, u_char *); off = ((unsigned long) d) % sizeof(u_int32_t); if (off) { if ((m->m_flags & M_EXT) == 0) { memmove(d - off, d, m->m_len); /* ALIGN! (with costly data copy...) */ d -= off; m->m_data = (void *)d; } else { /* can't write to an M_EXT mbuf since it may be shared */ MGET(new, M_DONTWAIT, MT_DATA); if (!new) { EN_COUNT(sc->mfixfail); return(0); } MCLGET(new, M_DONTWAIT); if ((new->m_flags & M_EXT) == 0) { m_free(new); EN_COUNT(sc->mfixfail); return(0); } memcpy(new->m_data, d, m->m_len); /* ALIGN! (with costly data copy...) */ new->m_len = m->m_len; new->m_next = m->m_next; if (prev) prev->m_next = new; m_free(m); *mm = m = new; /* note: 'd' now invalid */ } } off = m->m_len % sizeof(u_int32_t); if (off == 0) return(1); d = mtod(m, u_char *) + m->m_len; off = sizeof(u_int32_t) - off; nxt = m->m_next; while (off--) { for ( ; nxt != NULL && nxt->m_len == 0 ; nxt = nxt->m_next) /*null*/; if (nxt == NULL) { /* out of data, zero fill */ *d++ = 0; continue; /* next "off" */ } cp = mtod(nxt, u_char *); *d++ = *cp++; m->m_len++; nxt->m_len--; nxt->m_data = (void *)cp; } return(1); } #else /* __FreeBSD__ */ STATIC int en_makeexclusive(struct en_softc *, struct mbuf **, struct mbuf *); STATIC int en_makeexclusive(sc, mm, prev) struct en_softc *sc; struct mbuf **mm, *prev; { struct mbuf *m, *new; m = *mm; if (m->m_flags & M_EXT) { if (m->m_ext.ext_free) { /* external buffer isn't an ordinary mbuf cluster! */ aprint_error_dev(sc->sc_dev, "mfix: special buffer! can't make a copy!\n"); return (0); } if (mclrefcnt[mtocl(m->m_ext.ext_buf)] > 1) { /* make a real copy of the M_EXT mbuf since it is shared */ MGET(new, M_DONTWAIT, MT_DATA); if (!new) { EN_COUNT(sc->mfixfail); return(0); } if (m->m_flags & M_PKTHDR) M_COPY_PKTHDR(new, m); MCLGET(new, M_DONTWAIT); if ((new->m_flags & M_EXT) == 0) { m_free(new); EN_COUNT(sc->mfixfail); return(0); } memcpy(new->m_data, m->m_data, m->m_len); new->m_len = m->m_len; new->m_next = m->m_next; if (prev) prev->m_next = new; m_free(m); *mm = new; } else { /* the buffer is not shared, align the data offset using this buffer. */ u_char *d = mtod(m, u_char *); int off = ((u_long)d) % sizeof(u_int32_t); if (off > 0) { memmove(d - off, d, m->m_len); m->m_data = (void *)d - off; } } } return (1); } STATIC int en_mfix(sc, mm, prev) struct en_softc *sc; struct mbuf **mm, *prev; { struct mbuf *m; u_char *d, *cp; int off; struct mbuf *nxt; m = *mm; EN_COUNT(sc->mfix); /* count # of calls */ #ifdef EN_DEBUG printf("%s: mfix mbuf m_data=0x%x, m_len=%d\n", device_xname(sc->sc_dev), m->m_data, m->m_len); #endif d = mtod(m, u_char *); off = ((unsigned long) d) % sizeof(u_int32_t); if (off) { if ((m->m_flags & M_EXT) == 0) { memmove(d - off, d, m->m_len); /* ALIGN! (with costly data copy...) */ d -= off; m->m_data = (void *)d; } else { /* can't write to an M_EXT mbuf since it may be shared */ if (en_makeexclusive(sc, &m, prev) == 0) return (0); *mm = m; /* note: 'd' now invalid */ } } off = m->m_len % sizeof(u_int32_t); if (off == 0) return(1); if (m->m_flags & M_EXT) { /* can't write to an M_EXT mbuf since it may be shared */ if (en_makeexclusive(sc, &m, prev) == 0) return (0); *mm = m; /* note: 'd' now invalid */ } d = mtod(m, u_char *) + m->m_len; off = sizeof(u_int32_t) - off; nxt = m->m_next; while (off--) { if (nxt != NULL && nxt->m_len == 0) { /* remove an empty mbuf. this avoids odd byte padding to an empty last mbuf. */ m->m_next = nxt = m_free(nxt); } if (nxt == NULL) { /* out of data, zero fill */ *d++ = 0; continue; /* next "off" */ } cp = mtod(nxt, u_char *); *d++ = *cp++; m->m_len++; nxt->m_len--; nxt->m_data = (void *)cp; } if (nxt != NULL && nxt->m_len == 0) m->m_next = m_free(nxt); return(1); } #endif /* __FreeBSD__ */ /* * en_txdma: start transmit DMA, if possible */ STATIC void en_txdma(struct en_softc *sc, int chan) { struct mbuf *tmp; struct atm_pseudohdr *ap; struct en_launch launch; int datalen = 0, dtqneed, len, ncells; u_int8_t *cp; struct ifnet *ifp; memset(&launch, 0, sizeof launch); /* XXX gcc */ #ifdef EN_DEBUG printf("%s: tx%d: starting...\n", device_xname(sc->sc_dev), chan); #endif /* * note: now that txlaunch handles non-word aligned/sized requests * the only time you can safely set launch.nodma is if you've en_mfix()'d * the mbuf chain. this happens only if EN_NOTXDMA || !en_dma. */ launch.nodma = (EN_NOTXDMA || !en_dma); again: /* * get an mbuf waiting for DMA */ launch.t = sc->txslot[chan].q.ifq_head; /* peek at head of queue */ if (launch.t == NULL) { #ifdef EN_DEBUG printf("%s: tx%d: ...done!\n", device_xname(sc->sc_dev), chan); #endif return; /* >>> exit here if no data waiting for DMA <<< */ } /* * get flags, vci * * note: launch.need = # bytes we need to get on the card * dtqneed = # of DTQs we need for this packet * launch.mlen = # of bytes in in mbuf chain (<= launch.need) */ ap = mtod(launch.t, struct atm_pseudohdr *); launch.atm_vci = ATM_PH_VCI(ap); launch.atm_flags = ATM_PH_FLAGS(ap); launch.aal = ((launch.atm_flags & ATM_PH_AAL5) != 0) ? MID_TBD_AAL5 : MID_TBD_NOAAL5; /* * XXX: have to recompute the length again, even though we already did * it in en_start(). might as well compute dtqneed here as well, so * this isn't that bad. */ if ((launch.atm_flags & EN_OBHDR) == 0) { dtqneed = 1; /* header still needs to be added */ launch.need = MID_TBD_SIZE; /* not included with mbuf */ } else { dtqneed = 0; /* header on-board, DMA with mbuf */ launch.need = 0; } launch.mlen = 0; for (tmp = launch.t ; tmp != NULL ; tmp = tmp->m_next) { len = tmp->m_len; launch.mlen += len; cp = mtod(tmp, u_int8_t *); if (tmp == launch.t) { len -= sizeof(struct atm_pseudohdr); /* don't count this! */ cp += sizeof(struct atm_pseudohdr); } launch.need += len; if (len == 0) continue; /* atm_pseudohdr alone in first mbuf */ dtqneed += en_dqneed(sc, (void *) cp, len, 1); } if ((launch.need % sizeof(u_int32_t)) != 0) dtqneed++; /* need DTQ to FLUSH internal buffer */ if ((launch.atm_flags & EN_OBTRL) == 0) { if (launch.aal == MID_TBD_AAL5) { datalen = launch.need - MID_TBD_SIZE; launch.need += MID_PDU_SIZE; /* AAL5: need PDU tail */ } dtqneed++; /* need to work on the end a bit */ } /* * finish calculation of launch.need (need to figure out how much padding * we will need). launch.need includes MID_TBD_SIZE, but we need to * remove that to so we can round off properly. we have to add * MID_TBD_SIZE back in after calculating ncells. */ launch.need = roundup(launch.need - MID_TBD_SIZE, MID_ATMDATASZ); ncells = launch.need / MID_ATMDATASZ; launch.need += MID_TBD_SIZE; if (launch.need > EN_TXSZ * 1024) { printf("%s: tx%d: packet larger than xmit buffer (%d > %d)\n", device_xname(sc->sc_dev), chan, launch.need, EN_TXSZ * 1024); goto dequeue_drop; } /* * note: note that we cannot totally fill the circular buffer (i.e. * we can't use up all of the remaining sc->txslot[chan].bfree free * bytes) because that would cause the circular buffer read pointer * to become equal to the write pointer, thus signaling 'empty buffer' * to the hardware and stopping the transmitter. */ if (launch.need >= sc->txslot[chan].bfree) { EN_COUNT(sc->txoutspace); #ifdef EN_DEBUG printf("%s: tx%d: out of transmit space\n", device_xname(sc->sc_dev), chan); #endif return; /* >>> exit here if out of obmem buffer space <<< */ } /* * ensure we have enough dtqs to go, if not, wait for more. */ if (launch.nodma) { dtqneed = 1; } if (dtqneed > sc->dtq_free) { sc->need_dtqs = 1; EN_COUNT(sc->txdtqout); #ifdef EN_DEBUG printf("%s: tx%d: out of transmit DTQs\n", device_xname(sc->sc_dev), chan); #endif return; /* >>> exit here if out of dtqs <<< */ } /* * it is a go, commit! dequeue mbuf start working on the xfer. */ IF_DEQUEUE(&sc->txslot[chan].q, tmp); #ifdef EN_DIAG if (launch.t != tmp) panic("en dequeue"); #endif /* EN_DIAG */ /* * launch! */ EN_COUNT(sc->launch); #ifdef ATM_PVCEXT /* if there's a subinterface for this vci, override ifp. */ ifp = en_vci2ifp(sc, launch.atm_vci); #else ifp = &sc->enif; #endif ifp->if_opackets++; if ((launch.atm_flags & EN_OBHDR) == 0) { EN_COUNT(sc->lheader); /* store tbd1/tbd2 in host byte order */ launch.tbd1 = MID_TBD_MK1(launch.aal, sc->txspeed[launch.atm_vci], ncells); launch.tbd2 = MID_TBD_MK2(launch.atm_vci, 0, 0); } if ((launch.atm_flags & EN_OBTRL) == 0 && launch.aal == MID_TBD_AAL5) { EN_COUNT(sc->ltail); launch.pdu1 = MID_PDU_MK1(0, 0, datalen); /* host byte order */ } en_txlaunch(sc, chan, &launch); if (ifp->if_bpf) { /* * adjust the top of the mbuf to skip the pseudo atm header * (and TBD, if present) before passing the packet to bpf, * restore it afterwards. */ int size = sizeof(struct atm_pseudohdr); if (launch.atm_flags & EN_OBHDR) size += MID_TBD_SIZE; launch.t->m_data += size; launch.t->m_len -= size; bpf_mtap(ifp, launch.t); launch.t->m_data -= size; launch.t->m_len += size; } /* * do some housekeeping and get the next packet */ sc->txslot[chan].bfree -= launch.need; IF_ENQUEUE(&sc->txslot[chan].indma, launch.t); goto again; /* * END of txdma loop! */ /* * error handles */ dequeue_drop: IF_DEQUEUE(&sc->txslot[chan].q, tmp); if (launch.t != tmp) panic("en dequeue drop"); m_freem(launch.t); sc->txslot[chan].mbsize -= launch.mlen; goto again; } /* * en_txlaunch: launch an mbuf into the DMA pool! */ STATIC void en_txlaunch(struct en_softc *sc, int chan, struct en_launch *l) { struct mbuf *tmp; u_int32_t cur = sc->txslot[chan].cur, start = sc->txslot[chan].start, stop = sc->txslot[chan].stop, dma, *data, *datastop, count, bcode; int pad, addtail, need, len, needalign, cnt, end, mx; /* * vars: * need = # bytes card still needs (decr. to zero) * len = # of bytes left in current mbuf * cur = our current pointer * dma = last place we programmed into the DMA * data = pointer into data area of mbuf that needs to go next * cnt = # of bytes to transfer in this DTQ * bcode/count = DMA burst code, and chip's version of cnt * * a single buffer can require up to 5 DTQs depending on its size * and alignment requirements. the 5 possible requests are: * [1] 1, 2, or 3 byte DMA to align src data pointer to word boundary * [2] alburst DMA to align src data pointer to bestburstlen * [3] 1 or more bestburstlen DMAs * [4] clean up burst (to last word boundary) * [5] 1, 2, or 3 byte final clean up DMA */ need = l->need; dma = cur; addtail = (l->atm_flags & EN_OBTRL) == 0; /* add a tail? */ #ifdef EN_DIAG if ((need - MID_TBD_SIZE) % MID_ATMDATASZ) printf("%s: tx%d: bogus transmit needs (%d)\n", device_xname(sc->sc_dev), chan, need); #endif #ifdef EN_DEBUG printf("%s: tx%d: launch mbuf %p! cur=0x%x[%d], need=%d, addtail=%d\n", device_xname(sc->sc_dev), chan, l->t, cur, (cur-start)/4, need, addtail); count = EN_READ(sc, MIDX_PLACE(chan)); printf(" HW: base_address=0x%x, size=%d, read=%d, descstart=%d\n", MIDX_BASE(count), MIDX_SZ(count), EN_READ(sc, MIDX_READPTR(chan)), EN_READ(sc, MIDX_DESCSTART(chan))); #endif /* * do we need to insert the TBD by hand? * note that tbd1/tbd2/pdu1 are in host byte order. */ if ((l->atm_flags & EN_OBHDR) == 0) { #ifdef EN_DEBUG printf("%s: tx%d: insert header 0x%x 0x%x\n", device_xname(sc->sc_dev), chan, l->tbd1, l->tbd2); #endif EN_WRITE(sc, cur, l->tbd1); EN_WRAPADD(start, stop, cur, 4); EN_WRITE(sc, cur, l->tbd2); EN_WRAPADD(start, stop, cur, 4); need -= 8; } /* * now do the mbufs... */ for (tmp = l->t ; tmp != NULL ; tmp = tmp->m_next) { /* get pointer to data and length */ data = mtod(tmp, u_int32_t *); len = tmp->m_len; if (tmp == l->t) { data += sizeof(struct atm_pseudohdr)/sizeof(u_int32_t); len -= sizeof(struct atm_pseudohdr); } /* now, determine if we should copy it */ if (l->nodma || (len < EN_MINDMA && (len % 4) == 0 && ((unsigned long) data % 4) == 0 && (cur % 4) == 0)) { /* * roundup len: the only time this will change the value of len * is when l->nodma is true, tmp is the last mbuf, and there is * a non-word number of bytes to transmit. in this case it is * safe to round up because we've en_mfix'd the mbuf (so the first * byte is word aligned there must be enough free bytes at the end * to round off to the next word boundary)... */ len = roundup(len, sizeof(u_int32_t)); datastop = data + (len / sizeof(u_int32_t)); /* copy loop: preserve byte order!!! use WRITEDAT */ while (data != datastop) { EN_WRITEDAT(sc, cur, *data); data++; EN_WRAPADD(start, stop, cur, 4); } need -= len; #ifdef EN_DEBUG printf("%s: tx%d: copied %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, len, need, cur); #endif continue; /* continue on to next mbuf */ } /* going to do DMA, first make sure the dtq is in sync. */ if (dma != cur) { EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0, 0, 0); #ifdef EN_DEBUG printf("%s: tx%d: dtq_sync: advance pointer to %d\n", device_xname(sc->sc_dev), chan, cur); #endif } /* * if this is the last buffer, and it looks like we are going to need to * flush the internal buffer, can we extend the length of this mbuf to * avoid the FLUSH? */ if (tmp->m_next == NULL) { cnt = (need - len) % sizeof(u_int32_t); if (cnt && M_TRAILINGSPACE(tmp) >= cnt) len += cnt; /* pad for FLUSH */ } #if !defined(MIDWAY_ENIONLY) /* * the adaptec DMA engine is smart and handles everything for us. */ if (sc->is_adaptec) { /* need to DMA "len" bytes out to card */ need -= len; EN_WRAPADD(start, stop, cur, len); #ifdef EN_DEBUG printf("%s: tx%d: adp_dma %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, len, need, cur); #endif end = (need == 0) ? MID_DMA_END : 0; EN_DTQADD(sc, len, chan, 0, vtophys((vaddr_t)data), l->mlen, end); if (end) goto done; dma = cur; /* update DMA pointer */ continue; } #endif /* !MIDWAY_ENIONLY */ #if !defined(MIDWAY_ADPONLY) /* * the ENI DMA engine is not so smart and need more help from us */ /* do we need to do a DMA op to align to word boundary? */ needalign = (unsigned long) data % sizeof(u_int32_t); if (needalign) { EN_COUNT(sc->headbyte); cnt = sizeof(u_int32_t) - needalign; if (cnt == 2 && len >= cnt) { count = 1; bcode = MIDDMA_2BYTE; } else { cnt = min(cnt, len); /* prevent overflow */ count = cnt; bcode = MIDDMA_BYTE; } need -= cnt; EN_WRAPADD(start, stop, cur, cnt); #ifdef EN_DEBUG printf("%s: tx%d: small al_dma %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, cnt, need, cur); #endif len -= cnt; end = (need == 0) ? MID_DMA_END : 0; EN_DTQADD(sc, count, chan, bcode, vtophys((vaddr_t)data), l->mlen, end); if (end) goto done; data = (u_int32_t *) ((u_char *)data + cnt); } /* do we need to do a DMA op to align? */ if (sc->alburst && (needalign = (((unsigned long) data) & sc->bestburstmask)) != 0 && len >= sizeof(u_int32_t)) { cnt = sc->bestburstlen - needalign; mx = len & ~(sizeof(u_int32_t)-1); /* don't go past end */ if (cnt > mx) { cnt = mx; count = cnt / sizeof(u_int32_t); bcode = MIDDMA_WORD; } else { count = cnt / sizeof(u_int32_t); bcode = en_dmaplan[count].bcode; count = cnt >> en_dmaplan[count].divshift; } need -= cnt; EN_WRAPADD(start, stop, cur, cnt); #ifdef EN_DEBUG printf("%s: tx%d: al_dma %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, cnt, need, cur); #endif len -= cnt; end = (need == 0) ? MID_DMA_END : 0; EN_DTQADD(sc, count, chan, bcode, vtophys((vaddr_t)data), l->mlen, end); if (end) goto done; data = (u_int32_t *) ((u_char *)data + cnt); } /* do we need to do a max-sized burst? */ if (len >= sc->bestburstlen) { count = len >> sc->bestburstshift; cnt = count << sc->bestburstshift; bcode = sc->bestburstcode; need -= cnt; EN_WRAPADD(start, stop, cur, cnt); #ifdef EN_DEBUG printf("%s: tx%d: best_dma %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, cnt, need, cur); #endif len -= cnt; end = (need == 0) ? MID_DMA_END : 0; EN_DTQADD(sc, count, chan, bcode, vtophys((vaddr_t)data), l->mlen, end); if (end) goto done; data = (u_int32_t *) ((u_char *)data + cnt); } /* do we need to do a cleanup burst? */ cnt = len & ~(sizeof(u_int32_t)-1); if (cnt) { count = cnt / sizeof(u_int32_t); bcode = en_dmaplan[count].bcode; count = cnt >> en_dmaplan[count].divshift; need -= cnt; EN_WRAPADD(start, stop, cur, cnt); #ifdef EN_DEBUG printf("%s: tx%d: cleanup_dma %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, cnt, need, cur); #endif len -= cnt; end = (need == 0) ? MID_DMA_END : 0; EN_DTQADD(sc, count, chan, bcode, vtophys((vaddr_t)data), l->mlen, end); if (end) goto done; data = (u_int32_t *) ((u_char *)data + cnt); } /* any word fragments left? */ if (len) { EN_COUNT(sc->tailbyte); if (len == 2) { count = 1; bcode = MIDDMA_2BYTE; /* use 2byte mode */ } else { count = len; bcode = MIDDMA_BYTE; /* use 1 byte mode */ } need -= len; EN_WRAPADD(start, stop, cur, len); #ifdef EN_DEBUG printf("%s: tx%d: byte cleanup_dma %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, len, need, cur); #endif end = (need == 0) ? MID_DMA_END : 0; EN_DTQADD(sc, count, chan, bcode, vtophys((vaddr_t)data), l->mlen, end); if (end) goto done; } dma = cur; /* update DMA pointer */ #endif /* !MIDWAY_ADPONLY */ } /* next mbuf, please */ /* * all mbuf data has been copied out to the obmem (or set up to be DMAd). * if the trailer or padding needs to be put in, do it now. * * NOTE: experimental results reveal the following fact: * if you DMA "X" bytes to the card, where X is not a multiple of 4, * then the card will internally buffer the last (X % 4) bytes (in * hopes of getting (4 - (X % 4)) more bytes to make a complete word). * it is imporant to make sure we don't leave any important data in * this internal buffer because it is discarded on the last (end) DTQ. * one way to do this is to DMA in (4 - (X % 4)) more bytes to flush * the darn thing out. */ if (addtail) { pad = need % sizeof(u_int32_t); if (pad) { /* * FLUSH internal data buffer. pad out with random data from the front * of the mbuf chain... */ bcode = (sc->is_adaptec) ? 0 : MIDDMA_BYTE; EN_COUNT(sc->tailflush); EN_WRAPADD(start, stop, cur, pad); EN_DTQADD(sc, pad, chan, bcode, vtophys((vaddr_t)l->t->m_data), 0, 0); need -= pad; #ifdef EN_DEBUG printf("%s: tx%d: pad/FLUSH DMA %d bytes (%d left, cur now 0x%x)\n", device_xname(sc->sc_dev), chan, pad, need, cur); #endif } /* copy data */ pad = need / sizeof(u_int32_t); /* round *down* */ if (l->aal == MID_TBD_AAL5) pad -= 2; #ifdef EN_DEBUG printf("%s: tx%d: padding %d bytes (cur now 0x%x)\n", device_xname(sc->sc_dev), chan, pad * sizeof(u_int32_t), cur); #endif while (pad--) { EN_WRITEDAT(sc, cur, 0); /* no byte order issues with zero */ EN_WRAPADD(start, stop, cur, 4); } if (l->aal == MID_TBD_AAL5) { EN_WRITE(sc, cur, l->pdu1); /* in host byte order */ EN_WRAPADD(start, stop, cur, 8); } } if (addtail || dma != cur) { /* write final descriptor */ EN_DTQADD(sc, WORD_IDX(start,cur), chan, MIDDMA_JK, 0, l->mlen, MID_DMA_END); /* dma = cur; */ /* not necessary since we are done */ } done: /* update current pointer */ sc->txslot[chan].cur = cur; #ifdef EN_DEBUG printf("%s: tx%d: DONE! cur now = 0x%x\n", device_xname(sc->sc_dev), chan, cur); #endif return; } /* * interrupt handler */ EN_INTR_TYPE en_intr(void *arg) { struct en_softc *sc = (struct en_softc *) arg; struct mbuf *m; struct atm_pseudohdr ah; struct ifnet *ifp; u_int32_t reg, kick, val, mask, chip, vci, slot, dtq, drq; int lcv, idx, need_softserv = 0; reg = EN_READ(sc, MID_INTACK); if ((reg & MID_INT_ANY) == 0) EN_INTR_RET(0); /* not us */ #ifdef EN_DEBUG { char sbuf[256]; snprintb(sbuf, sizeof(sbuf), MID_INTBITS, reg); printf("%s: interrupt=0x%s\n", device_xname(sc->sc_dev), sbuf); } #endif /* * unexpected errors that need a reset */ if ((reg & (MID_INT_IDENT|MID_INT_LERR|MID_INT_DMA_ERR|MID_INT_SUNI)) != 