/* $NetBSD: grf_rt.c,v 1.27 1996/05/19 21:05:45 veego Exp $ */ /* * Copyright (c) 1993 Markus Wild * Copyright (c) 1993 Lutz Vieweg * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Lutz Vieweg. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "grfrt.h" #if NGRFRT > 0 /* Graphics routines for the Retina board, using the NCR 77C22E+ VGA controller. */ #include #include #include #include #include #include #include #include #include #include #include int rt_ioctl __P((struct grf_softc *gp, u_long, void *)); /* * marked true early so that retina_cnprobe() can tell if we are alive. */ int retina_inited; /* * This driver for the MacroSystem Retina board was only possible, * because MacroSystem provided information about the pecularities * of the board. THANKS! Competition in Europe among gfx board * manufacturers is rather tough, so Lutz Vieweg, who wrote the * initial driver, has made an agreement with MS not to document * the driver source (see also his comment below). * -> ALL comments after * -> " -------------- START OF CODE -------------- " * -> have been added by myself (mw) from studying the publically * -> available "NCR 77C22E+" Data Manual */ /* * This code offers low-level routines to access the Retina graphics-board * manufactured by MS MacroSystem GmbH from within NetBSD for the Amiga. * * Thanks to MacroSystem for providing me with the neccessary information * to create theese routines. The sparse documentation of this code * results from the agreements between MS and me. */ extern unsigned char kernel_font_8x8_width, kernel_font_8x8_height; extern unsigned char kernel_font_8x8_lo, kernel_font_8x8_hi; extern unsigned char kernel_font_8x8[]; #define MDF_DBL 1 #define MDF_LACE 2 #define MDF_CLKDIV2 4 /* standard-palette definition */ unsigned char NCRStdPalette[16*3] = { /* R G B */ 0, 0, 0, 192,192,192, 128, 0, 0, 0,128, 0, 0, 0,128, 128,128, 0, 0,128,128, 128, 0,128, 64, 64, 64, /* the higher 8 colors have more intensity for */ 255,255,255, /* compatibility with standard attributes */ 255, 0, 0, 0,255, 0, 0, 0,255, 255,255, 0, 0,255,255, 255, 0,255 }; /* The following structures are examples for monitor-definitions. To make one of your own, first use "DefineMonitor" and create the 8-bit monitor-mode of your dreams. Then save it, and make a structure from the values provided in the file DefineMonitor stored - the labels in the comment above the structure definition show where to put what value. Then you'll need to adapt your monitor-definition to the font you want to use. Be FX the width of the font, then the following modifications have to be applied to your values: HBS = (HBS * 4) / FX HSS = (HSS * 4) / FX HSE = (HSE * 4) / FX HBE = (HBE * 4) / FX HT = (HT * 4) / FX Make sure your maximum width (MW) and height (MH) are even multiples of the fonts' width and height. */ #if 0 /* horizontal 31.5 kHz */ /* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */ struct MonDef MON_640_512_60 = { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535, /* Depth, PAL, TX, TY, XY,FontX, FontY, FontData, FLo, Fhi */ 4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255}; struct MonDef MON_640_480_62_G = { 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502, 8, NCRStdPalette,640,480, 5120, 8, 8, kernel_font_8x8, 32, 255}; /* Enter higher values here ^ ^ for panning! */ /* horizontal 38kHz */ struct MonDef MON_768_600_60 = { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638, 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}; /* horizontal 64kHz */ struct MonDef MON_768_600_80 = { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628, 