/* $NetBSD: rtld.c,v 1.205 2020/04/19 01:06:15 joerg Exp $ */ /* * Copyright 1996 John D. Polstra. * Copyright 1996 Matt Thomas * Copyright 2002 Charles M. Hannum * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by John Polstra. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Dynamic linker for ELF. * * John Polstra . */ #include #ifndef lint __RCSID("$NetBSD: rtld.c,v 1.205 2020/04/19 01:06:15 joerg Exp $"); #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug.h" #include "rtld.h" #if !defined(lint) #include "sysident.h" #endif /* * Function declarations. */ static void _rtld_init(caddr_t, caddr_t, const char *); static void _rtld_exit(void); Elf_Addr _rtld(Elf_Addr *, Elf_Addr); /* * Data declarations. */ static char *error_message; /* Message for dlopen(), or NULL */ struct r_debug _rtld_debug; /* for GDB; */ bool _rtld_trust; /* False for setuid and setgid programs */ Obj_Entry *_rtld_objlist; /* Head of linked list of shared objects */ Obj_Entry **_rtld_objtail; /* Link field of last object in list */ Obj_Entry *_rtld_objmain; /* The main program shared object */ Obj_Entry _rtld_objself; /* The dynamic linker shared object */ u_int _rtld_objcount; /* Number of objects in _rtld_objlist */ u_int _rtld_objloads; /* Number of objects loaded in _rtld_objlist */ u_int _rtld_objgen; /* Generation count for _rtld_objlist */ const char _rtld_path[] = _PATH_RTLD; /* Initialize a fake symbol for resolving undefined weak references. */ Elf_Sym _rtld_sym_zero = { .st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE), .st_shndx = SHN_ABS, }; size_t _rtld_pagesz; /* Page size, as provided by kernel */ Search_Path *_rtld_default_paths; Search_Path *_rtld_paths; Library_Xform *_rtld_xforms; static void *auxinfo; /* * Global declarations normally provided by crt0. */ char *__progname; char **environ; static volatile bool _rtld_mutex_may_recurse; #if defined(RTLD_DEBUG) #ifndef __sh__ extern Elf_Addr _GLOBAL_OFFSET_TABLE_[]; #else /* 32-bit SuperH */ register Elf_Addr *_GLOBAL_OFFSET_TABLE_ asm("r12"); #endif #endif /* RTLD_DEBUG */ extern Elf_Dyn _DYNAMIC; static void _rtld_call_fini_functions(sigset_t *, int); static void _rtld_call_init_functions(sigset_t *); static void _rtld_initlist_visit(Objlist *, Obj_Entry *, int); static void _rtld_initlist_tsort(Objlist *, int); static Obj_Entry *_rtld_dlcheck(void *); static void _rtld_init_dag(Obj_Entry *); static void _rtld_init_dag1(Obj_Entry *, Obj_Entry *); static void _rtld_objlist_remove(Objlist *, Obj_Entry *); static void _rtld_objlist_clear(Objlist *); static void _rtld_unload_object(sigset_t *, Obj_Entry *, bool); static void _rtld_unref_dag(Obj_Entry *); static Obj_Entry *_rtld_obj_from_addr(const void *); static void _rtld_fill_dl_phdr_info(const Obj_Entry *, struct dl_phdr_info *); static inline void _rtld_call_initfini_function(const Obj_Entry *obj, Elf_Addr func, sigset_t *mask) { _rtld_exclusive_exit(mask); _rtld_call_function_void(obj, func); _rtld_exclusive_enter(mask); } static void _rtld_call_fini_function(Obj_Entry *obj, sigset_t *mask, u_int cur_objgen) { if (obj->fini_arraysz == 0 && (obj->fini == 0 || obj->fini_called)) return; if (obj->fini != 0 && !obj->fini_called) { dbg (("calling fini function %s at %p%s", obj->path, (void *)obj->fini, obj->z_initfirst ? " (DF_1_INITFIRST)" : "")); obj->fini_called = 1; _rtld_call_initfini_function(obj, obj->fini, mask); } #ifdef HAVE_INITFINI_ARRAY /* * Now process the fini_array if it exists. Simply go from * start to end. We need to make restartable so just advance * the array pointer and decrement the size each time through * the loop. */ while (obj->fini_arraysz > 0 && _rtld_objgen == cur_objgen) { Elf_Addr fini = *obj->fini_array++; obj->fini_arraysz--; dbg (("calling fini array function %s at %p%s", obj->path, (void *)fini, obj->z_initfirst ? " (DF_1_INITFIRST)" : "")); _rtld_call_initfini_function(obj, fini, mask); } #endif /* HAVE_INITFINI_ARRAY */ } static void _rtld_call_fini_functions(sigset_t *mask, int force) { Objlist_Entry *elm; Objlist finilist; u_int cur_objgen; dbg(("_rtld_call_fini_functions(%d)", force)); restart: cur_objgen = ++_rtld_objgen; SIMPLEQ_INIT(&finilist); _rtld_initlist_tsort(&finilist, 1); /* First pass: objects _not_ marked with DF_1_INITFIRST. */ SIMPLEQ_FOREACH(elm, &finilist, link) { Obj_Entry * const obj = elm->obj; if (!obj->z_initfirst) { if (obj->refcount > 0 && !force) { continue; } /* * XXX This can race against a concurrent dlclose(). * XXX In that case, the object could be unmapped before * XXX the fini() call or the fini_array has completed. */ _rtld_call_fini_function(obj, mask, cur_objgen); if (_rtld_objgen != cur_objgen) { dbg(("restarting fini iteration")); _rtld_objlist_clear(&finilist); goto restart; } } } /* Second pass: objects marked with DF_1_INITFIRST. */ SIMPLEQ_FOREACH(elm, &finilist, link) { Obj_Entry * const obj = elm->obj; if (obj->refcount > 0 && !force) { continue; } /* XXX See above for the race condition here */ _rtld_call_fini_function(obj, mask, cur_objgen); if (_rtld_objgen != cur_objgen) { dbg(("restarting fini iteration")); _rtld_objlist_clear(&finilist); goto