0) { char sbuf[256]; snprintb(sbuf, sizeof(sbuf), MID_INTBITS, reg); printf("%s: unexpected interrupt=0x%s, resetting card\n", device_xname(sc->sc_dev), sbuf); #ifdef EN_DEBUG #ifdef DDB #ifdef __FreeBSD__ Debugger("en: unexpected error"); #else Debugger(); #endif #endif /* DDB */ sc->enif.if_flags &= ~IFF_RUNNING; /* FREEZE! */ #else en_reset(sc); en_init(sc); #endif EN_INTR_RET(1); /* for us */ } /******************* * xmit interrupts * ******************/ kick = 0; /* bitmask of channels to kick */ if (reg & MID_INT_TX) { /* TX done! */ /* * check for tx complete, if detected then this means that some space * has come free on the card. we must account for it and arrange to * kick the channel to life (in case it is stalled waiting on the card). */ for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) { if (reg & MID_TXCHAN(lcv)) { kick = kick | mask; /* want to kick later */ val = EN_READ(sc, MIDX_READPTR(lcv)); /* current read pointer */ val = (val * sizeof(u_int32_t)) + sc->txslot[lcv].start; /* convert to offset */ if (val > sc->txslot[lcv].cur) sc->txslot[lcv].bfree = val - sc->txslot[lcv].cur; else sc->txslot[lcv].bfree = (val + (EN_TXSZ*1024)) - sc->txslot[lcv].cur; #ifdef EN_DEBUG printf("%s: tx%d: transmit done. %d bytes now free in buffer\n", device_xname(sc->sc_dev), lcv, sc->txslot[lcv].bfree); #endif } } } if (reg & MID_INT_DMA_TX) { /* TX DMA done! */ /* * check for TX DMA complete, if detected then this means that some DTQs * are now free. it also means some indma mbufs can be freed. * if we needed DTQs, kick all channels. */ val = EN_READ(sc, MID_DMA_RDTX); /* chip's current location */ idx = MID_DTQ_A2REG(sc->dtq_chip);/* where we last saw chip */ if (sc->need_dtqs) { kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */ sc->need_dtqs = 0; /* recalculated in "kick" loop below */ #ifdef EN_DEBUG printf("%s: cleared need DTQ condition\n", device_xname(sc->sc_dev)); #endif } while (idx != val) { sc->dtq_free++; if ((dtq = sc->dtq[idx]) != 0) { sc->dtq[idx] = 0; /* don't forget to zero it out when done */ slot = EN_DQ_SLOT(dtq); IF_DEQUEUE(&sc->txslot[slot].indma, m); if (!m) panic("enintr: dtqsync"); sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq); #ifdef EN_DEBUG printf("%s: tx%d: free %d DMA bytes, mbsize now %d\n", device_xname(sc->sc_dev), slot, EN_DQ_LEN(dtq), sc->txslot[slot].mbsize); #endif m_freem(m); } EN_WRAPADD(0, MID_DTQ_N, idx, 1); }; sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */ } /* * kick xmit channels as needed */ if (kick) { #ifdef EN_DEBUG printf("%s: tx kick mask = 0x%x\n", device_xname(sc->sc_dev), kick); #endif for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2) { if ((kick & mask) && sc->txslot[lcv].q.ifq_head) { en_txdma(sc, lcv); /* kick it! */ } } /* for each slot */ } /* if kick */ /******************* * recv interrupts * ******************/ /* * check for RX DMA complete, and pass the data "upstairs" */ if (reg & MID_INT_DMA_RX) { val = EN_READ(sc, MID_DMA_RDRX); /* chip's current location */ idx = MID_DRQ_A2REG(sc->drq_chip);/* where we last saw chip */ while (idx != val) { sc->drq_free++; if ((drq = sc->drq[idx]) != 0) { sc->drq[idx] = 0; /* don't forget to zero it out when done */ slot = EN_DQ_SLOT(drq); if (EN_DQ_LEN(drq) == 0) { /* "JK" trash DMA? */ m = NULL; } else { IF_DEQUEUE(&sc->rxslot[slot].indma, m); if (!m) panic("enintr: drqsync: %s: lost mbuf in slot %d!", device_xname(sc->sc_dev), slot); } /* do something with this mbuf */ if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) { /* drain? */ if (m) m_freem(m); vci = sc->rxslot[slot].atm_vci; if (sc->rxslot[slot].indma.ifq_head == NULL && sc->rxslot[slot].q.ifq_head == NULL && (EN_READ(sc, MID_VC(vci)) & MIDV_INSERVICE) == 0 && (sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) { sc->rxslot[slot].oth_flags = ENOTHER_FREE; /* done drain */ sc->rxslot[slot].atm_vci = RX_NONE; sc->rxvc2slot[vci] = RX_NONE; #ifdef EN_DEBUG printf("%s: rx%d: VCI %d now free\n", device_xname(sc->sc_dev), slot, vci); #endif } } else if (m != NULL) { ATM_PH_FLAGS(&ah) = sc->rxslot[slot].atm_flags; ATM_PH_VPI(&ah) = 0; ATM_PH_SETVCI(&ah, sc->rxslot[slot].atm_vci); #ifdef EN_DEBUG printf("%s: rx%d: rxvci%d: atm_input, mbuf %p, len %d, hand %p\n", device_xname(sc->sc_dev), slot, sc->rxslot[slot].atm_vci, m, EN_DQ_LEN(drq), sc->rxslot[slot].rxhand); #endif #ifdef ATM_PVCEXT /* if there's a subinterface for this vci, override ifp. */ ifp = en_vci2ifp(sc, sc->rxslot[slot].atm_vci); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* XXX */ #else ifp = &sc->enif; ifp->if_ipackets++; #endif bpf_mtap(ifp, m); atm_input(ifp, &ah, m, sc->rxslot[slot].rxhand); } } EN_WRAPADD(0, MID_DRQ_N, idx, 1); }; sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */ if (sc->need_drqs) { /* true if we had a DRQ shortage */ need_softserv = 1; sc->need_drqs = 0; #ifdef EN_DEBUG printf("%s: cleared need DRQ condition\n", device_xname(sc->sc_dev)); #endif } } /* * handle service interrupts */ if (reg & MID_INT_SERVICE) { chip = MID_SL_REG2A(EN_READ(sc, MID_SERV_WRITE)); while (sc->hwslistp != chip) { /* fetch and remove it from hardware service list */ vci = EN_READ(sc, sc->hwslistp); EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);/* advance hw ptr */ slot = sc->rxvc2slot[vci]; if (slot == RX_NONE) { #ifdef EN_DEBUG printf("%s: unexpected rx interrupt on VCI %d\n", device_xname(sc->sc_dev), vci); #endif EN_WRITE(sc, MID_VC(vci), MIDV_TRASH); /* rx off, damn it! */ continue; /* next */ } EN_WRITE(sc, MID_VC(vci), sc->rxslot[slot].mode); /* remove from hwsl */ EN_COUNT(sc->hwpull); #ifdef EN_DEBUG printf("%s: pulled VCI %d off hwslist\n", device_xname(sc->sc_dev), vci); #endif /* add it to the software service list (if needed) */ if ((sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) { EN_COUNT(sc->swadd); need_softserv = 1; sc->rxslot[slot].oth_flags |= ENOTHER_SWSL; sc->swslist[sc->swsl_tail] = slot; EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1); sc->swsl_size++; #ifdef EN_DEBUG printf("%s: added VCI %d to swslist\n", device_xname(sc->sc_dev), vci); #endif } }; } /* * now service (function too big to include here) */ if (need_softserv) en_service(sc); /* * keep our stats */ if (reg & MID_INT_DMA_OVR) { EN_COUNT(sc->dmaovr); #ifdef EN_DEBUG printf("%s: MID_INT_DMA_OVR\n", device_xname(sc->sc_dev)); #endif } reg = EN_READ(sc, MID_STAT); #ifdef EN_STAT sc->otrash += MID_OTRASH(reg); sc->vtrash += MID_VTRASH(reg); #endif EN_INTR_RET(1); /* for us */ } /* * en_service: handle a service interrupt * * Q: why do we need a software service list? * * A: if we remove a VCI from the hardware list and we find that we are * out of DRQs we must defer processing until some DRQs become free. * so we must remember to look at this RX VCI/slot later, but we can't * put it back on the hardware service list (since that isn't allowed). * so we instead save it on the software service list. it would be nice * if we could peek at the VCI on top of the hwservice list without removing * it, however this leads to a race condition: if we peek at it and * decide we are done with it new data could come in before we have a * chance to remove it from the hwslist. by the time we get it out of * the list the interrupt for the new data will be lost. oops! * */ STATIC void en_service(struct en_softc *sc) { struct mbuf *m, *tmp; u_int32_t cur, dstart, rbd, pdu, *sav, dma, bcode, count, *data, *datastop; u_int32_t start, stop, cnt, needalign; int slot, raw, aal5, vci, fill, mlen, tlen, drqneed, need, needfill, end; aal5 = 0; /* Silence gcc */ next_vci: if (sc->swsl_size == 0) { #ifdef EN_DEBUG printf("%s: en_service done\n", device_xname(sc->sc_dev)); #endif return; /* >>> exit here if swsl now empty <<< */ } /* * get slot/vci to service */ slot = sc->swslist[sc->swsl_head]; vci = sc->rxslot[slot].atm_vci; #ifdef EN_DIAG if (sc->rxvc2slot[vci] != slot) panic("en_service rx slot/vci sync"); #endif /* * determine our mode and if we've got any work to do */ raw = sc->rxslot[slot].oth_flags & ENOTHER_RAW; start= sc->rxslot[slot].start; stop= sc->rxslot[slot].stop; cur = sc->rxslot[slot].cur; #ifdef EN_DEBUG printf("%s: rx%d: service vci=%d raw=%d start/stop/cur=0x%x 0x%x 0x%x\n", device_xname(sc->sc_dev), slot, vci, raw, start, stop, cur); #endif same_vci: dstart = MIDV_DSTART(EN_READ(sc, MID_DST_RP(vci))); dstart = (dstart * sizeof(u_int32_t)) + start; /* check to see if there is any data at all */ if (dstart == cur) { defer: /* defer processing */ EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1); sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL; sc->swsl_size--; /* >>> remove from swslist <<< */ #ifdef EN_DEBUG printf("%s: rx%d: remove vci %d from swslist\n", device_xname(sc->sc_dev), slot, vci); #endif goto next_vci; } /* * figure out how many bytes we need * [mlen = # bytes to go in mbufs, fill = # bytes to dump (MIDDMA_JK)] */ if (raw) { /* raw mode (aka boodi mode) */ fill = 0; if (dstart > cur) mlen = dstart - cur; else mlen = (dstart + (EN_RXSZ*1024)) - cur; if (mlen < sc->rxslot[slot].raw_threshold) goto defer; /* too little data to deal with */ } else { /* normal mode */ aal5 = (sc->rxslot[slot].atm_flags & ATM_PH_AAL5); rbd = EN_READ(sc, cur); if (MID_RBD_ID(rbd) != MID_RBD_STDID) panic("en_service: id mismatch"); if (rbd & MID_RBD_T) { mlen = 0; /* we've got trash */ fill = MID_RBD_SIZE; EN_COUNT(sc->ttrash); #ifdef EN_DEBUG printf("RX overflow lost %d cells!\n", MID_RBD_CNT(rbd)); #endif } else if (!aal5) { mlen = MID_RBD_SIZE + MID_CHDR_SIZE + MID_ATMDATASZ; /* 1 cell (ick!) */ fill = 0; } else { struct ifnet *ifp; tlen = (MID_RBD_CNT(rbd) * MID_ATMDATASZ) + MID_RBD_SIZE; pdu = cur + tlen - MID_PDU_SIZE; if (pdu >= stop) pdu -= (EN_RXSZ*1024); pdu = EN_READ(sc, pdu); /* get PDU in correct byte order */ fill = tlen - MID_RBD_SIZE - MID_PDU_LEN(pdu); if (fill < 0 || (rbd & MID_RBD_CRCERR) != 0) { static int first = 1; if (first) { printf("%s: %s, dropping frame\n", device_xname(sc->sc_dev), (rbd & MID_RBD_CRCERR) ? "CRC error" : "invalid AAL5 PDU length"); printf("%s: got %d cells (%d bytes), AAL5 len is %d bytes (pdu=0x%x)\n", device_xname(sc->sc_dev), MID_RBD_CNT(rbd), tlen - MID_RBD_SIZE, MID_PDU_LEN(pdu), pdu); #ifndef EN_DEBUG printf("CRC error report disabled from now on!\n"); first = 0; #endif } fill = tlen; #ifdef ATM_PVCEXT ifp = en_vci2ifp(sc, vci); #else ifp = &sc->enif; #endif ifp->if_ierrors++; } mlen = tlen - fill; } } /* * now allocate mbufs for mlen bytes of data, if out of mbufs, trash all * * notes: * 1. it is possible that we've already allocated an mbuf for this pkt * but ran out of DRQs, in which case we saved the allocated mbuf on * "q". * 2. if we save an mbuf in "q" we store the "cur" (pointer) in the front * of the mbuf as an identity (that we can check later), and we also * store drqneed (so we don't have to recompute it). * 3. after this block of code, if m is still NULL then we ran out of mbufs */ m = sc->rxslot[slot].q.ifq_head; drqneed = 1; if (m) { sav = mtod(m, u_int32_t *); if (sav[0] != cur) { #ifdef EN_DEBUG printf("%s: rx%d: q'ed mbuf %p not ours\n", device_xname(sc->sc_dev), slot, m); #endif m = NULL; /* wasn't ours */ EN_COUNT(sc->rxqnotus); } else { EN_COUNT(sc->rxqus); IF_DEQUEUE(&sc->rxslot[slot].q, m); drqneed = sav[1]; #ifdef EN_DEBUG printf("%s: rx%d: recovered q'ed mbuf %p (drqneed=%d)\n", device_xname(sc->sc_dev), slot, m, drqneed); #endif } } if (mlen != 0 && m == NULL) { m = en_mget(sc, mlen, &drqneed); /* allocate! */ if (m == NULL) { fill += mlen; mlen = 0; EN_COUNT(sc->rxmbufout); #ifdef EN_DEBUG printf("%s: rx%d: out of mbufs\n", device_xname(sc->sc_dev), slot); #endif } #ifdef EN_DEBUG printf("%s: rx%d: allocate mbuf %p, mlen=%d, drqneed=%d\n", device_xname(sc->sc_dev), slot, m, mlen, drqneed); #endif } #ifdef EN_DEBUG printf("%s: rx%d: VCI %d, mbuf_chain %p, mlen %d, fill %d\n", device_xname(sc->sc_dev), slot, vci, m, mlen, fill); #endif /* * now check to see if we've got the DRQs needed. if we are out of * DRQs we must quit (saving our mbuf, if we've got one). */ needfill = (fill) ? 1 : 0; if (drqneed + needfill > sc->drq_free) { sc->need_drqs = 1; /* flag condition */ if (m == NULL) { EN_COUNT(sc->rxoutboth); #ifdef EN_DEBUG printf("%s: rx%d: out of DRQs *and* mbufs!