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}; struct MonDef MON_1024_768_80 = { 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804, 4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255}; /* FQ FLG MW MH HBS HSS HSE HBE HT VBS VSS VSE VBE VT */ struct MonDef MON_1024_768_80_G = { 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804, 8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255}; struct MonDef MON_1024_1024_59= { 90000000, 24, 1024,1024, 129,130,141,173,170,1025,1059,1076,1087,1087, 4, NCRStdPalette,128, 128, 16384, 8, 8, kernel_font_8x8, 32, 255}; /* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */ struct MonDef MON_1280_1024_60= {110000000, 24, 1280,1024, 161,162,176,211,208,1025,1026,1043,1073,1073, 4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255}; struct MonDef MON_1280_1024_60_G= {110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073, 8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255}; /* horizontal 75kHz */ struct MonDef MON_1280_1024_69= {120000000, 24, 1280,1024, 161,162,175,200,197,1025,1026,1043,1073,1073, 4, NCRStdPalette,160, 128, 20480, 8, 8, kernel_font_8x8, 32, 255}; #else struct MonDef monitor_defs[] = { /* horizontal 31.5 kHz */ { 50000000, 28, 640, 512, 81, 86, 93, 98, 95, 513, 513, 521, 535, 535, 4, NCRStdPalette, 80, 64, 5120, 8, 8, kernel_font_8x8, 32, 255}, /* horizontal 38kHz */ { 75000000, 28, 768, 600, 97, 99,107,120,117, 601, 615, 625, 638, 638, 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}, /* horizontal 64kHz */ { 50000000, 24, 768, 600, 97,104,112,122,119, 601, 606, 616, 628, 628, 4, NCRStdPalette, 96, 75, 7200, 8, 8, kernel_font_8x8, 32, 255}, { 90000000, 24, 1024, 768, 129,130,141,172,169, 769, 770, 783, 804, 804, 4, NCRStdPalette,128, 96, 12288, 8, 8, kernel_font_8x8, 32, 255}, /* GFX modes */ /* horizontal 31.5 kHz */ { 50000000, 4, 640, 480, 161,171,184,196,195, 481, 484, 492, 502, 502, 8, NCRStdPalette,640, 480, 5120, 8, 8, kernel_font_8x8, 32, 255}, /* horizontal 64kHz */ { 90000000, 0, 1024, 768, 257,258,280,344,343, 769, 770, 783, 804, 804, 8, NCRStdPalette, 1024, 768, 12288, 8, 8, kernel_font_8x8, 32, 255}, /* WARNING: THE FOLLOWING MONITOR MODES EXCEED THE 90-MHz LIMIT THE PROCESSOR HAS BEEN SPECIFIED FOR. USE AT YOUR OWN RISK (AND THINK ABOUT MOUNTING SOME COOLING DEVICE AT THE PROCESSOR AND RAMDAC)! */ {110000000, 0, 1280,1024, 321,322,349,422,421,1025,1026,1043,1073,1073, 8, NCRStdPalette,1280,1024, 20480, 8, 8, kernel_font_8x8, 32, 255}, }; static const char *monitor_descr[] = { "80x64 (640x512) 31.5kHz", "96x75 (768x600) 38kHz", "96x75 (768x600) 64kHz", "128x96 (1024x768) 64kHz", "GFX (640x480) 31.5kHz", "GFX (1024x768) 64kHz", "GFX (1280x1024) 64kHz ***EXCEEDS CHIP LIMIT!!!***", }; int retina_mon_max = sizeof (monitor_defs)/sizeof (monitor_defs[0]); /* patchable */ int retina_default_mon = 0; int retina_default_gfx = 4; #endif static struct MonDef *current_mon; /* -------------- START OF CODE -------------- */ static const long FQTab[16] = { 25175000, 28322000, 36000000, 65000000, 44900000, 50000000, 80000000, 75000000, 56644000, 63000000, 72000000, 130000000, 90000000, 100000000, 110000000, 120000000 }; /*--------------------------------------------------*/ /*--------------------------------------------------*/ #if 0 static struct MonDef *default_monitor = &DEFAULT_MONDEF; #endif int retina_alive __P((struct MonDef *)); static int rt_load_mon __P((struct grf_softc *, struct MonDef *)); /* * used to query the retina to see if its alive (?) */ int retina_alive(mdp) struct MonDef *mdp; { short clksel; for (clksel = 15; clksel; clksel--) { if (FQTab[clksel] == mdp->FQ) break; } if (clksel < 