restart; } } _rtld_objlist_clear(&finilist); } static void _rtld_call_init_function(Obj_Entry *obj, sigset_t *mask, u_int cur_objgen) { if (obj->init_arraysz == 0 && (obj->init_called || obj->init == 0)) return; if (!obj->init_called && obj->init != 0) { dbg (("calling init function %s at %p%s", obj->path, (void *)obj->init, obj->z_initfirst ? " (DF_1_INITFIRST)" : "")); obj->init_called = 1; _rtld_call_initfini_function(obj, obj->init, mask); } #ifdef HAVE_INITFINI_ARRAY /* * Now process the init_array if it exists. Simply go from * start to end. We need to make restartable so just advance * the array pointer and decrement the size each time through * the loop. */ while (obj->init_arraysz > 0 && _rtld_objgen == cur_objgen) { Elf_Addr init = *obj->init_array++; obj->init_arraysz--; dbg (("calling init_array function %s at %p%s", obj->path, (void *)init, obj->z_initfirst ? " (DF_1_INITFIRST)" : "")); _rtld_call_initfini_function(obj, init, mask); } #endif /* HAVE_INITFINI_ARRAY */ } static bool _rtld_call_ifunc_functions(sigset_t *mask, Obj_Entry *obj, u_int cur_objgen) { if (obj->ifunc_remaining #if defined(IFUNC_NONPLT) || obj->ifunc_remaining_nonplt #endif ) { _rtld_call_ifunc(obj, mask, cur_objgen); if (_rtld_objgen != cur_objgen) { return true; } } return false; } static void _rtld_call_init_functions(sigset_t *mask) { Objlist_Entry *elm; Objlist initlist; u_int cur_objgen; dbg(("_rtld_call_init_functions()")); restart: cur_objgen = ++_rtld_objgen; SIMPLEQ_INIT(&initlist); _rtld_initlist_tsort(&initlist, 0); /* First pass: objects with IRELATIVE relocations. */ SIMPLEQ_FOREACH(elm, &initlist, link) { if (_rtld_call_ifunc_functions(mask, elm->obj, cur_objgen)) { dbg(("restarting init iteration")); _rtld_objlist_clear(&initlist); goto restart; } } /* * XXX: For historic reasons, init/fini of the main object are called * from crt0. Don't introduce that mistake for ifunc, so look at * the head of _rtld_objlist that _rtld_initlist_tsort skipped. */ if (_rtld_call_ifunc_functions(mask, _rtld_objlist, cur_objgen)) { dbg(("restarting init iteration")); _rtld_objlist_clear(&initlist); goto restart; } /* Second pass: objects marked with DF_1_INITFIRST. */ SIMPLEQ_FOREACH(elm, &initlist, link) { Obj_Entry * const obj = elm->obj; if (obj->z_initfirst) { _rtld_call_init_function(obj, mask, cur_objgen); if (_rtld_objgen != cur_objgen) { dbg(("restarting init iteration")); _rtld_objlist_clear(&initlist); goto restart; } } } /* Third pass: all other objects. */ SIMPLEQ_FOREACH(elm, &initlist, link) { _rtld_call_init_function(elm->obj, mask, cur_objgen); if (_rtld_objgen != cur_objgen) { dbg(("restarting init iteration")); _rtld_objlist_clear(&initlist); goto restart; } } _rtld_objlist_clear(&initlist); } /* * Initialize the dynamic linker. The argument is the address at which * the dynamic linker has been mapped into memory. The primary task of * this function is to create an Obj_Entry for the dynamic linker and * to resolve the PLT relocation for platforms that need it (those that * define __HAVE_FUNCTION_DESCRIPTORS */ static void _rtld_init(caddr_t mapbase, caddr_t relocbase, const char *execname) { const Elf_Ehdr *ehdr; /* Conjure up an Obj_Entry structure for the dynamic linker. */ _rtld_objself.path = __UNCONST(_rtld_path); _rtld_objself.pathlen = sizeof(_rtld_path)-1; _rtld_objself.rtld = true; _rtld_objself.mapbase = mapbase; _rtld_objself.relocbase = relocbase; _rtld_objself.dynamic = (Elf_Dyn *) &_DYNAMIC; _rtld_objself.strtab = "_rtld_sym_zero"; /* * Set value to -relocbase so that * * _rtld_objself.relocbase + _rtld_sym_zero.st_value == 0 * * This allows unresolved references to weak symbols to be computed * to a value of 0. */ _rtld_sym_zero.st_value = -(uintptr_t)relocbase; _rtld_digest_dynamic(_rtld_path, &_rtld_objself); assert(!_rtld_objself.needed); #if !defined(__hppa__) assert(!_rtld_objself.pltrel && !_rtld_objself.pltrela); #else _rtld_relocate_plt_objects(&_rtld_objself); #endif #if !defined(__mips__) && !defined(__hppa__) assert(!_rtld_objself.pltgot); #endif #if !defined(__arm__) && !defined(__mips__) && !defined(__sh__) /* ARM, MIPS and SH{3,5} have a bogus DT_TEXTREL. */ assert(!_rtld_objself.textrel); #endif _rtld_add_paths(execname, &_rtld_default_paths, RTLD_DEFAULT_LIBRARY_PATH); #ifdef RTLD_ARCH_SUBDIR _rtld_add_paths(execname, &_rtld_default_paths, RTLD_DEFAULT_LIBRARY_PATH "/" RTLD_ARCH_SUBDIR); #endif /* Make the object list empty. */ _rtld_objlist = NULL; _rtld_objtail = &_rtld_objlist; _rtld_objcount = 0; _rtld_debug.r_brk = _rtld_debug_state; _rtld_debug.r_state = RT_CONSISTENT; ehdr = (Elf_Ehdr *)mapbase; _rtld_objself.