\n", device_xname(sc->sc_dev), slot); #endif return; /* >>> exit here if out of both mbufs and DRQs <<< */ } sav = mtod(m, u_int32_t *); sav[0] = cur; sav[1] = drqneed; IF_ENQUEUE(&sc->rxslot[slot].q, m); EN_COUNT(sc->rxdrqout); #ifdef EN_DEBUG printf("%s: rx%d: out of DRQs\n", device_xname(sc->sc_dev), slot); #endif return; /* >>> exit here if out of DRQs <<< */ } /* * at this point all resources have been allocated and we are commited * to servicing this slot. * * dma = last location we told chip about * cur = current location * mlen = space in the mbuf we want * need = bytes to xfer in (decrs to zero) * fill = how much fill we need * tlen = how much data to transfer to this mbuf * cnt/bcode/count = * * 'needfill' not used after this point */ dma = cur; /* dma = last location we told chip about */ need = roundup(mlen, sizeof(u_int32_t)); fill = fill - (need - mlen); /* note: may invalidate 'needfill' */ for (tmp = m ; tmp != NULL && need > 0 ; tmp = tmp->m_next) { tlen = roundup(tmp->m_len, sizeof(u_int32_t)); /* m_len set by en_mget */ data = mtod(tmp, u_int32_t *); #ifdef EN_DEBUG printf("%s: rx%d: load mbuf %p, m_len=%d, m_data=%p, tlen=%d\n", device_xname(sc->sc_dev), slot, tmp, tmp->m_len, tmp->m_data, tlen); #endif /* copy data */ if (EN_NORXDMA || !en_dma || tlen < EN_MINDMA) { datastop = (u_int32_t *)((u_char *) data + tlen); /* copy loop: preserve byte order!!! use READDAT */ while (data != datastop) { *data = EN_READDAT(sc, cur); data++; EN_WRAPADD(start, stop, cur, 4); } need -= tlen; #ifdef EN_DEBUG printf("%s: rx%d: vci%d: copied %d bytes (%d left)\n", device_xname(sc->sc_dev), slot, vci, tlen, need); #endif continue; } /* DMA data (check to see if we need to sync DRQ first) */ if (dma != cur) { EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, 0, 0, 0); #ifdef EN_DEBUG printf("%s: rx%d: vci%d: drq_sync: advance pointer to %d\n", device_xname(sc->sc_dev), slot, vci, cur); #endif } #if !defined(MIDWAY_ENIONLY) /* * the adaptec DMA engine is smart and handles everything for us. */ if (sc->is_adaptec) { need -= tlen; EN_WRAPADD(start, stop, cur, tlen); #ifdef EN_DEBUG printf("%s: rx%d: vci%d: adp_dma %d bytes (%d left)\n", device_xname(sc->sc_dev), slot, vci, tlen, need); #endif end = (need == 0 && !fill) ? MID_DMA_END : 0; EN_DRQADD(sc, tlen, vci, 0, vtophys((vaddr_t)data), mlen, slot, end); if (end) goto done; dma = cur; /* update DMA pointer */ continue; } #endif /* !MIDWAY_ENIONLY */ #if !defined(MIDWAY_ADPONLY) /* * the ENI DMA engine is not so smart and need more help from us */ /* do we need to do a DMA op to align? */ if (sc->alburst && (needalign = (((unsigned long) data) & sc->bestburstmask)) != 0) { cnt = sc->bestburstlen - needalign; if (cnt > tlen) { cnt = tlen; count = cnt / sizeof(u_int32_t); bcode = MIDDMA_WORD; } else { count = cnt / sizeof(u_int32_t); bcode = en_dmaplan[count].bcode; count = cnt >> en_dmaplan[count].divshift; } need -= cnt; EN_WRAPADD(start, stop, cur, cnt); #ifdef EN_DEBUG printf("%s: rx%d: vci%d: al_dma %d bytes (%d left)\n", device_xname(sc->sc_dev), slot, vci, cnt, need); #endif tlen -= cnt; end = (need == 0 && !fill) ? MID_DMA_END : 0; EN_DRQADD(sc, count, vci, bcode, vtophys((vaddr_t)data), mlen, slot, end); if (end) goto done; data = (u_int32_t *)((u_char *) data + cnt); } /* do we need a max-sized burst? */ if (tlen >= sc->bestburstlen) { count = tlen >> sc->bestburstshift; cnt = count << sc->bestburstshift; bcode = sc->bestburstcode; need -= cnt; EN_WRAPADD(start, stop, cur, cnt); #ifdef EN_DEBUG printf("%s: rx%d: vci%d: best_dma %d bytes (%d left)\n", device_xname(sc->sc_dev), slot, vci, cnt, need); #endif tlen -= cnt; end = (need == 0 && !fill) ? MID_DMA_END : 0; EN_DRQADD(sc, count, vci, bcode, vtophys((vaddr_t)data), mlen, slot, end); if (end) goto done; data = (u_int32_t *)((u_char *) data + cnt); } /* do we need to do a cleanup burst? */ if (tlen) { count = tlen / sizeof(u_int32_t); bcode = en_dmaplan[count].bcode; count = tlen >> en_dmaplan[count].divshift; need -= tlen; EN_WRAPADD(start, stop, cur, tlen); #ifdef EN_DEBUG printf("%s: rx%d: vci%d: cleanup_dma %d bytes (%d left)\n", device_xname(sc->sc_dev), slot, vci, tlen, need); #endif end = (need == 0 && !fill) ? MID_DMA_END : 0; EN_DRQADD(sc, count, vci, bcode, vtophys((vaddr_t)data), mlen, slot, end); if (end) goto done; } dma = cur; /* update DMA pointer */ #endif /* !MIDWAY_ADPONLY */ } /* skip the end */ if (fill || dma != cur) { #ifdef EN_DEBUG if (fill) printf("%s: rx%d: vci%d: skipping %d bytes of fill\n", device_xname(sc->sc_dev), slot, vci, fill); else printf("%s: rx%d: vci%d: syncing chip from 0x%x to 0x%x [cur]\n", device_xname(sc->sc_dev), slot, vci, dma, cur); #endif EN_WRAPADD(start, stop, cur, fill); EN_DRQADD(sc, WORD_IDX(start,cur), vci, MIDDMA_JK, 0, mlen, slot, MID_DMA_END); /* dma = cur; */ /* not necessary since we are done */ } /* * done, remove stuff we don't want to pass up: * raw mode (boodi mode): pass everything up for later processing * aal5: remove RBD * aal0: remove RBD + cell header */ done: if (m) { if (!raw) { cnt = MID_RBD_SIZE; if (!aal5) cnt += MID_CHDR_SIZE; m->m_len -= cnt; /* chop! */ m->m_pkthdr.len -= cnt; m->m_data += cnt; } IF_ENQUEUE(&sc->rxslot[slot].indma, m); } sc->rxslot[slot].cur = cur; /* update master copy of 'cur' */ #ifdef EN_DEBUG printf("%s: rx%d: vci%d: DONE! cur now =0x%x\n", device_xname(sc->sc_dev), slot, vci, cur); #endif goto same_vci; /* get next packet in this slot */ } #ifdef EN_DDBHOOK /* * functions we can call from ddb */ /* * en_dump: dump the state */ #define END_SWSL 0x00000040 /* swsl state */ #define END_DRQ 0x00000020 /* drq state */ #define END_DTQ 0x00000010 /* dtq state */ #define END_RX 0x00000008 /* rx state */ #define END_TX 0x00000004 /* tx state */ #define END_MREGS 0x00000002 /* registers */ #define END_STATS 0x00000001 /* dump stats */ #define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS" int en_dump(int unit, int level) { struct en_softc *sc; int lcv, cnt, slot; u_int32_t ptr, reg; for (lcv = 0 ; lcv < en_cd.cd_ndevs ; lcv++) { char sbuf[256]; sc = device_lookup_private(&en_cd, lcv); if (sc == NULL) continue; if (unit != -1 && unit != lcv) continue; snprintb(sbuf, sizeof(sbuf), END_BITS, level); printf("dumping device %s at level 0x%s\n", device_xname(sc->sc_dev), sbuf); if (sc->dtq_us == 0) { printf("\n"); continue; } if (level & END_STATS) { printf(" en_stats:\n"); printf(" %d mfix (%d failed); %d/%d head/tail byte DMAs, %d flushes\n", sc->mfix, sc->mfixfail, sc->headbyte, sc->tailbyte, sc->tailflush); printf(" %d rx DMA overflow interrupts\n", sc->dmaovr); printf(" %d times we ran out of TX space and stalled\n", sc->txoutspace); printf(" %d times we ran out of DTQs\n", sc->txdtqout); printf(" %d times we launched a packet\n", sc->launch); printf(" %d times we launched without on-board header\n", sc->lheader); printf(" %d times we launched without on-board tail\n", sc->ltail); printf(" %d times we pulled the hw service list\n", sc->hwpull); printf(" %d times we pushed a vci on the sw service list\n", sc->swadd); printf(" %d times RX pulled an mbuf from Q that wasn't