/* $NetBSD: r2025.c,v 1.5 2008/05/04 15:26:29 xtraeme Exp $ */ /*- * Copyright (c) 2006 Shigeyuki Fukushima. * All rights reserved. * * Written by Shigeyuki Fukushima. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: r2025.c,v 1.5 2008/05/04 15:26:29 xtraeme Exp $"); #include #include #include #include #include #include #include #include #include #include #include struct r2025rtc_softc { device_t sc_dev; i2c_tag_t sc_tag; int sc_address; int sc_open; struct todr_chip_handle sc_todr; }; static void r2025rtc_attach(device_t, device_t, void *); static int r2025rtc_match(device_t, cfdata_t, void *); CFATTACH_DECL_NEW(r2025rtc, sizeof(struct r2025rtc_softc), r2025rtc_match, r2025rtc_attach, NULL, NULL); static int r2025rtc_gettime(struct todr_chip_handle *, volatile struct timeval *); static int r2025rtc_settime(struct todr_chip_handle *, volatile struct timeval *); static int r2025rtc_reg_write(struct r2025rtc_softc *, int, uint8_t*, int); static int r2025rtc_reg_read(struct r2025rtc_softc *, int, uint8_t*, int); static int r2025rtc_match(device_t parent, cfdata_t cf, void *arg) { struct i2c_attach_args *ia = arg; /* match only R2025 RTC devices */ if (ia->ia_addr == R2025_ADDR) return 1; return 0; } static void r2025rtc_attach(device_t parent, device_t self, void *arg) { struct r2025rtc_softc *sc = device_private(self); struct i2c_attach_args *ia = arg; aprint_normal(": RICOH R2025S/D Real-time Clock\n"); sc->sc_tag = ia->ia_tag; sc->sc_address = ia->ia_addr; sc->sc_dev = self; sc->sc_open = 0; sc->sc_todr.cookie = sc; sc->sc_todr.todr_gettime = r2025rtc_gettime; sc->sc_todr.todr_settime = r2025rtc_settime; sc->sc_todr.todr_setwen = NULL; todr_attach(&sc->sc_todr); } static int r2025rtc_gettime(struct todr_chip_handle *ch, volatile struct timeval *tv) { struct r2025rtc_softc *sc = ch->cookie; struct clock_ymdhms dt; uint8_t rctrl; uint8_t bcd[R2025_CLK_SIZE]; int hour; memset(&dt, 0, sizeof(dt)); if (r2025rtc_reg_read(sc, R2025_REG_CTRL1, &rctrl, 1) != 0) { aprint_error_dev(sc->sc_dev, "r2025rtc_gettime: failed to read registers.\n"); return -1; } if (r2025rtc_reg_read(sc, R2025_REG_SEC, &bcd[0], R2025_CLK_SIZE) != 0) { aprint_error_dev(sc->sc_dev, "r2025rtc_gettime: failed to read registers.\n"); return -1; } dt.dt_sec = FROMBCD(bcd[R2025_REG_SEC] & R2025_REG_SEC_MASK); dt.dt_min = FROMBCD(bcd[R2025_REG_MIN] & R2025_REG_MIN_MASK); hour = FROMBCD(bcd[R2025_REG_HOUR] & R2025_REG_HOUR_MASK); if (rctrl & R2025_REG_CTRL1_H1224) { dt.dt_hour = hour; } else { if (hour == 12) { dt.dt_hour = 0; } else if (hour == 32) { dt.dt_hour = 12; } else if (hour > 13) { dt.dt_hour = (hour - 8); } else { /* (hour < 12) */ dt.dt_hour = hour; } } dt.dt_wday = FROMBCD(bcd[R2025_REG_WDAY] & R2025_REG_WDAY_MASK); dt.dt_day = FROMBCD(bcd[R2025_REG_DAY] & R2025_REG_DAY_MASK); dt.dt_mon = FROMBCD(bcd[R2025_REG_MON] & R2025_REG_MON_MASK); dt.dt_year = FROMBCD(bcd[R2025_REG_YEAR] & R2025_REG_YEAR_MASK) + ((bcd[R2025_REG_MON] & R2025_REG_MON_Y1920) ? 