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff); _rtld_objself.phsize = ehdr->e_phnum * sizeof(_rtld_objself.phdr[0]); } /* * Cleanup procedure. It will be called (by the atexit() mechanism) just * before the process exits. */ static void _rtld_exit(void) { sigset_t mask; dbg(("rtld_exit()")); _rtld_exclusive_enter(&mask); _rtld_call_fini_functions(&mask, 1); _rtld_exclusive_exit(&mask); } __dso_public void * _dlauxinfo(void) { return auxinfo; } /* * Main entry point for dynamic linking. The argument is the stack * pointer. The stack is expected to be laid out as described in the * SVR4 ABI specification, Intel 386 Processor Supplement. Specifically, * the stack pointer points to a word containing ARGC. Following that * in the stack is a null-terminated sequence of pointers to argument * strings. Then comes a null-terminated sequence of pointers to * environment strings. Finally, there is a sequence of "auxiliary * vector" entries. * * This function returns the entry point for the main program, the dynamic * linker's exit procedure in sp[0], and a pointer to the main object in * sp[1]. */ Elf_Addr _rtld(Elf_Addr *sp, Elf_Addr relocbase) { const AuxInfo *pAUX_base, *pAUX_entry, *pAUX_execfd, *pAUX_phdr, *pAUX_phent, *pAUX_phnum, *pAUX_euid, *pAUX_egid, *pAUX_ruid, *pAUX_rgid; const AuxInfo *pAUX_pagesz; char **env, **oenvp; const AuxInfo *auxp; Obj_Entry *obj; Elf_Addr *const osp = sp; bool bind_now = 0; const char *ld_bind_now, *ld_preload, *ld_library_path; const char **argv; const char *execname; long argc; const char **real___progname; const Obj_Entry **real___mainprog_obj; char ***real_environ; sigset_t mask; #ifdef DEBUG const char *ld_debug; #endif #ifdef RTLD_DEBUG int i = 0; #endif /* * On entry, the dynamic linker itself has not been relocated yet. * Be very careful not to reference any global data until after * _rtld_init has returned. It is OK to reference file-scope statics * and string constants, and to call static and global functions. */ /* Find the auxiliary vector on the stack. */ /* first Elf_Word reserved to address of exit routine */ #if defined(RTLD_DEBUG) debug = 1; dbg(("sp = %p, argc = %ld, argv = %p <%s> relocbase %p", sp, (long)sp[2], &sp[3], (char *) sp[3], (void *)relocbase)); #ifndef __x86_64__ dbg(("got is at %p, dynamic is at %p", _GLOBAL_OFFSET_TABLE_, &_DYNAMIC)); #endif #endif sp += 2; /* skip over return argument space */ argv = (const char **) &sp[1]; argc = *(long *)sp; sp += 2 + argc; /* Skip over argc, arguments, and NULL * terminator */ env = (char **) sp; while (*sp++ != 0) { /* Skip over environment, and NULL terminator */ #if defined(RTLD_DEBUG) dbg(("env[%d] = %p %s", i++, (void *)sp[-1], (char *)sp[-1])); #endif } auxinfo = (AuxInfo *) sp; pAUX_base = pAUX_entry = pAUX_execfd = NULL; pAUX_phdr = pAUX_phent = pAUX_phnum = NULL; pAUX_euid = pAUX_ruid = pAUX_egid = pAUX_rgid = NULL; pAUX_pagesz = NULL; execname = NULL; /* Digest the auxiliary vector. */ for (auxp = auxinfo; auxp->a_type != AT_NULL; ++auxp) { switch (auxp->a_type) { case AT_BASE: pAUX_base = auxp; break; case AT_ENTRY: pAUX_entry = auxp; break; case AT_EXECFD: pAUX_execfd = auxp; break; case AT_PHDR: pAUX_phdr = auxp; break; case AT_PHENT: pAUX_phent = auxp; break; case AT_PHNUM: pAUX_phnum = auxp; break; #ifdef AT_EUID case AT_EUID: pAUX_euid = auxp; break; case AT_RUID: pAUX_ruid = auxp; break; case AT_EGID: pAUX_egid = auxp; break; case AT_RGID: pAUX_rgid = auxp; break; #endif #ifdef AT_SUN_EXECNAME case AT_SUN_EXECNAME: execname = (const char *)(const void *)auxp->a_v; break; #endif case AT_PAGESZ: pAUX_pagesz = auxp; break; } } /* Initialize and relocate ourselves. */ if (pAUX_base == NULL) { _rtld_error("Bad pAUX_base"); _rtld_die(); } assert(pAUX_pagesz != NULL); _rtld_pagesz = (int)pAUX_pagesz->a_v; _rtld_init((caddr_t)pAUX_base->a_v, (caddr_t)relocbase, execname); __progname = _rtld_objself.path; environ = env; _rtld_trust = ((pAUX_euid ? (uid_t)pAUX_euid->a_v : geteuid()) == (pAUX_ruid ? (uid_t)pAUX_ruid->a_v : getuid())) && ((pAUX_egid ? (gid_t)pAUX_egid->a_v : getegid()) == (pAUX_rgid ? (gid_t)pAUX_rgid->a_v : getgid())); #ifdef DEBUG ld_debug = NULL; #endif ld_bind_now = NULL; ld_library_path = NULL; ld_preload = NULL; /* * Inline avoid using normal getenv/unsetenv here as the libc * code is quite a bit more complicated. */ for (oenvp = env; *env != NULL; ++env) { static const char bind_var[] = "LD_BIND_NOW="; static const char debug_var[] = "LD_DEBUG="; static const char path_var[] = "LD_LIBRARY_PATH="; static const char preload_var[] = "LD_PRELOAD="; #define LEN(x) (sizeof(x) - 1) if ((*env)[0] != 'L' || (*env)[1] != 'D') { /* * Special case to skip most entries without * the more expensive calls to strncmp. */ *oenvp++ = *env; } else if (strncmp(*env, debug_var, LEN(debug_var)) == 0) { if (_rtld_trust) { #ifdef DEBUG ld_debug = *env + LEN(debug_var); #endif *oenvp++ = *env; } } else if (strncmp(*env, bind_var, LEN(bind_var)) == 0) { if (_rtld_trust) { ld_bind_now = *env + LEN(bind_var); *oenvp++ = *env; } } else if (strncmp(*env, path_var, LEN(path_var)) == 0) { if (_rtld_trust) { ld_library_path = *env + LEN(path_var); *oenvp++ = *env; } } else if (strncmp(*env, preload_var, LEN(preload_var)) == 0) { if (_rtld_trust) { ld_preload = *env + LEN(preload_var); *oenvp++ = *env; } } else { *oenvp++ = *env; } #undef LEN } *oenvp++ = NULL; if (ld_bind_now != NULL && *ld_bind_now != '\0') bind_now = true; if (_rtld_trust) { #ifdef DEBUG #ifdef RTLD_DEBUG debug = 0; #endif if (ld_debug != NULL && *ld_debug != '\0') debug = 1; #endif _rtld_add_paths(execname, &_rtld_paths, ld_library_path); } else { execname = NULL; } _rtld_process_hints(execname, &_rtld_paths, &_rtld_xforms, _PATH_LD_HINTS); dbg(("dynamic linker is initialized, mapbase=%p, relocbase=%p", _rtld_objself.mapbase, _rtld_objself.relocbase)); /* * Load the main program, or process its program header if it is * already loaded. */ if (pAUX_execfd != NULL) { /* Load the main program. */ int fd = pAUX_execfd->a_v; const char *obj_name = argv[0] ? argv[0] : "main program"; dbg(("loading main program")); _rtld_objmain = _rtld_map_object(obj_name, fd, NULL); close(fd); if (_rtld_objmain == NULL) _rtld_die(); } else { /* Main program already loaded. */ const Elf_Phdr *phdr; int phnum; caddr_t entry; dbg(("processing main program's program header")); assert(pAUX_phdr != NULL); phdr = (const Elf_Phdr *) pAUX_phdr->a_v; assert(pAUX_phnum != NULL); phnum = pAUX_phnum->a_v; assert(pAUX_phent != NULL); assert(pAUX_phent->a_v == sizeof(Elf_Phdr)); assert(pAUX_entry != NULL); entry = (caddr_t) pAUX_entry->a_v; _rtld_objmain = _rtld_digest_phdr(phdr, phnum, entry); _rtld_objmain->path = xstrdup(argv[0] ? argv[0] : "main program"); _rtld_objmain->pathlen = strlen(_rtld_objmain->path); } _rtld_objmain->mainprog = true; /* * Get the actual dynamic linker pathname from the executable if * possible. (It should always be possible.) That ensures that * gdb will find the right dynamic linker even if a non-standard * one is being used. */ if (_rtld_objmain->interp != NULL && strcmp(_rtld_objmain->interp, _rtld_objself.path) != 0) { _rtld_objself.path = xstrdup(_rtld_objmain->interp); _rtld_objself.pathlen = strlen(_rtld_objself.path); } dbg(("actual dynamic linker is %s", _rtld_objself.path)); _rtld_digest_dynamic(execname, _rtld_objmain); /* Link the main program into the list of objects. */ *_rtld_objtail = _rtld_objmain; _rtld_objtail = &_rtld_objmain->next; _rtld_objcount++; _rtld_objloads++; _rtld_linkmap_add(_rtld_objmain); _rtld_objself.path = xstrdup(_rtld_objself.path); _rtld_linkmap_add(&_rtld_objself); ++_rtld_objmain->refcount; _rtld_objmain->mainref = 1; _rtld_objlist_push_tail(&_rtld_list_main, _rtld_objmain); if (ld_preload) { /* * Pre-load user-specified objects after the main program * but before any shared object dependencies. */ dbg(("preloading objects")); if (_rtld_preload(ld_preload) == -1) _rtld_die(); } dbg(("loading needed objects")); if (_rtld_load_needed_objects(_rtld_objmain, _RTLD_MAIN) == -1) _rtld_die(); dbg(("checking for required versions")); for (obj = _rtld_objlist; obj != NULL; obj = obj->next) { if (_rtld_verify_object_versions(obj) == -1) _rtld_die(); } #if defined(__HAVE_TLS_VARIANT_I) || defined(__HAVE_TLS_VARIANT_II) dbg(("initializing initial Thread Local Storage offsets")); /* * All initial objects get the TLS space from the static block. */ for (obj = _rtld_objlist; obj != NULL; obj = obj->next) _rtld_tls_offset_allocate(obj); #endif dbg(("relocating objects")); if (_rtld_relocate_objects(_rtld_objmain, bind_now) == -1) _rtld_die(); dbg(("doing copy relocations")); if (_rtld_do_copy_relocations(_rtld_objmain) == -1) _rtld_die(); #if defined(__HAVE_TLS_VARIANT_I) || defined(__HAVE_TLS_VARIANT_II) dbg(("initializing Thread Local Storage for main thread")); /* * Set up TLS area for the main thread. * This has to be done after all relocations are processed, * since .tdata may contain relocations. */ _rtld_tls_initial_allocation(); #endif /* * Set the __progname, environ and, __mainprog_obj before * calling anything that might use them. */ real___progname = _rtld_objmain_sym("__progname"); if (real___progname) { if (argv[0] != NULL) { if ((*real___progname = strrchr(argv[0], '/')) == NULL) (*real___progname) = argv[0]; else (*real___progname)++; } else { (*real___progname) = NULL; } } real_environ = _rtld_objmain_sym("environ"); if (real_environ) *real_environ = environ; /* * Set __mainprog_obj for old binaries. */ real___mainprog_obj = _rtld_objmain_sym("__mainprog_obj"); if (real___mainprog_obj) *real___mainprog_obj = _rtld_objmain; _rtld_debug_state(); /* say hello to gdb! */ _rtld_exclusive_enter(&mask); dbg(("calling _init functions")); _rtld_call_init_functions(&mask); dbg(("control at program entry point = %p, obj = %p, exit = %p", _rtld_objmain->entry, _rtld_objmain, _rtld_exit)); _rtld_exclusive_exit(&mask); /* * Return with the entry point and the exit procedure in at the top * of stack. */ ((void **) osp)[0] = _rtld_exit; ((void **) osp)[1] = __UNCONST(_rtld_compat_obj); return (Elf_Addr) _rtld_objmain->entry; } void _rtld_die(void) { const char *msg = dlerror(); if (msg == NULL) msg = "Fatal error"; xerrx(1, "%s", msg); } static Obj_Entry * _rtld_dlcheck(void *handle) { Obj_Entry *obj; for (obj = _rtld_objlist; obj != NULL; obj = obj->next) if (obj == (Obj_Entry *) handle) break; if (obj == NULL || obj->dl_refcount == 0) { _rtld_error("Invalid shared object handle %p", handle); return NULL; } return obj; } static void _rtld_initlist_visit(Objlist* list, Obj_Entry *obj, int rev) { Needed_Entry* elm; /* dbg(("_rtld_initlist_visit(%s)", obj->path)); */ if (obj->init_done) return; obj->init_done = 1; for (elm = obj->needed; elm != NULL; elm = elm->next) { if (elm->obj != NULL) { _rtld_initlist_visit(list, elm->obj, rev); } } if (rev) { _rtld_objlist_push_head(list, obj); } else { _rtld_objlist_push_tail(list, obj); } } static void _rtld_initlist_tsort(Objlist* list, int rev) { dbg(("_rtld_initlist_tsort")); Obj_Entry* obj; /* * We don't include objmain here (starting from next) * because csu handles it */ for (obj = _rtld_objlist->next; obj; obj = obj->next) { obj->init_done = 0; } for (obj = _rtld_objlist->next; obj; obj = obj->next) { _rtld_initlist_visit(list, obj, rev); } } static void _rtld_init_dag(Obj_Entry *root) { _rtld_init_dag1(root, root); } static void _rtld_init_dag1(Obj_Entry *root, Obj_Entry *obj) { const Needed_Entry *needed; if (!obj->mainref) { if (_rtld_objlist_find(&obj->dldags, root)) return; dbg(("add %p (%s) to %p (%s) DAG", obj, obj->path, root, root->path)); _rtld_objlist_push_tail(&obj->dldags, root); _rtld_objlist_push_tail(&root->dagmembers, obj); } for (needed = obj->needed; needed != NULL; needed = needed->next) if (needed->obj != NULL) _rtld_init_dag1(root, needed->obj); } /* * Note, this is called only for objects loaded by dlopen(). */ static void _rtld_unload_object(sigset_t *mask, Obj_Entry *root, bool do_fini_funcs) { _rtld_unref_dag(root); if (root->refcount == 0) { /* We are finished with some objects. */ Obj_Entry *obj; Obj_Entry **linkp; Objlist_Entry *elm; /* Finalize objects that are about to be unmapped. */ if (do_fini_funcs) _rtld_call_fini_functions(mask, 0); /* Remove the DAG from all objects' DAG lists. */ SIMPLEQ_FOREACH(elm, &root->dagmembers, link) _rtld_objlist_remove(&elm->obj->dldags, root); /* Remove the DAG from the RTLD_GLOBAL list. */ if (root->globalref) { root->globalref = 0; _rtld_objlist_remove(&_rtld_list_global, root); } /* Unmap all objects that are no longer referenced. */ linkp = &_rtld_objlist->next; while ((obj = *linkp) != NULL) { if (obj->refcount == 0) { dbg(("unloading \"%s\"", obj->path)); if (obj->ehdr != MAP_FAILED) munmap(obj->ehdr, _rtld_pagesz); munmap(obj->mapbase, obj->mapsize); _rtld_objlist_remove(&_rtld_list_global, obj); _rtld_linkmap_delete(obj); *linkp = obj->next; _rtld_objcount--; _rtld_obj_free(obj); } else linkp = &obj->next; } _rtld_objtail = linkp; } } void _rtld_ref_dag(Obj_Entry *root) { const Needed_Entry *needed; assert(root); ++root->refcount; dbg(("incremented reference on \"%s\" (%d)", root->path, root->refcount)); for (needed = root->needed; needed != NULL; needed = needed->next) { if (needed->obj != NULL) _rtld_ref_dag(needed->obj); } } static void _rtld_unref_dag(Obj_Entry *root) { assert(root); assert(root->refcount != 0); --root->refcount; dbg(("decremented reference on \"%s\" (%d)", root->path, root->refcount)); if (root->refcount == 0) { const Needed_Entry *needed; for (needed = root->needed; needed != NULL; needed = needed->next) { if (needed->obj != NULL) _rtld_unref_dag(needed->obj); } } } __strong_alias(__dlclose,dlclose) int dlclose(void *handle) { Obj_Entry *root; sigset_t mask; dbg(("dlclose of %p", handle)); _rtld_exclusive_enter(&mask); root = _rtld_dlcheck(handle); if (root == NULL) { _rtld_exclusive_exit(&mask); return -1; } _rtld_debug.r_state = RT_DELETE; _rtld_debug_state(); --root->dl_refcount; _rtld_unload_object(&mask, root, true); _rtld_debug.r_state = RT_CONSISTENT; _rtld_debug_state(); _rtld_exclusive_exit(&mask); return 0; } __strong_alias(__dlerror,dlerror) char * dlerror(void) { char *msg = error_message; error_message = NULL; return msg; } __strong_alias(__dlopen,dlopen) void * dlopen(const char *name, int mode) { Obj_Entry **old_obj_tail = _rtld_objtail; Obj_Entry *obj = NULL; int flags = _RTLD_DLOPEN; bool nodelete; bool now; sigset_t mask; int result; dbg(("dlopen of %s %d", name, mode)); _rtld_exclusive_enter(&mask); flags |= (mode & RTLD_GLOBAL) ? _RTLD_GLOBAL : 0; flags |= (mode & RTLD_NOLOAD) ? _RTLD_NOLOAD : 0; nodelete = (mode & RTLD_NODELETE) ? true : false; now = ((mode & RTLD_MODEMASK) == RTLD_NOW) ? true : false; _rtld_debug.r_state = RT_ADD; _rtld_debug_state(); if (name == NULL) { obj = _rtld_objmain; obj->refcount++; } else obj = _rtld_load_library(name, _rtld_objmain, flags); if (obj != NULL) { ++obj->dl_refcount; if (*old_obj_tail != NULL) { /* We loaded something new. */ assert(*old_obj_tail == obj); result = _rtld_load_needed_objects(obj, flags); if (result != -1) { Objlist_Entry *entry; _rtld_init_dag(obj); SIMPLEQ_FOREACH(entry, &obj->dagmembers, link) { result = _rtld_verify_object_versions(entry->obj); if (result == -1) break; } } if (result == -1 || _rtld_relocate_objects(obj, (now || obj->z_now)) == -1) { _rtld_unload_object(&mask, obj, false); obj->dl_refcount--; obj = NULL; } else { _rtld_call_init_functions(&mask); } } if (obj != NULL) { if ((nodelete || obj->z_nodelete) && !obj->ref_nodel) { dbg(("dlopen obj %s nodelete", obj->path)); _rtld_ref_dag(obj); obj->z_nodelete = obj->ref_nodel = true; } } } _rtld_debug.r_state = RT_CONSISTENT; _rtld_debug_state(); _rtld_exclusive_exit(&mask); return obj; } /* * Find a symbol in the main program. */ void * _rtld_objmain_sym(const char *name) { Elf_Hash hash; const Elf_Sym *def; const Obj_Entry *obj; DoneList donelist; hash.sysv = _rtld_sysv_hash(name); hash.gnu = _rtld_gnu_hash(name); obj = _rtld_objmain; _rtld_donelist_init(&donelist); def = _rtld_symlook_list(name, &hash, &_rtld_list_main, &obj, 0, NULL, &donelist); if (def != NULL) return obj->relocbase + def->st_value; return NULL; } #ifdef __powerpc__ static __noinline void * hackish_return_address(void) { #if __GNUC_PREREQ__(6,0) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wframe-address" #endif return __builtin_return_address(1); #if __GNUC_PREREQ__(6,0) #pragma GCC diagnostic pop #endif } #endif #ifdef __HAVE_FUNCTION_DESCRIPTORS #define lookup_mutex_enter() _rtld_exclusive_enter(&mask) #define lookup_mutex_exit() _rtld_exclusive_exit(&mask) #else #define lookup_mutex_enter() _rtld_shared_enter() #define lookup_mutex_exit() _rtld_shared_exit() #endif static void * do_dlsym(void *handle, const char *name, const Ver_Entry *ventry, void *retaddr) { const Obj_Entry *obj; Elf_Hash hash; const Elf_Sym *def; const Obj_Entry *defobj; DoneList donelist; const u_int flags = SYMLOOK_DLSYM | SYMLOOK_IN_PLT; #ifdef __HAVE_FUNCTION_DESCRIPTORS sigset_t mask; #endif lookup_mutex_enter(); hash.sysv = _rtld_sysv_hash(name); hash.gnu = _rtld_gnu_hash(name); def = NULL; defobj = NULL; switch ((intptr_t)handle) { case (intptr_t)NULL: case (intptr_t)RTLD_NEXT: case (intptr_t)RTLD_DEFAULT: case (intptr_t)RTLD_SELF: if ((obj = _rtld_obj_from_addr(retaddr)) == NULL) { _rtld_error("Cannot determine caller's shared object"); lookup_mutex_exit(); return NULL; } switch ((intptr_t)handle) { case (intptr_t)NULL: /* Just the caller's shared object. */ def = _rtld_symlook_obj(name, &hash, obj, flags, ventry); defobj = obj; break; case (intptr_t)RTLD_NEXT: /* Objects after callers */ obj = obj->next; /*FALLTHROUGH*/ case (intptr_t)RTLD_SELF: /* Caller included */ for (; obj; obj = obj->next) { if ((def = _rtld_symlook_obj(name, &hash, obj, flags, ventry)) != NULL) { defobj = obj; break; } } /* * Search the dynamic linker itself, and possibly * resolve the symbol from there if it is not defined * already or weak. This is how the application links * to dynamic linker services such as dlopen. */ if (!def || ELF_ST_BIND(def->st_info) == STB_WEAK) { const Elf_Sym *symp = _rtld_symlook_obj(name, &hash, &_rtld_objself, flags, ventry); if (symp != NULL) { def = symp; defobj = &_rtld_objself; } } break; case (intptr_t)RTLD_DEFAULT: def = _rtld_symlook_default(name, &hash, obj, &defobj, flags, ventry); break; default: abort(); } break; default: if ((obj = _rtld_dlcheck(handle)) == NULL) { lookup_mutex_exit(); return NULL; } _rtld_donelist_init(&donelist); if (obj->mainprog) { /* Search main program and all libraries loaded by it */ def = _rtld_symlook_list(name, &hash, &_rtld_list_main, &defobj, flags, ventry, &donelist); } else { Needed_Entry fake; DoneList depth; /* Search the object and all the libraries loaded by it. */ fake.next = NULL; fake.obj = __UNCONST(obj); fake.name = 0; _rtld_donelist_init(&depth); def = _rtld_symlook_needed(name, &hash, &fake, &defobj, flags, ventry, &donelist, &depth); } break; } if (def != NULL) { void *p; if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) { #ifdef __HAVE_FUNCTION_DESCRIPTORS lookup_mutex_exit(); _rtld_shared_enter(); #endif p = (void *)_rtld_resolve_ifunc(defobj, def); _rtld_shared_exit(); return p; } #ifdef __HAVE_FUNCTION_DESCRIPTORS if (ELF_ST_TYPE(def->st_info) == STT_FUNC) { p = (void *)_rtld_function_descriptor_alloc(defobj, def, 0); lookup_mutex_exit(); return p; } #endif /* __HAVE_FUNCTION_DESCRIPTORS */ p = defobj->relocbase + def->st_value; lookup_mutex_exit(); return p; } _rtld_error("Undefined symbol \"%s\"", name); lookup_mutex_exit(); return NULL; } __strong_alias(__dlsym,dlsym) void * dlsym(void *handle, const char *name) { void *retaddr; dbg(("dlsym of %s in %p", name, handle)); #ifdef __powerpc__ retaddr = hackish_return_address(); #else retaddr = __builtin_return_address(0); #endif return do_dlsym(handle, name, NULL, retaddr); } __strong_alias(__dlvsym,dlvsym) void * dlvsym(void *handle, const char *name, const char *version) { Ver_Entry *ventry = NULL; Ver_Entry ver_entry; void *retaddr; dbg(("dlvsym of %s@%s in %p", name, version ? version : NULL, handle)); if (version != NULL) { ver_entry.name = version; ver_entry.file = NULL; ver_entry.hash = _rtld_sysv_hash(version); ver_entry.flags = 0; ventry = &ver_entry; } #ifdef __powerpc__ retaddr = hackish_return_address(); #else retaddr = __builtin_return_address(0); #endif return do_dlsym(handle, name, ventry, retaddr); } __strong_alias(__dladdr,dladdr) int dladdr(const void *addr, Dl_info *info) { const Obj_Entry *obj; const Elf_Sym *def, *best_def; void *symbol_addr; unsigned long symoffset; #ifdef __HAVE_FUNCTION_DESCRIPTORS sigset_t mask; #endif dbg(("dladdr of %p", addr)); lookup_mutex_enter(); #ifdef __HAVE_FUNCTION_DESCRIPTORS addr = _rtld_function_descriptor_function(addr); #endif /* __HAVE_FUNCTION_DESCRIPTORS */ obj = _rtld_obj_from_addr(addr); if (obj == NULL) { _rtld_error("No shared object contains