ours\n", sc->rxqnotus); printf(" %d times RX pulled a good mbuf from Q\n", sc->rxqus); printf(" %d times we ran out of mbufs *and* DRQs\n", sc->rxoutboth); printf(" %d times we ran out of DRQs\n", sc->rxdrqout); printf(" %d transmit packets dropped due to mbsize\n", sc->txmbovr); printf(" %d cells trashed due to turned off rxvc\n", sc->vtrash); printf(" %d cells trashed due to totally full buffer\n", sc->otrash); printf(" %d cells trashed due almost full buffer\n", sc->ttrash); printf(" %d rx mbuf allocation failures\n", sc->rxmbufout); #ifdef NATM printf(" %d drops at natmintrq\n", natmintrq.ifq_drops); #ifdef NATM_STAT printf(" natmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n", natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes); #endif #endif } if (level & END_MREGS) { char ybuf[256]; printf("mregs:\n"); printf("resid = 0x%x\n", EN_READ(sc, MID_RESID)); snprintb(ybuf, sizeof(ybuf), MID_INTBITS, EN_READ(sc, MID_INTSTAT)); printf("interrupt status = 0x%s\n", ybuf); snprintb(ybuf, sizeof(ybuf), MID_INTBITS, EN_READ(sc, MID_INTENA)); printf("interrupt enable = 0x%s\n", ybuf); snprintb(ybuf, sizeof(ybuf), MID_MCSRBITS, EN_READ(sc, MID_MAST_CSR)); printf("mcsr = 0x%s\n", ybuf); printf("serv_write = [chip=%d] [us=%d]\n", EN_READ(sc, MID_SERV_WRITE), MID_SL_A2REG(sc->hwslistp)); printf("DMA addr = 0x%x\n", EN_READ(sc, MID_DMA_ADDR)); printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n", MID_DRQ_REG2A(EN_READ(sc, MID_DMA_RDRX)), MID_DRQ_REG2A(EN_READ(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us); printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n", MID_DTQ_REG2A(EN_READ(sc, MID_DMA_RDTX)), MID_DTQ_REG2A(EN_READ(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us); printf(" unusal txspeeds: "); for (cnt = 0 ; cnt < MID_N_VC ; cnt++) if (sc->txspeed[cnt]) printf(" vci%d=0x%x", cnt, sc->txspeed[cnt]); printf("\n"); printf(" rxvc slot mappings: "); for (cnt = 0 ; cnt < MID_N_VC ; cnt++) if (sc->rxvc2slot[cnt] != RX_NONE) printf(" %d->%d", cnt, sc->rxvc2slot[cnt]); printf("\n"); } if (level & END_TX) { printf("tx:\n"); for (slot = 0 ; slot < EN_NTX; slot++) { printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot, sc->txslot[slot].start, sc->txslot[slot].stop, sc->txslot[slot].cur, (sc->txslot[slot].cur - sc->txslot[slot].start)/4); printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize, sc->txslot[slot].bfree); printf("txhw: base_address=0x%lx, size=%d, read=%d, descstart=%d\n", (u_long)MIDX_BASE(EN_READ(sc, MIDX_PLACE(slot))), MIDX_SZ(EN_READ(sc, MIDX_PLACE(slot))), EN_READ(sc, MIDX_READPTR(slot)), EN_READ(sc, MIDX_DESCSTART(slot))); } } if (level & END_RX) { printf(" recv slots:\n"); for (slot = 0 ; slot < sc->en_nrx; slot++) { printf("rx%d: vci=%d: start/stop/cur=0x%x/0x%x/0x%x ", slot, sc->rxslot[slot].atm_vci, sc->rxslot[slot].start, sc->rxslot[slot].stop, sc->rxslot[slot].cur); printf("mode=0x%x, atm_flags=0x%x, oth_flags=0x%x\n", sc->rxslot[slot].mode, sc->rxslot[slot].atm_flags, sc->rxslot[slot].oth_flags); printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n", EN_READ(sc, MID_VC(sc->rxslot[slot].atm_vci)), EN_READ(sc, MID_DST_RP(sc->rxslot[slot].atm_vci)), EN_READ(sc, MID_WP_ST_CNT(sc->rxslot[slot].atm_vci))); } } if (level & END_DTQ) { printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n", sc->need_dtqs, sc->dtq_free); ptr = sc->dtq_chip; while (ptr != sc->dtq_us) { reg = EN_READ(sc, ptr); printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n", sc->dtq[MID_DTQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_TXCHAN(reg), (reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4)); EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8); } } if (level & END_DRQ) { printf(" drq [need_drqs=%d,drq_free=%d]:\n", sc->need_drqs, sc->drq_free); ptr = sc->drq_chip; while (ptr != sc->drq_us) { reg = EN_READ(sc, ptr); printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n", sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg), MID_DMA_RXVCI(reg), (reg & MID_DMA_END) != 0, MID_DMA_TYPE(reg), EN_READ(sc, ptr+4)); EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8); } } if (level & END_SWSL) { printf(" swslist [size=%d]: ", sc->swsl_size); for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ; cnt = (cnt + 1) % MID_SL_N) printf("0x%x ", sc->swslist[cnt]); printf("\n"); } } return(0); } /* * en_dumpmem: dump the memory */ int en_dumpmem(int unit, int addr, int len) { struct en_softc *sc; u_int32_t reg; sc = device_lookup_private(&en_cd, unit); if (sc == NULL) { printf("invalid unit number: %d\n", unit); return(0); } addr = addr & ~3; if (addr < MID_RAMOFF || addr + len*4 > MID_MAXOFF || len <= 0) { printf("invalid addr/len number: %d, %d\n", addr, len); return(0); } printf("dumping %d words starting at offset 0x%x\n", len, addr); while (len--) { reg = EN_READ(sc, addr); printf("mem[0x%x] = 0x%x\n", addr, reg); addr += 4; } return(0); } #endif #ifdef ATM_PVCEXT /* * ATM PVC extension: shaper control and pvc subinterfaces */ /* * the list of the interfaces sharing the physical device. * in order to avoid starvation, the interfaces are scheduled in * a round-robin fashion when en_start is called from tx complete * interrupts. */ static void rrp_add(struct en_softc *sc, struct ifnet *ifp) { struct rrp *head, *p, *new; head = sc->txrrp; if ((p = head) != NULL) { while (1) { if (p->ifp == ifp) { /* an entry for this ifp already exits */ p->nref++; return; } if (p->next == head) break; p = p->next; } } /* create a new entry */ new = malloc(sizeof(struct rrp), M_DEVBUF, M_WAITOK); if (new == NULL) { printf("en_rrp_add: malloc failed!\n"); return; } new->ifp = ifp; new->nref = 1; if (p == NULL) { /* this is the only one in the list */ new->next = new; sc->txrrp = new; } else { /* add the new entry at the tail of the list */ new->next = p->next; p->next = new; } } #if 0 /* not used */ static void rrp_delete(struct en_softc *sc, struct ifnet *ifp) { struct rrp *head, *p, *prev; head = sc->txrrp; prev = head; if (prev == NULL) { printf("rrp_delete: no list!\n"); return; } p = prev->next; while (1) { if (p->ifp == ifp) { p->nref--; if (p->nref > 0) return; /* remove this entry */ if (p == prev) { /* this is the only entry in the list */ sc->txrrp = NULL; } else { prev->next = p->next; if (head == p) sc->txrrp = p->next; } free(p, M_DEVBUF); } prev = p; p = prev->next; if (prev == head) { printf("rrp_delete: no matching entry!