/* $NetBSD: rtl8169.c,v 1.24 2006/05/26 12:59:24 blymn Exp $ */ /* * Copyright (c) 1997, 1998-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */ /* * RealTek 8139C+/8169/8169S/8110S PCI NIC driver * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * This driver is designed to support RealTek's next generation of * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S * and the RTL8110S. * * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible * with the older 8139 family, however it also supports a special * C+ mode of operation that provides several new performance enhancing * features. These include: * * o Descriptor based DMA mechanism. Each descriptor represents * a single packet fragment. Data buffers may be aligned on * any byte boundary. * * o 64-bit DMA * * o TCP/IP checksum offload for both RX and TX * * o High and normal priority transmit DMA rings * * o VLAN tag insertion and extraction * * o TCP large send (segmentation offload) * * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ * programming API is fairly straightforward. The RX filtering, EEPROM * access and PHY access is the same as it is on the older 8139 series * chips. * * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the * same programming API and feature set as the 8139C+ with the following * differences and additions: * * o 1000Mbps mode * * o Jumbo frames * * o GMII and TBI ports/registers for interfacing with copper * or fiber PHYs * * o RX and TX DMA rings can have up to 1024 descriptors * (the 8139C+ allows a maximum of 64) * * o Slight differences in register layout from the 8139C+ * * The TX start and timer interrupt registers are at different locations * on the 8169 than they are on the 8139C+. Also, the status word in the * RX descriptor has a slightly different bit layout. The 8169 does not * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' * copper gigE PHY. * * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs * (the 'S' stands for 'single-chip'). These devices have the same * programming API as the older 8169, but also have some vendor-specific * registers for the on-board PHY. The 8110S is a LAN-on-motherboard * part designed to be pin-compatible with the RealTek 8100 10/100 chip. * * This driver takes advantage of the RX and TX checksum offload and * VLAN tag insertion/extraction features. It also implements TX * interrupt moderation using the timer interrupt registers, which * significantly reduces TX interrupt load. There is also support * for jumbo frames, however the 8169/8169S/8110S can not transmit * jumbo frames larger than 7.5K, so the max MTU possible with this * driver is 7500 bytes. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX for IP_MAXPACKET */ #include /* XXX for IP_MAXPACKET */ #include /* XXX for IP_MAXPACKET */ #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include static int re_encap(struct rtk_softc *, struct mbuf *, int *); static int re_newbuf(struct rtk_softc *, int, struct mbuf *); static int re_rx_list_init(struct rtk_softc *); static int re_tx_list_init(struct rtk_softc *); static void re_rxeof(struct rtk_softc *); static void re_txeof(struct rtk_softc *); static void re_tick(void *); static void re_start(struct ifnet *); static int re_ioctl(struct ifnet *, u_long, caddr_t); static int re_init(struct ifnet *); static void re_stop(struct ifnet *, int); static void re_watchdog(struct ifnet *); static void re_shutdown(void *); static int re_enable(struct rtk_softc *); static void re_disable(struct rtk_softc *); static void re_power(int, void *); static int re_ifmedia_upd(struct ifnet *); static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int re_gmii_readreg(struct device *, int, int); static void re_gmii_writereg(struct device *, int, int, int); static int re_miibus_readreg(struct device *, int, int); static void re_miibus_writereg(struct device *, int, int, int); static void re_miibus_statchg(struct device *); static void re_reset(struct rtk_softc *); static int re_gmii_readreg(struct device *self, int phy, int reg) { struct rtk_softc *sc = (void *)self; u_int32_t rval; int i; if (phy != 7) return 0; /* Let the rgephy driver read the GMEDIASTAT register */ if (reg == RTK_GMEDIASTAT) { rval = CSR_READ_1(sc, RTK_GMEDIASTAT); return rval; } CSR_WRITE_4(sc, RTK_PHYAR, reg << 16); DELAY(1000); for (i = 0; i < RTK_TIMEOUT; i++) { rval = CSR_READ_4(sc, RTK_PHYAR); if (rval & RTK_PHYAR_BUSY) break; DELAY(100); } if (i == RTK_TIMEOUT) { aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname); return 0; } return rval & RTK_PHYAR_PHYDATA; } static void re_gmii_writereg(struct device *dev, int phy, int reg, int data) { struct rtk_softc *sc = (void *)dev; u_int32_t rval; int i; CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) | (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY); DELAY(1000); for (i = 0; i < RTK_TIMEOUT; i++) { rval = CSR_READ_4(sc, RTK_PHYAR); if (!