address"); lookup_mutex_exit(); return 0; } info->dli_fname = obj->path; info->dli_fbase = obj->mapbase; info->dli_saddr = (void *)0; info->dli_sname = NULL; /* * Walk the symbol list looking for the symbol whose address is * closest to the address sent in. */ best_def = NULL; for (symoffset = 0; symoffset < obj->nchains; symoffset++) { def = obj->symtab + symoffset; /* * For skip the symbol if st_shndx is either SHN_UNDEF or * SHN_COMMON. */ if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON) continue; /* * If the symbol is greater than the specified address, or if it * is further away from addr than the current nearest symbol, * then reject it. */ symbol_addr = obj->relocbase + def->st_value; if (symbol_addr > addr || symbol_addr < info->dli_saddr) continue; /* Update our idea of the nearest symbol. */ info->dli_sname = obj->strtab + def->st_name; info->dli_saddr = symbol_addr; best_def = def; /* Exact match? */ if (info->dli_saddr == addr) break; } #ifdef __HAVE_FUNCTION_DESCRIPTORS if (best_def != NULL && ELF_ST_TYPE(best_def->st_info) == STT_FUNC) info->dli_saddr = (void *)_rtld_function_descriptor_alloc(obj, best_def, 0); #else __USE(best_def); #endif /* __HAVE_FUNCTION_DESCRIPTORS */ lookup_mutex_exit(); return 1; } __strong_alias(__dlinfo,dlinfo) int dlinfo(void *handle, int req, void *v) { const Obj_Entry *obj; void *retaddr; dbg(("dlinfo for %p %d", handle, req)); _rtld_shared_enter(); if (handle == RTLD_SELF) { #ifdef __powerpc__ retaddr = hackish_return_address(); #else retaddr = __builtin_return_address(0); #endif if ((obj = _rtld_obj_from_addr(retaddr)) == NULL) { _rtld_error("Cannot determine caller's shared object"); _rtld_shared_exit(); return -1; } } else { if ((obj = _rtld_dlcheck(handle)) == NULL) { _rtld_shared_exit(); return -1; } } switch (req) { case RTLD_DI_LINKMAP: { const struct link_map **map = v; *map = &obj->linkmap; break; } default: _rtld_error("Invalid request"); _rtld_shared_exit(); return -1; } _rtld_shared_exit(); return 0; } static void _rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info) { phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase; /* XXX: wrong but not fixing it yet */ phdr_info->dlpi_name = obj->path; phdr_info->dlpi_phdr = obj->phdr; phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]); #if defined(__HAVE_TLS_VARIANT_I) || defined(__HAVE_TLS_VARIANT_II) phdr_info->dlpi_tls_modid = obj->tlsindex; phdr_info->dlpi_tls_data = obj->tlsinit; #else phdr_info->dlpi_tls_modid = 0; phdr_info->dlpi_tls_data = 0; #endif phdr_info->dlpi_adds = _rtld_objloads; phdr_info->dlpi_subs = _rtld_objloads - _rtld_objcount; } __strong_alias(__dl_iterate_phdr,dl_iterate_phdr); int dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *), void *param) { struct dl_phdr_info phdr_info; const Obj_Entry *obj; int error = 0; dbg(("dl_iterate_phdr")); _rtld_shared_enter(); for (obj = _rtld_objlist; obj != NULL; obj = obj->next) { _rtld_fill_dl_phdr_info(obj, &phdr_info); /* XXXlocking: exit point */ error = callback(&phdr_info, sizeof(phdr_info), param); if (error) break; } if (error == 0) { _rtld_fill_dl_phdr_info(&_rtld_objself, &phdr_info); /* XXXlocking: exit point */ error = callback(&phdr_info, sizeof(phdr_info), param); } _rtld_shared_exit(); return error; } void __dl_cxa_refcount(void *addr, ssize_t delta) { sigset_t mask; Obj_Entry *obj; if (delta == 0) return; dbg(("__dl_cxa_refcount of %p with %zd", addr, delta)); _rtld_exclusive_enter(&mask); obj = _rtld_obj_from_addr(addr); if (obj == NULL) { dbg(("__dl_cxa_refcont: address not found")); _rtld_error("No shared object contains address"); _rtld_exclusive_exit(&mask); return; } if (delta > 0 && obj->cxa_refcount > SIZE_MAX - delta) _rtld_error("Reference count overflow"); else if (delta < 0 && obj->cxa_refcount < -1 + (size_t)-(delta + 1)) _rtld_error("Reference count underflow"); else { if (obj->cxa_refcount == 0) ++obj->refcount; obj->cxa_refcount += delta; dbg(("new reference count: %zu", obj->cxa_refcount)); if (obj->cxa_refcount == 0) { --obj->refcount; if (obj->refcount == 0) _rtld_unload_object(&mask, obj, true); } } _rtld_exclusive_exit(&mask); } pid_t __fork(void); __dso_public pid_t __locked_fork(int *my_errno) { sigset_t mask; pid_t result; _rtld_exclusive_enter(&mask); result = __fork(); if (result == -1) *my_errno = errno; _rtld_exclusive_exit(&mask); return result; } /* * Error reporting function. Use it like printf. If formats the message * into a buffer, and sets things up so that the next call to dlerror() * will return the message. */ void _rtld_error(const char *fmt,...) { static char buf[512]; va_list ap; va_start(ap, fmt); xvsnprintf(buf, sizeof buf, fmt, ap); error_message = buf; va_end(ap); } void _rtld_debug_state(void) { #if defined(__hppa__) __asm volatile("nop" ::: "memory"); #endif /* Prevent optimizer from removing calls to this function */ __insn_barrier(); } void _rtld_linkmap_add(Obj_Entry *obj) { struct link_map *l = &obj->linkmap; struct link_map *prev; obj->linkmap.l_name = obj->path; obj->linkmap.l_addr = obj->relocbase; obj->linkmap.l_ld = obj->dynamic; #ifdef __mips__ /* XXX This field is not