\n"); return; } } } #endif static struct ifnet * en_vci2ifp(struct en_softc *sc, int vci) { struct pvcsif *pvcsif; LIST_FOREACH(pvcsif, &sc->sif_list, sif_links) { if (vci == pvcsif->sif_vci) return (&pvcsif->sif_if); } return (&sc->enif); } /* * create and attach per pvc subinterface * (currently detach is not supported) */ static struct ifnet * en_pvcattach(struct ifnet *ifp) { struct en_softc *sc = (struct en_softc *) ifp->if_softc; struct ifnet *pvc_ifp; int s; if ((pvc_ifp = pvcsif_alloc()) == NULL) return (NULL); pvc_ifp->if_softc = sc; pvc_ifp->if_ioctl = en_ioctl; pvc_ifp->if_start = en_start; pvc_ifp->if_flags = (IFF_POINTOPOINT|IFF_MULTICAST) | (ifp->if_flags & (IFF_RUNNING|IFF_SIMPLEX|IFF_NOTRAILERS)); s = splnet(); LIST_INSERT_HEAD(&sc->sif_list, (struct pvcsif *)pvc_ifp, sif_links); if_attach(pvc_ifp); atm_ifattach(pvc_ifp); #ifdef ATM_PVCEXT rrp_add(sc, pvc_ifp); #endif splx(s); return (pvc_ifp); } /* txspeed conversion derived from linux drivers/atm/eni.c by Werner Almesberger, EPFL LRC */ static const int pre_div[] = { 4,16,128,2048 }; static int en_pcr2txspeed(int pcr) { int pre, res, div; if (pcr == 0 || pcr > 347222) pre = res = 0; /* max rate */ else { for (pre = 0; pre < 3; pre++) if (25000000/pre_div[pre]/64 <= pcr) break; div = pre_div[pre]*(pcr); #if 1 /* * the shaper value should be rounded down, * instead of rounded up. * (which means "res" should be rounded up.) */ res = (25000000 + div -1)/div - 1; #else res = 25000000/div-1; #endif if (res < 0) res = 0; if (res > 63) res = 63; } return ((pre << 6) + res); } static int en_txspeed2pcr(int txspeed) { int pre, res, pcr; pre = (txspeed >> 6) & 0x3; res = txspeed & 0x3f; pcr = 25000000 / pre_div[pre] / (res+1); return (pcr); } /* * en_txctl selects a hardware transmit channel and sets the shaper value. * en_txctl should be called after enabling the vc by en_rxctl * since it assumes a transmit channel is already assigned by en_rxctl * to the vc. */ static int en_txctl(struct en_softc *sc, int vci, int joint_vci, int pcr) { int txspeed, txchan, s; if (pcr) txspeed = en_pcr2txspeed(pcr); else txspeed = 0; s = splnet(); txchan = sc->txvc2slot[vci]; sc->txslot[txchan].nref--; /* select a slot */ if (joint_vci != 0) /* use the same channel */ txchan = sc->txvc2slot[joint_vci]; else if (pcr == 0) txchan = 0; else { for (txchan = 1; txchan < EN_NTX; txchan++) { if (sc->txslot[txchan].nref == 0) break; } } if (txchan == EN_NTX) { #if 1 /* no free slot! */ splx(s); return (ENOSPC); #else /* * to allow multiple vc's to share a slot, * use a slot with the smallest reference count */ int slot = 1; txchan = 1; for (slot = 2; slot < EN_NTX; slot++) if (sc->txslot[slot].nref < sc->txslot[txchan].nref) txchan = slot; #endif } sc->txvc2slot[vci] = txchan; sc->txslot[txchan].nref++; /* set the shaper parameter */ sc->txspeed[vci] = (u_int8_t)txspeed; splx(s); #ifdef EN_DEBUG printf("VCI:%d PCR set to %d, tx channel %d\n", vci, pcr, txchan); if (joint_vci != 0) printf(" slot shared with VCI:%d\n", joint_vci); #endif return (0); } static int en_pvctx(struct en_softc *sc, struct pvctxreq *pvcreq) { struct ifnet *ifp; struct atm_pseudoioctl api; struct atm_pseudohdr *pvc_aph, *pvc_joint; int vci, joint_vci, pcr; int error = 0; /* check vpi:vci values */ pvc_aph = &pvcreq->pvc_aph; pvc_joint = &pvcreq->pvc_joint; vci = ATM_PH_VCI(pvc_aph); joint_vci = ATM_PH_VCI(pvc_joint); pcr = pvcreq->pvc_pcr; if (ATM_PH_VPI(pvc_aph) != 0 || vci >= MID_N_VC || ATM_PH_VPI(pvc_joint) != 0 || joint_vci >= MID_N_VC) return (EADDRNOTAVAIL); if ((ifp = ifunit(pvcreq->pvc_ifname)) == NULL) return (ENXIO); if (pcr < 0) { /* negative pcr means disable the vc. */ if (sc->rxvc2slot[vci] == RX_NONE) /* already disabled */ return 0; ATM_PH_FLAGS(&api.aph) = 0; ATM_PH_VPI(&api.aph) = 0; ATM_PH_SETVCI(&api.aph, vci); api.rxhand = NULL; error = en_rxctl(sc, &api, 0); if (error == 0 && &sc->enif != ifp) { /* clear vc info of this subinterface */ struct pvcsif *pvcsif = (struct pvcsif *)ifp; ATM_PH_SETVCI(&api.aph, 0); pvcsif->sif_aph = api.aph; pvcsif->sif_vci = 0; } return (error); } if (&sc->enif == ifp) { /* called for an en interface */ if (sc->rxvc2slot[vci] == RX_NONE) { /* vc is not active */ #ifdef __NetBSD__ printf("%s: en_pvctx: rx not active! vci=%d\n", ifp->if_xname, vci); #else printf("%s%d: en_pvctx: rx not active! vci=%d\n", ifp->if_name, ifp->if_unit, vci); #endif return (EINVAL); } } else { /* called for a pvc subinterface */ struct pvcsif *pvcsif = (struct pvcsif *)ifp; #ifdef __NetBSD__ strlcpy(pvcreq->pvc_ifname, sc->enif.if_xname, sizeof(pvcreq->pvc_ifname)); #else snprintf(pvcreq->pvc_ifname, sizeof(pvcreq->pvc_ifname), "%s%d", sc->enif.if_name, sc->enif.if_unit); #endif ATM_PH_FLAGS(&api.aph) = (ATM_PH_FLAGS(pvc_aph) & (ATM_PH_AAL5|ATM_PH_LLCSNAP)); ATM_PH_VPI(&api.aph) = 0; ATM_PH_SETVCI(&api.aph, vci); api.rxhand = NULL; pvcsif->sif_aph = api.aph; pvcsif->sif_vci = ATM_PH_VCI(&api.aph); if (sc->rxvc2slot[vci] == RX_NONE) { /* vc is not active, enable rx */ error = en_rxctl(sc, &api, 1); if (error) return error; } else { /* vc is already active, update aph in softc */ sc->rxslot[sc->rxvc2slot[vci]].atm_flags = ATM_PH_FLAGS(&api.aph); } } error = en_txctl(sc, vci, joint_vci, pcr); if (error == 0) { if (sc->txspeed[vci] != 0) pvcreq->pvc_pcr = en_txspeed2pcr(sc->txspeed[vci]); else pvcreq->pvc_pcr = 0; } return error; } static int en_pvctxget(struct en_softc *sc, struct pvctxreq *pvcreq) { struct pvcsif *pvcsif; struct ifnet *ifp; int vci, slot; if ((ifp = ifunit(pvcreq->pvc_ifname)) == NULL) return (ENXIO); if (ifp == &sc->enif) { /* physical interface: assume vci is specified */ struct atm_pseudohdr *pvc_aph; pvc_aph = &pvcreq->pvc_aph; vci = ATM_PH_VCI(pvc_aph); if ((slot = sc->rxvc2slot[vci]) == RX_NONE) ATM_PH_FLAGS(pvc_aph) = 0; else ATM_PH_FLAGS(pvc_aph) = sc->rxslot[slot].atm_flags; ATM_PH_VPI(pvc_aph) = 0; } else { /* pvc subinterface */ #ifdef __NetBSD__ strlcpy(pvcreq->pvc_ifname, sc->enif.if_xname, sizeof(pvcreq->pvc_ifname)); #else snprintf(pvcreq->pvc_ifname, sizeof(pvcreq->pvc_ifname), "%s%d", sc->enif.if_name, sc->enif.if_unit); #endif pvcsif = (struct pvcsif *)ifp; pvcreq->pvc_aph = pvcsif->sif_aph; vci = pvcsif->sif_vci; } if ((slot = sc->rxvc2slot[vci]) == RX_NONE) { /* vc is not active */ ATM_PH_FLAGS(&pvcreq->pvc_aph) = 0; pvcreq->pvc_pcr = -1; } else if (sc->txspeed[vci]) pvcreq->pvc_pcr = en_txspeed2pcr(sc->txspeed[vci]); else pvcreq->pvc_pcr = 0; return (0); } #endif /* ATM_PVCEXT */ #endif /* NEN > 0 || !defined(__FreeBSD__) */