(rval & RTK_PHYAR_BUSY)) break; DELAY(100); } if (i == RTK_TIMEOUT) { aprint_error("%s: PHY write reg %x <- %x failed\n", sc->sc_dev.dv_xname, reg, data); return; } return; } static int re_miibus_readreg(struct device *dev, int phy, int reg) { struct rtk_softc *sc = (void *)dev; u_int16_t rval = 0; u_int16_t re8139_reg = 0; int s; s = splnet(); if (sc->rtk_type == RTK_8169) { rval = re_gmii_readreg(dev, phy, reg); splx(s); return rval; } /* Pretend the internal PHY is only at address 0 */ if (phy) { splx(s); return 0; } switch (reg) { case MII_BMCR: re8139_reg = RTK_BMCR; break; case MII_BMSR: re8139_reg = RTK_BMSR; break; case MII_ANAR: re8139_reg = RTK_ANAR; break; case MII_ANER: re8139_reg = RTK_ANER; break; case MII_ANLPAR: re8139_reg = RTK_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: splx(s); return 0; /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RTK_MEDIASTAT: rval = CSR_READ_1(sc, RTK_MEDIASTAT); splx(s); return rval; default: aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname); splx(s); return 0; } rval = CSR_READ_2(sc, re8139_reg); splx(s); return rval; } static void re_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct rtk_softc *sc = (void *)dev; u_int16_t re8139_reg = 0; int s; s = splnet(); if (sc->rtk_type == RTK_8169) { re_gmii_writereg(dev, phy, reg, data); splx(s); return; } /* Pretend the internal PHY is only at address 0 */ if (phy) { splx(s); return; } switch (reg) { case MII_BMCR: re8139_reg = RTK_BMCR; break; case MII_BMSR: re8139_reg = RTK_BMSR; break; case MII_ANAR: re8139_reg = RTK_ANAR; break; case MII_ANER: re8139_reg = RTK_ANER; break; case MII_ANLPAR: re8139_reg = RTK_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: splx(s); return; break; default: aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname); splx(s); return; } CSR_WRITE_2(sc, re8139_reg, data); splx(s); return; } static void re_miibus_statchg(struct device *dev) { return; } static void re_reset(struct rtk_softc *sc) { register int i; CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET); for (i = 0; i < RTK_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET)) break; } if (i == RTK_TIMEOUT) aprint_error("%s: reset never completed!\n", sc->sc_dev.dv_xname); /* * NB: Realtek-supplied Linux driver does this only for * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2. */ if (1) /* XXX check softc flag for 8169s version */ CSR_WRITE_1(sc, 0x82, 1); return; } /* * The following routine is designed to test for a defect on some * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# * lines connected to the bus, however for a 32-bit only card, they * should be pulled high. The result of this defect is that the * NIC will not work right if you plug it into a 64-bit slot: DMA * operations will be done with 64-bit transfers, which will fail * because the 64-bit data lines aren't connected. * * There's no way to work around this (short of talking a soldering * iron to the board), however we can detect it. The method we use * here is to put the NIC into digital loopback mode, set the receiver * to promiscuous mode, and then try to send a frame. We then compare * the frame data we sent to what was received. If the data matches, * then the NIC is working correctly, otherwise we know the user has * a defective NIC which has been mistakenly plugged into a 64-bit PCI * slot. In the latter case, there's no way the NIC can work correctly, * so we print out a message on the console and abort the device attach. */ int re_diag(struct rtk_softc *sc) { struct ifnet *ifp = &sc->ethercom.ec_if; struct mbuf *m0; struct ether_header *eh; struct rtk_desc *cur_rx; bus_dmamap_t dmamap; u_int16_t status; u_int32_t rxstat; int total_len, i, s, error = 0; u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; /* Allocate a single mbuf */ MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) return ENOBUFS; /* * Initialize the NIC in test mode. This sets the chip up * so that it can send and receive frames, but performs the * following special functions: * - Puts receiver in promiscuous mode * - Enables digital loopback mode * - Leaves interrupts turned off */ ifp->if_flags |= IFF_PROMISC; sc->rtk_testmode = 1; re_init(ifp); re_stop(ifp, 0); DELAY(100000); re_init(ifp); /* Put some data in the mbuf */ eh = mtod(m0, struct ether_header *); bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); eh->ether_type = htons(ETHERTYPE_IP); m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; /* * Queue the packet, start transmission. */ CSR_WRITE_2(sc, RTK_ISR, 0xFFFF); s = splnet(); IF_ENQUEUE(&ifp->if_snd, m0); re_start(ifp); splx(s); m0 = NULL; /* Wait for it to propagate through the chip */ DELAY(100000); for (i = 0; i < RTK_TIMEOUT; i++) { status = CSR_READ_2(sc, RTK_ISR); if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) == (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) break; DELAY(10); } if (i == RTK_TIMEOUT) { aprint_error("%s: diagnostic failed, failed to receive packet " "in loopback mode\n", sc->sc_dev.dv_xname); error = EIO; goto done; } /* * The packet should have been dumped into the first * entry in the RX DMA ring. Grab it from there. */ dmamap = sc->rtk_ldata.rtk_rx_list_map; bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); dmamap = sc->rtk_ldata.rtk_rx_dmamap[0]; bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[0]); m0 = sc->rtk_ldata.rtk_rx_mbuf[0]; sc->rtk_ldata.rtk_rx_mbuf[0] = NULL; eh = mtod(m0, struct ether_header *); cur_rx = &sc->rtk_ldata.rtk_rx_list[0]; total_len = RTK_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->rtk_cmdstat); if (total_len != ETHER_MIN_LEN) { aprint_error("%s: diagnostic failed, received short packet\n", sc->sc_dev.dv_xname); error = EIO; goto done; } /* Test that the received packet data matches what we sent. */ if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || ntohs(eh->ether_type) != ETHERTYPE_IP) { aprint_error("%s: WARNING, DMA FAILURE!