standard and will be removed eventually. */ obj->linkmap.l_offs = obj->relocbase; #endif if (_rtld_debug.r_map == NULL) { _rtld_debug.r_map = l; return; } /* * Scan to the end of the list, but not past the entry for the * dynamic linker, which we want to keep at the very end. */ for (prev = _rtld_debug.r_map; prev->l_next != NULL && prev->l_next != &_rtld_objself.linkmap; prev = prev->l_next); l->l_prev = prev; l->l_next = prev->l_next; if (l->l_next != NULL) l->l_next->l_prev = l; prev->l_next = l; } void _rtld_linkmap_delete(Obj_Entry *obj) { struct link_map *l = &obj->linkmap; if (l->l_prev == NULL) { if ((_rtld_debug.r_map = l->l_next) != NULL) l->l_next->l_prev = NULL; return; } if ((l->l_prev->l_next = l->l_next) != NULL) l->l_next->l_prev = l->l_prev; } static Obj_Entry * _rtld_obj_from_addr(const void *addr) { Obj_Entry *obj; for (obj = _rtld_objlist; obj != NULL; obj = obj->next) { if (addr < (void *) obj->mapbase) continue; if (addr < (void *) (obj->mapbase + obj->mapsize)) return obj; } return NULL; } static void _rtld_objlist_clear(Objlist *list) { while (!SIMPLEQ_EMPTY(list)) { Objlist_Entry* elm = SIMPLEQ_FIRST(list); SIMPLEQ_REMOVE_HEAD(list, link); xfree(elm); } } static void _rtld_objlist_remove(Objlist *list, Obj_Entry *obj) { Objlist_Entry *elm; if ((elm = _rtld_objlist_find(list, obj)) != NULL) { SIMPLEQ_REMOVE(list, elm, Struct_Objlist_Entry, link); xfree(elm); } } #define RTLD_EXCLUSIVE_MASK 0x80000000U static volatile unsigned int _rtld_mutex; static volatile unsigned int _rtld_waiter_exclusive; static volatile unsigned int _rtld_waiter_shared; void _rtld_shared_enter(void) { unsigned int cur; lwpid_t waiter, self = 0; membar_enter(); for (;;) { cur = _rtld_mutex; /* * First check if we are currently not exclusively locked. */ if ((cur & RTLD_EXCLUSIVE_MASK) == 0) { /* Yes, so increment use counter */ if (atomic_cas_uint(&_rtld_mutex, cur, cur + 1) != cur) continue; membar_enter(); return; } /* * Someone has an exclusive lock. Puts us on the waiter list. */ if (!self) self = _lwp_self(); if (cur == (self | RTLD_EXCLUSIVE_MASK)) { if (_rtld_mutex_may_recurse) return; _rtld_error("%s: dead lock detected", __func__); _rtld_die(); } waiter = atomic_swap_uint(&_rtld_waiter_shared, self); /* * Check for race against _rtld_exclusive_exit before sleeping. */ membar_sync(); if ((_rtld_mutex & RTLD_EXCLUSIVE_MASK) || _rtld_waiter_exclusive) _lwp_park(CLOCK_REALTIME, 0, NULL, 0, __UNVOLATILE(&_rtld_mutex), NULL); /* Try to remove us from the waiter list. */ atomic_cas_uint(&_rtld_waiter_shared, self, 0); if (waiter) _lwp_unpark(waiter, __UNVOLATILE(&_rtld_mutex)); } } void _rtld_shared_exit(void) { lwpid_t waiter; /* * Shared lock taken after an exclusive lock. * Just assume this is a partial recursion. */ if (_rtld_mutex & RTLD_EXCLUSIVE_MASK) return; /* * Wakeup LWPs waiting for an exclusive lock if this is the last * LWP on the shared lock. */ membar_exit(); if (atomic_dec_uint_nv(&_rtld_mutex)) return; membar_sync(); if ((waiter = _rtld_waiter_exclusive) != 0) _lwp_unpark(waiter, __UNVOLATILE(&_rtld_mutex)); } void _rtld_exclusive_enter(sigset_t *mask) { lwpid_t waiter, self = _lwp_self(); unsigned int locked_value = (unsigned int)self | RTLD_EXCLUSIVE_MASK; unsigned int cur; sigset_t blockmask; sigfillset(&blockmask); sigdelset(&blockmask, SIGTRAP); /* Allow the debugger */ sigprocmask(SIG_BLOCK, &blockmask, mask); for (;;) { if (atomic_cas_uint(&_rtld_mutex, 0, locked_value) == 0) { membar_enter(); break; } waiter = atomic_swap_uint(&_rtld_waiter_exclusive, self); membar_sync(); cur = _rtld_mutex; if (cur == locked_value) { _rtld_error("%s: dead lock detected", __func__); _rtld_die(); } if (cur) _lwp_park(CLOCK_REALTIME, 0, NULL, 0, __UNVOLATILE(&_rtld_mutex), NULL); atomic_cas_uint(&_rtld_waiter_exclusive, self, 0); if (waiter) _lwp_unpark(waiter, __UNVOLATILE(&_rtld_mutex)); } } void _rtld_exclusive_exit(sigset_t *mask) { lwpid_t waiter; membar_exit(); _rtld_mutex = 0; membar_sync(); if ((waiter = _rtld_waiter_exclusive) != 0) _lwp_unpark(waiter, __UNVOLATILE(&_rtld_mutex)); if ((waiter = _rtld_waiter_shared) != 0) _lwp_unpark(waiter, __UNVOLATILE(&_rtld_mutex)); sigprocmask(SIG_SETMASK, mask, NULL); } int _rtld_relro(const Obj_Entry *obj, bool wantmain) { #ifdef GNU_RELRO /* * If our VM page size is larger than the page size used by the * linker when laying out the object, we could end up making data * read-only that is unintended. Detect and avoid this situation. * It may mean we are unable to protect everything we'd like, but * it's better than crashing. */ uintptr_t relro_end = (uintptr_t)obj->relro_page + obj->relro_size; uintptr_t relro_start = round_down((uintptr_t)obj->relro_page); assert(relro_end >= relro_start); size_t relro_size = round_down(relro_end) - relro_start; if (relro_size == 0) return 0; if (wantmain != (obj ==_rtld_objmain)) return 0; dbg(("RELRO %s %p %zx\n", obj->path, (void *)relro_start, relro_size)); if (mprotect((void *)relro_start, relro_size, PROT_READ) == -1) { _rtld_error("%s: Cannot enforce relro " "protection: %s", obj->path, xstrerror(errno)); return -1; } #endif return 0; }