2000 : 1900); tv->tv_sec = clock_ymdhms_to_secs(&dt); tv->tv_usec = 0; return 0; } static int r2025rtc_settime(struct todr_chip_handle *ch, volatile struct timeval *tv) { struct r2025rtc_softc *sc = ch->cookie; struct clock_ymdhms dt; uint8_t rctrl; uint8_t bcd[R2025_CLK_SIZE]; clock_secs_to_ymdhms(tv->tv_sec, &dt); /* Y3K problem */ if (dt.dt_year >= 3000) { aprint_error_dev(sc->sc_dev, "r2025rtc_settime: " "RTC does not support year 3000 or over.\n"); return -1; } if (r2025rtc_reg_read(sc, R2025_REG_CTRL1, &rctrl, 1) != 0) { aprint_error_dev(sc->sc_dev, "r2025rtc_settime: failed to read register.\n"); return -1; } rctrl |= R2025_REG_CTRL1_H1224; /* setup registers 0x00-0x06 (7 byte) */ bcd[R2025_REG_SEC] = TOBCD(dt.dt_sec) & R2025_REG_SEC_MASK; bcd[R2025_REG_MIN] = TOBCD(dt.dt_min) & R2025_REG_MIN_MASK; bcd[R2025_REG_HOUR] = TOBCD(dt.dt_hour) & R2025_REG_HOUR_MASK; bcd[R2025_REG_WDAY] = TOBCD(dt.dt_wday) & R2025_REG_WDAY_MASK; bcd[R2025_REG_DAY] = TOBCD(dt.dt_day) & R2025_REG_DAY_MASK; bcd[R2025_REG_MON] = (TOBCD(dt.dt_mon) & R2025_REG_MON_MASK) | ((dt.dt_year >= 2000) ? R2025_REG_MON_Y1920 : 0); bcd[R2025_REG_YEAR] = TOBCD(dt.dt_year % 100) & R2025_REG_YEAR_MASK; /* Write RTC register */ if (r2025rtc_reg_write(sc, R2025_REG_CTRL1, &rctrl, 1) != 0) { aprint_error_dev(sc->sc_dev, "r2025rtc_settime: failed to write registers.\n"); return -1; } if (r2025rtc_reg_write(sc, R2025_REG_SEC, bcd, R2025_CLK_SIZE) != 0) { aprint_error_dev(sc->sc_dev, "r2025rtc_settime: failed to write registers.\n"); return -1; } return 0; } static int r2025rtc_reg_write(struct r2025rtc_softc *sc, int reg, uint8_t *val, int len) { int i; uint8_t buf[1]; uint8_t cmdbuf[1]; if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) { aprint_error_dev(sc->sc_dev, "r2025rtc_clock_write: failed to acquire I2C bus\n"); return -1; } for (i = 0 ; i < len ; i++) { cmdbuf[0] = (((reg + i) << 4) & 0xf0); buf[0] = val[i]; if (iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, cmdbuf, 1, buf, 1, I2C_F_POLL)) { iic_release_bus(sc->sc_tag, I2C_F_POLL); aprint_error_dev(sc->sc_dev, "r2025rtc_reg_write: " "failed to write registers\n"); return -1; } } iic_release_bus(sc->sc_tag, I2C_F_POLL); return 0; } static int r2025rtc_reg_read(struct r2025rtc_softc *sc, int reg, uint8_t *val, int len) { int i; uint8_t buf[1]; uint8_t cmdbuf[1]; if (iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) { aprint_error_dev(sc->sc_dev, "r2025rtc_clock_read: failed to acquire I2C bus\n"); return -1; } for (i = 0 ; i < len ; i++) { cmdbuf[0] = (((reg + i) << 4) & 0xf0); buf[0] = 0; if (iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, cmdbuf, 1, buf, 1, I2C_F_POLL)) { iic_release_bus(sc->sc_tag, I2C_F_POLL); aprint_error_dev(sc->sc_dev, "r2025rtc_reg_read: " "failed to write registers\n"); return -1; } *(val + i) = buf[0]; } iic_release_bus(sc->sc_tag, I2C_F_POLL); return 0; }