\n", sc->sc_dev.dv_xname); aprint_error("%s: expected TX data: %s", sc->sc_dev.dv_xname, ether_sprintf(dst)); aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP); aprint_error("%s: received RX data: %s", sc->sc_dev.dv_xname, ether_sprintf(eh->ether_dhost)); aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost), ntohs(eh->ether_type)); aprint_error("%s: You may have a defective 32-bit NIC plugged " "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname); aprint_error("%s: Please re-install the NIC in a 32-bit slot " "for proper operation.\n", sc->sc_dev.dv_xname); aprint_error("%s: Read the re(4) man page for more details.\n", sc->sc_dev.dv_xname); error = EIO; } done: /* Turn interface off, release resources */ sc->rtk_testmode = 0; ifp->if_flags &= ~IFF_PROMISC; re_stop(ifp, 0); if (m0 != NULL) m_freem(m0); return error; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void re_attach(struct rtk_softc *sc) { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t val; struct ifnet *ifp; int error = 0, i, addr_len; /* XXX JRS: bus-attach-independent code begins approximately here */ /* Reset the adapter. */ re_reset(sc); if (sc->rtk_type == RTK_8169) { uint32_t hwrev; /* Revision of 8169/8169S/8110s in bits 30..26, 23 */ hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000; if (hwrev == (0x1 << 28)) { sc->sc_rev = 4; } else if (hwrev == (0x1 << 26)) { sc->sc_rev = 3; } else if (hwrev == (0x1 << 23)) { sc->sc_rev = 2; } else sc->sc_rev = 1; /* Set RX length mask */ sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN; /* Force station address autoload from the EEPROM */ CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD); for (i = 0; i < RTK_TIMEOUT; i++) { if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)) break; DELAY(100); } if (i == RTK_TIMEOUT) aprint_error("%s: eeprom autoload timed out\n", sc->sc_dev.dv_xname); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i); sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169; } else { /* Set RX length mask */ sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN; if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129) addr_len = RTK_EEADDR_LEN1; else addr_len = RTK_EEADDR_LEN0; /* * Get station address from the EEPROM. */ for (i = 0; i < 3; i++) { val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len); eaddr[(i * 2) + 0] = val & 0xff; eaddr[(i * 2) + 1] = val >> 8; } sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139; } aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, ether_sprintf(eaddr)); if (sc->rtk_ldata.rtk_tx_desc_cnt > PAGE_SIZE / sizeof(struct rtk_desc)) { sc->rtk_ldata.rtk_tx_desc_cnt = PAGE_SIZE / sizeof(struct rtk_desc); } aprint_verbose("%s: using %d tx descriptors\n", sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt); /* Allocate DMA'able memory for the TX ring */ if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc), RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: can't allocate tx listseg, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } /* Load the map for the TX ring. */ if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc), (caddr_t *)&sc->rtk_ldata.rtk_tx_list, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: can't map tx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc)); if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1, RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_tx_list_map)) != 0) { aprint_error("%s: can't create tx list map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: can't load tx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } /* Create DMA maps for TX buffers */ for (i = 0; i < RTK_TX_QLEN; i++) { error = bus_dmamap_create(sc->sc_dmat, round_page(IP_MAXPACKET), RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_txq[i].txq_dmamap); if (error) { aprint_error("%s: can't create DMA map for TX\n", sc->sc_dev.dv_xname); goto fail_4; } } /* Allocate DMA'able memory for the RX ring */ if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ, RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1, &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: can't allocate rx listseg, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_4; } /* Load the map for the RX ring. */ if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ, (caddr_t *)&sc->rtk_ldata.rtk_rx_list, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: can't map rx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_5; } memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ); if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1, RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_list_map)) != 0) { aprint_error("%s: can't create rx list map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_6; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error("%s: can't load rx list, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_7; } /* Create DMA maps for RX buffers */ for (i = 0; i < RTK_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]); if (error) { aprint_error("%s: can't create DMA map for RX\n", sc->sc_dev.dv_xname); goto fail_8; } } /* * Record interface as attached. From here, we should not fail. */ sc->sc_flags |= RTK_ATTACHED; ifp = &sc->ethercom.ec_if; ifp->if_softc = sc; strcpy(ifp->if_xname, sc->sc_dev.dv_xname); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = re_ioctl; sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* * This is a way to disable hw VLAN tagging by default * (RE_VLAN is undefined), as it is problematic. PR 32643 */ #ifdef RE_VLAN sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING; #endif ifp->if_start = re_start; ifp->if_stop = re_stop; /* * IFCAP_CSUM_IPv4_Tx seems broken for small packets. */ ifp->if_capabilities |= /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | IFCAP_TSOv4; ifp->if_watchdog = re_watchdog; ifp->if_init = re_init; if (sc->rtk_type == RTK_8169) ifp->if_baudrate = 1000000000; else ifp->if_baudrate = 100000000; ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN; ifp->if_capenable = ifp->if_capabilities; IFQ_SET_READY(&ifp->if_snd); callout_init(&sc->rtk_tick_ch); /* Do MII setup */ sc->mii.mii_ifp = ifp; sc->mii.mii_readreg = re_miibus_readreg; sc->mii.mii_writereg = re_miibus_writereg; sc->mii.mii_statchg = re_miibus_statchg; ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd, re_ifmedia_sts); mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO); /* * Call MI attach routine. */ if_attach(ifp); ether_ifattach(ifp, eaddr); /* * Make sure the interface is shutdown during reboot. */ sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc); if (sc->sc_sdhook == NULL) aprint_error("%s: WARNING: unable to establish shutdown hook\n", sc->sc_dev.dv_xname); /* * Add a suspend hook to make sure we come back up after a * resume. */ sc->sc_powerhook = powerhook_establish(re_power, sc); if (sc->sc_powerhook == NULL) aprint_error("%s: WARNING: unable to establish power hook\n", sc->sc_dev.dv_xname); return; fail_8: /* Destroy DMA maps for RX buffers. */ for (i = 0; i < RTK_RX_DESC_CNT; i++) if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[i]); /* Free DMA'able memory for the RX ring. */ bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); fail_7: bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); fail_6: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ); fail_5: bus_dmamem_free(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg); fail_4: /* Destroy DMA maps for TX buffers. */ for (i = 0; i < RTK_TX_QLEN; i++) if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_txq[i].txq_dmamap); /* Free DMA'able memory for the TX ring. */ bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc)); fail_1: bus_dmamem_free(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg); fail_0: return; } /* * re_activate: * Handle device activation/deactivation requests. */ int re_activate(struct device *self, enum devact act) { struct rtk_softc *sc = (void *) self; int s, error = 0; s = splnet(); switch (act) { case DVACT_ACTIVATE: error = EOPNOTSUPP; break; case DVACT_DEACTIVATE: mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY); if_deactivate(&sc->ethercom.ec_if); break; } splx(s); return error; } /* * re_detach: * Detach a rtk interface. */ int re_detach(struct rtk_softc *sc) { struct ifnet *ifp = &sc->ethercom.ec_if; int i; /* * Succeed now if there isn't any work to do. */ if ((sc->sc_flags & RTK_ATTACHED) == 0) return 0; /* Unhook our tick handler. */ callout_stop(&sc->rtk_tick_ch); /* Detach all PHYs. */ mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); /* XXX undo re_allocmem() */ /* Destroy DMA maps for RX buffers. */ for (i = 0; i < RTK_RX_DESC_CNT; i++) if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[i]); /* Free DMA'able memory for the RX ring. */ bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ); bus_dmamem_free(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg); /* Destroy DMA maps for TX buffers. */ for (i = 0; i < RTK_TX_QLEN; i++) if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_txq[i].txq_dmamap); /* Free DMA'able memory for the TX ring. */ bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc)); bus_dmamem_free(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg); shutdownhook_disestablish(sc->sc_sdhook); powerhook_disestablish(sc->sc_powerhook); return 0; } /* * re_enable: * Enable the RTL81X9 chip. */ static int re_enable(struct rtk_softc *sc) { if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) { if ((*sc->sc_enable)(sc) != 0) { aprint_error("%s: device enable failed\n", sc->sc_dev.dv_xname); return EIO; } sc->sc_flags |= RTK_ENABLED; } return 0; } /* * re_disable: * Disable the RTL81X9 chip. */ static void re_disable(struct rtk_softc *sc) { if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) { (*sc->sc_disable)(sc); sc->sc_flags &= ~RTK_ENABLED; } } /* * re_power: * Power management (suspend/resume) hook. */ void re_power(int why, void *arg) { struct rtk_softc *sc = (void *) arg; struct ifnet *ifp = &sc->ethercom.ec_if; int s; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: re_stop(ifp, 0); if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); break; case PWR_RESUME: if (ifp->if_flags & IFF_UP) { if (sc->sc_power != NULL) (*sc->sc_power)(sc, why); re_init(ifp); } break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); } static int re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m) { struct mbuf *n = NULL; bus_dmamap_t map; struct rtk_desc *d; u_int32_t cmdstat; int error; if (m == NULL) { MGETHDR(n, M_DONTWAIT, MT_DATA); if (n == NULL) return ENOBUFS; m = n; MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return ENOBUFS; } } else m->m_data = m->m_ext.ext_buf; /* * Initialize mbuf length fields and fixup * alignment so that the frame payload is * longword aligned. */ m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, RTK_ETHER_ALIGN); map = sc->rtk_ldata.rtk_rx_dmamap[idx]; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) goto out; d = &sc->rtk_ldata.rtk_rx_list[idx]; if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) goto out; cmdstat = map->dm_segs[0].ds_len; d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr)); d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr)); if (idx == (RTK_RX_DESC_CNT - 1)) cmdstat |= RTK_RDESC_CMD_EOR; d->rtk_cmdstat = htole32(cmdstat); sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |= htole32(RTK_RDESC_CMD_OWN); sc->rtk_ldata.rtk_rx_mbuf[idx] = m; bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0, sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD); return 0; out: if (n != NULL) m_freem(n); return ENOMEM; } static int re_tx_list_init(struct rtk_softc *sc) { int i; memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc)); for (i = 0; i < RTK_TX_QLEN; i++) { sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL; } bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map, 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->rtk_ldata.rtk_txq_prodidx = 0; sc->rtk_ldata.rtk_txq_considx = 0; sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc); sc->rtk_ldata.rtk_tx_nextfree = 0; return 0; } static int re_rx_list_init(struct rtk_softc *sc) { int i; memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ); memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0, (RTK_RX_DESC_CNT * sizeof(struct mbuf *))); for (i = 0; i < RTK_RX_DESC_CNT; i++) { if (re_newbuf(sc, i, NULL) == ENOBUFS) return ENOBUFS; } /* Flush the RX descriptors */ bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map, 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sc->rtk_ldata.rtk_rx_prodidx = 0; sc->rtk_head = sc->rtk_tail = NULL; return 0; } /* * RX handler for C+ and 8169. For the gigE chips, we support * the reception of jumbo frames that have been fragmented * across multiple 2K mbuf cluster buffers. */ static void re_rxeof(struct rtk_softc *sc) { struct mbuf *m; struct ifnet *ifp; int i, total_len; struct rtk_desc *cur_rx; u_int32_t rxstat, rxvlan; ifp = &sc->ethercom.ec_if; i = sc->rtk_ldata.rtk_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map, 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) { cur_rx = &sc->rtk_ldata.rtk_rx_list[i]; m = sc->rtk_ldata.rtk_rx_mbuf[i]; total_len = RTK_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->rtk_cmdstat); rxvlan = le32toh(cur_rx->rtk_vlanctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[i], 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[i]); if (!(rxstat & RTK_RDESC_STAT_EOF)) { m->m_len = MCLBYTES - RTK_ETHER_ALIGN; if (sc->rtk_head == NULL) sc->rtk_head = sc->rtk_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->rtk_tail->m_next = m; sc->rtk_tail = m; } re_newbuf(sc, i, NULL); RTK_RX_DESC_INC(sc, i); continue; } /* * NOTE: for the 8139C+, the frame length field * is always 12 bits in size, but for the gigE chips, * it is 13 bits (since the max RX frame length is 16K). * Unfortunately, all 32 bits in the status word * were already used, so to make room for the extra * length bit, RealTek took out the 'frame alignment * error' bit and shifted the other status bits * over one slot. The OWN, EOR, FS and LS bits are * still in the same places. We have already extracted * the frame length and checked the OWN bit, so rather * than using an alternate bit mapping, we shift the * status bits one space to the right so we can evaluate * them using the 8169 status as though it was in the * same format as that of the 8139C+. */ if (sc->rtk_type == RTK_8169) rxstat >>= 1; if (rxstat & RTK_RDESC_STAT_RXERRSUM) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->rtk_head != NULL) { m_freem(sc->rtk_head); sc->rtk_head = sc->rtk_tail = NULL; } re_newbuf(sc, i, m); RTK_RX_DESC_INC(sc, i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (re_newbuf(sc, i, NULL)) { ifp->if_ierrors++; if (sc->rtk_head != NULL) { m_freem(sc->rtk_head); sc->rtk_head = sc->rtk_tail = NULL; } re_newbuf(sc, i, m); RTK_RX_DESC_INC(sc, i); continue; } RTK_RX_DESC_INC(sc, i); if (sc->rtk_head != NULL) { m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN); /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->rtk_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->rtk_tail->m_next = m; } m = sc->rtk_head; sc->rtk_head = sc->rtk_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) { /* Check IP header checksum */ if (rxstat & RTK_RDESC_STAT_PROTOID) m->m_pkthdr.csum_flags |= M_CSUM_IPv4;; if (rxstat & RTK_RDESC_STAT_IPSUMBAD) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; } /* Check TCP/UDP checksum */ if (RTK_TCPPKT(rxstat) && (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) { m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; if (rxstat & RTK_RDESC_STAT_TCPSUMBAD) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if (RTK_UDPPKT(rxstat) && (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) { m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; if (rxstat & RTK_RDESC_STAT_UDPSUMBAD) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } #ifdef RE_VLAN if (rxvlan & RTK_RDESC_VLANCTL_TAG) { VLAN_INPUT_TAG(ifp, m, be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA), continue); } #endif #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif (*ifp->if_input)(ifp, m); } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map, 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); sc->rtk_ldata.rtk_rx_prodidx = i; return; } static void re_txeof(struct rtk_softc *sc) { struct ifnet *ifp; int idx; ifp = &sc->ethercom.ec_if; idx = sc->rtk_ldata.rtk_txq_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map, 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (/* CONSTCOND */ 1) { struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx]; int descidx; u_int32_t txstat; if (txq->txq_mbuf == NULL) { KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx); break; } descidx = txq->txq_descidx; txstat = le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat); KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0); if (txstat & RTK_TDESC_CMD_OWN) break; sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs; KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc)); bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap); m_freem(txq->txq_mbuf); txq->txq_mbuf = NULL; if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT)) ifp->if_collisions++; if (txstat & RTK_TDESC_STAT_TXERRSUM) ifp->if_oerrors++; else ifp->if_opackets++; idx = (idx + 1) % RTK_TX_QLEN; } /* No changes made to the TX ring, so no flush needed */ if (idx != sc->rtk_ldata.rtk_txq_considx) { sc->rtk_ldata.rtk_txq_considx = idx; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc)) CSR_WRITE_4(sc, RTK_TIMERCNT, 1); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void re_shutdown(void *vsc) { struct rtk_softc *sc = (struct rtk_softc *)vsc; re_stop(&sc->ethercom.ec_if, 0); } static void re_tick(void *xsc) { struct rtk_softc *sc = xsc; int s; /*XXX: just return for 8169S/8110S with rev 2 or newer phy */ s = splnet(); mii_tick(&sc->mii); splx(s); callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc); } #ifdef DEVICE_POLLING static void re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rtk_softc *sc = ifp->if_softc; RTK_LOCK(sc); if (!(ifp->if_capenable & IFCAP_POLLING)) { ether_poll_deregister(ifp); cmd = POLL_DEREGISTER; } if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS); goto done; } sc->rxcycles = count; re_rxeof(sc); re_txeof(sc); if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int16_t status; status = CSR_READ_2(sc, RTK_ISR); if (status == 0xffff) goto done; if (status) CSR_WRITE_2(sc, RTK_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & RTK_ISR_SYSTEM_ERR) { re_reset(sc); re_init(sc); } } done: RTK_UNLOCK(sc); } #endif /* DEVICE_POLLING */ int re_intr(void *arg) { struct rtk_softc *sc = arg; struct ifnet *ifp; u_int16_t status; int handled = 0; ifp = &sc->ethercom.ec_if; if (!(ifp->if_flags & IFF_UP)) return 0; #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) goto done; if ((ifp->if_capenable & IFCAP_POLLING) && ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */ CSR_WRITE_2(sc, RTK_IMR, 0x0000); re_poll(ifp, 0, 1); goto done; } #endif /* DEVICE_POLLING */ for (;;) { status = CSR_READ_2(sc, RTK_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xffff) break; if (status) { handled = 1; CSR_WRITE_2(sc, RTK_ISR, status); } if ((status & RTK_INTRS_CPLUS) == 0) break; if ((status & RTK_ISR_RX_OK) || (status & RTK_ISR_RX_ERR)) re_rxeof(sc); if ((status & RTK_ISR_TIMEOUT_EXPIRED) || (status & RTK_ISR_TX_ERR) || (status & RTK_ISR_TX_DESC_UNAVAIL)) re_txeof(sc); if (status & RTK_ISR_SYSTEM_ERR) { re_reset(sc); re_init(ifp); } if (status & RTK_ISR_LINKCHG) { callout_stop(&sc->rtk_tick_ch); re_tick(sc); } } if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */ if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); #ifdef DEVICE_POLLING done: #endif return handled; } static int re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx) { bus_dmamap_t map; int error, i, startidx, curidx; #ifdef RE_VLAN struct m_tag *mtag; #endif struct rtk_desc *d; u_int32_t cmdstat, rtk_flags; struct rtk_txq *txq; if (sc->rtk_ldata.rtk_tx_free <= 4) { return EFBIG; } /* * Set up checksum offload. Note: checksum offload bits must * appear in all descriptors of a multi-descriptor transmit * attempt. (This is according to testing done with an 8169 * chip. I'm not sure if this is a requirement or a bug.) */ if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { u_int32_t segsz = m->m_pkthdr.segsz; rtk_flags = RTK_TDESC_CMD_LGSEND | (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT); } else { /* * set RTK_TDESC_CMD_IPCSUM if any checksum offloading * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/ * RTK_TDESC_CMD_UDPCSUM doesn't make effects. */ rtk_flags = 0; if ((m->m_pkthdr.csum_flags & (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) { rtk_flags |= RTK_TDESC_CMD_IPCSUM; if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) { rtk_flags |= RTK_TDESC_CMD_TCPCSUM; } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) { rtk_flags |= RTK_TDESC_CMD_UDPCSUM; } } } txq = &sc->rtk_ldata.rtk_txq[*idx]; map = txq->txq_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); if (error) { /* XXX try to defrag if EFBIG? */ aprint_error("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); return error; } if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) { error = EFBIG; goto fail_unload; } /* * Make sure that the caches are synchronized before we * ask the chip to start DMA for the packet data. */ bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Map the segment array into descriptors. Note that we set the * start-of-frame and end-of-frame markers for either TX or RX, but * they really only have meaning in the TX case. (In the RX case, * it's the chip that tells us where packets begin and end.) * We also keep track of the end of the ring and set the * end-of-ring bits as needed, and we set the ownership bits * in all except the very first descriptor. (The caller will * set this descriptor later when it start transmission or * reception.) */ i = 0; curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree; while (1) { d = &sc->rtk_ldata.rtk_tx_list[curidx]; if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) { while (i > 0) { sc->rtk_ldata.rtk_tx_list[ (curidx + RTK_TX_DESC_CNT(sc) - i) % RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0; i--; } error = ENOBUFS; goto fail_unload; } cmdstat = map->dm_segs[i].ds_len; d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr)); d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr)); if (i == 0) cmdstat |= RTK_TDESC_CMD_SOF; else cmdstat |= RTK_TDESC_CMD_OWN; if (curidx == (RTK_TX_DESC_CNT(sc) - 1)) cmdstat |= RTK_TDESC_CMD_EOR; d->rtk_cmdstat = htole32(cmdstat | rtk_flags); i++; if (i == map->dm_nsegs) break; RTK_TX_DESC_INC(sc, curidx); } d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF); txq->txq_mbuf = m; sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs; /* * Set up hardware VLAN tagging. Note: vlan tag info must * appear in the first descriptor of a multi-descriptor * transmission attempt. */ #ifdef RE_VLAN if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) { sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl = htole32(htons(VLAN_TAG_VALUE(mtag)) | RTK_TDESC_VLANCTL_TAG); } #endif /* Transfer ownership of packet to the chip. */ sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |= htole32(RTK_TDESC_CMD_OWN); if (startidx != curidx) sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |= htole32(RTK_TDESC_CMD_OWN); txq->txq_descidx = curidx; RTK_TX_DESC_INC(sc, curidx); sc->rtk_ldata.rtk_tx_nextfree = curidx; *idx = (*idx + 1) % RTK_TX_QLEN; return 0; fail_unload: bus_dmamap_unload(sc->sc_dmat, map); return error; } /* * Main transmit routine for C+ and gigE NICs. */ static void re_start(struct ifnet *ifp) { struct rtk_softc *sc; int idx; sc = ifp->if_softc; idx = sc->rtk_ldata.rtk_txq_prodidx; while (/* CONSTCOND */ 1) { struct mbuf *m; int error; IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) { KASSERT(idx == sc->rtk_ldata.rtk_txq_considx); ifp->if_flags |= IFF_OACTIVE; break; } error = re_encap(sc, m, &idx); if (error == EFBIG && sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) { IFQ_DEQUEUE(&ifp->if_snd, m); m_freem(m); ifp->if_oerrors++; continue; } if (error) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m); #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif } if (sc->rtk_ldata.rtk_txq_prodidx == idx) { return; } sc->rtk_ldata.rtk_txq_prodidx = idx; /* Flush the TX descriptors */ bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map, 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); /* * RealTek put the TX poll request register in a different * location on the 8169 gigE chip. I don't know why. */ if (sc->rtk_type == RTK_8169) CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START); else CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START); /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the TIMERINT register, and then trigger an * interrupt. Each time we write to the TIMERCNT register, * the timer count is reset to 0. */ CSR_WRITE_4(sc, RTK_TIMERCNT, 1); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static int re_init(struct ifnet *ifp) { struct rtk_softc *sc = ifp->if_softc; u_int32_t rxcfg = 0; u_int32_t reg; int error; if ((error = re_enable(sc)) != 0) goto out; /* * Cancel pending I/O and free all RX/TX buffers. */ re_stop(ifp, 0); /* * Enable C+ RX and TX mode, as well as VLAN stripping and * RX checksum offload. We must configure the C+ register * before all others. */ reg = 0; /* * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S. * FreeBSD drivers set these bits anyway (for 8139C+?). * So far, it works. */ /* * XXX: For 8169 and 8196S revs below 2, set bit 14. * For 8169S/8110S rev 2 and above, do not set bit 14. */ if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1) reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;; if (1) {/* not for 8169S ? */ reg |= #ifdef RE_VLAN RTK_CPLUSCMD_VLANSTRIP | #endif (ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx) ? RTK_CPLUSCMD_RXCSUM_ENB : 0); } CSR_WRITE_2(sc, RTK_CPLUS_CMD, reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB); /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */ if (sc->rtk_type == RTK_8169) CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000); DELAY(10000); /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG); memcpy(®, LLADDR(ifp->if_sadl), 4); CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg); reg = 0; memcpy(®, LLADDR(ifp->if_sadl) + 4, 4); CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg); CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF); /* * For C+ mode, initialize the RX descriptors and mbufs. */ re_rx_list_init(sc); re_tx_list_init(sc); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); /* * Set the initial TX and RX configuration. */ if (sc->rtk_testmode) { if (sc->rtk_type == RTK_8169) CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON); else CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS); } else CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG); CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG); /* Set the individual bit to receive frames for this host only. */ rxcfg = CSR_READ_4(sc, RTK_RXCFG); rxcfg |= RTK_RXCFG_RX_INDIV; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxcfg |= RTK_RXCFG_RX_ALLPHYS; else rxcfg &= ~RTK_RXCFG_RX_ALLPHYS; CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) rxcfg |= RTK_RXCFG_RX_BROAD; else rxcfg &= ~RTK_RXCFG_RX_BROAD; CSR_WRITE_4(sc, RTK_RXCFG, rxcfg); /* * Program the multicast filter, if necessary. */ rtk_setmulti(sc); #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_flags & IFF_POLLING) CSR_WRITE_2(sc, RTK_IMR, 0); else /* otherwise ... */ #endif /* DEVICE_POLLING */ /* * Enable interrupts. */ if (sc->rtk_testmode) CSR_WRITE_2(sc, RTK_IMR, 0); else CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS); /* Start RX/TX process. */ CSR_WRITE_4(sc, RTK_MISSEDPKT, 0); #ifdef notdef /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB); #endif /* * Load the addresses of the RX and TX lists into the chip. */ CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI, RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO, RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI, RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO, RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr)); CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16); /* * Initialize the timer interrupt register so that * a timer interrupt will be generated once the timer * reaches a certain number of ticks. The timer is * reloaded on each transmit. This gives us TX interrupt * moderation, which dramatically improves TX frame rate. */ if (sc->rtk_type == RTK_8169) CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800); else CSR_WRITE_4(sc, RTK_TIMERINT, 0x400); /* * For 8169 gigE NICs, set the max allowed RX packet * size so we can receive jumbo frames. */ if (sc->rtk_type == RTK_8169) CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383); if (sc->rtk_testmode) return 0; mii_mediachg(&sc->mii); CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc); out: if (error) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; aprint_error("%s: interface not running\n", sc->sc_dev.dv_xname); } return error; } /* * Set media options. */ static int re_ifmedia_upd(struct ifnet *ifp) { struct rtk_softc *sc; sc = ifp->if_softc; return mii_mediachg(&sc->mii); } /* * Report current media status. */ static void re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct rtk_softc *sc; sc = ifp->if_softc; mii_pollstat(&sc->mii); ifmr->ifm_active = sc->mii.mii_media_active; ifmr->ifm_status = sc->mii.mii_media_status; return; } static int re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct rtk_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splnet(); switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu > RTK_JUMBO_MTU) error = EINVAL; ifp->if_mtu = ifr->ifr_mtu; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command); break; default: error = ether_ioctl(ifp, command, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) rtk_setmulti(sc); error = 0; } break; } splx(s); return error; } static void re_watchdog(struct ifnet *ifp) { struct rtk_softc *sc; int s; sc = ifp->if_softc; s = splnet(); aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; re_txeof(sc); re_rxeof(sc); re_init(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void re_stop(struct ifnet *ifp, int disable) { register int i; struct rtk_softc *sc = ifp->if_softc; callout_stop(&sc->rtk_tick_ch); #ifdef DEVICE_POLLING ether_poll_deregister(ifp); #endif /* DEVICE_POLLING */ mii_down(&sc->mii); CSR_WRITE_1(sc, RTK_COMMAND, 0x00); CSR_WRITE_2(sc, RTK_IMR, 0x0000); if (sc->rtk_head != NULL) { m_freem(sc->rtk_head); sc->rtk_head = sc->rtk_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < RTK_TX_QLEN; i++) { if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_txq[i].txq_dmamap); m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf); sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < RTK_RX_DESC_CNT; i++) { if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[i]); m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]); sc->rtk_ldata.rtk_rx_mbuf[i] = NULL; } } if (disable) re_disable(sc); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; return; }