0) return(0); if (mdp->DEP != 4) return(1); if (mdp->FX == 4 || (mdp->FX >= 7 && mdp->FX <= 16)) return(1); return(0); } static int rt_load_mon(gp, md) struct grf_softc *gp; struct MonDef *md; { struct grfinfo *gi = &gp->g_display; volatile caddr_t ba, fb; short FW, clksel, HDE, VDE; for (clksel = 15; clksel; clksel--) { if (FQTab[clksel] == md->FQ) break; } if (clksel < 0) return(0); ba = gp->g_regkva;; fb = gp->g_fbkva; FW = 0; if (md->DEP == 4) { switch (md->FX) { case 4: FW = 0; break; case 7: FW = 1; break; case 8: FW = 2; break; case 9: FW = 3; break; case 10: FW = 4; break; case 11: FW = 5; break; case 12: FW = 6; break; case 13: FW = 7; break; case 14: FW = 8; break; case 15: FW = 9; break; case 16: FW = 11; break; default: return(0); break; }; } if (md->DEP == 4) HDE = (md->MW+md->FX-1)/md->FX; else HDE = (md->MW+3)/4; VDE = md->MH-1; /* hmm... */ fb[0x8000] = 0; /* enable extension registers */ WSeq (ba, SEQ_ID_EXTENDED_ENABLE, 0x05); #if 0 /* program the clock oscillator */ vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04)); vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00); /* XXXX according to the NCR specs, this register should be set to 1 XXXX before doing the MISC_OUTPUT setting and CLOCKING_MODE XXXX setting. */ WSeq (ba, SEQ_ID_RESET, 0x03); WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8)); WSeq (ba, SEQ_ID_MAP_MASK, 0x0f); WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00); /* odd/even write select + extended memory */ WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06); /* XXXX I think this order of setting RESET is wrong... */ WSeq (ba, SEQ_ID_RESET, 0x01); WSeq (ba, SEQ_ID_RESET, 0x03); #else WSeq (ba, SEQ_ID_RESET, 0x01); /* set font width + rest of clocks */ WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) ); /* another clock bit, plus hw stuff */ WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) ); /* program the clock oscillator */ vgaw (ba, GREG_MISC_OUTPUT_W, 0xe3 | ((clksel & 3) * 0x04)); vgaw (ba, GREG_FEATURE_CONTROL_W, 0x00); WSeq (ba, SEQ_ID_CLOCKING_MODE, 0x01 | ((md->FLG & MDF_CLKDIV2)/ MDF_CLKDIV2 * 8)); WSeq (ba, SEQ_ID_MAP_MASK, 0x0f); WSeq (ba, SEQ_ID_CHAR_MAP_SELECT, 0x00); /* odd/even write select + extended memory */ WSeq (ba, SEQ_ID_MEMORY_MODE, 0x06); WSeq (ba, SEQ_ID_RESET, 0x03); #endif /* monochrome cursor */ WSeq (ba, SEQ_ID_CURSOR_CONTROL, 0x00); /* bank0 */ WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, 0x00); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, 0x00); WSeq (ba, SEQ_ID_DISP_OFF_HI , 0x00); WSeq (ba, SEQ_ID_DISP_OFF_LO , 0x00); /* bank0 */ WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, 0x00); WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, 0x00); /* 1M-chips + ena SEC + ena EMem + rw PrimA0/rw Sec/B0 */ WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, 0x3 | 0x4 | 0x10 | 0x40); #if 0 /* set font width + rest of clocks */ WSeq (ba, SEQ_ID_EXT_CLOCK_MODE, 0x30 | (FW & 0x0f) | ((clksel & 4) / 4 * 0x40) ); #endif if (md->DEP == 4) { /* no ext-chain4 + no host-addr-bit-16 */ WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x00); /* no packed/nibble + no 256bit gfx format */ WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x00); } else { WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, 0x02); /* 256bit gfx format */ WSeq (ba, SEQ_ID_EXT_PIXEL_CNTL, 0x01); } /* AT-interface */ WSeq (ba, SEQ_ID_BUS_WIDTH_FEEDB, 0x06); /* see fg/bg color expansion */ WSeq (ba, SEQ_ID_COLOR_EXP_WFG, 0x01); WSeq (ba, SEQ_ID_COLOR_EXP_WBG, 0x00); WSeq (ba, SEQ_ID_EXT_RW_CONTROL, 0x00); #if 0 /* another clock bit, plus hw stuff */ WSeq (ba, SEQ_ID_MISC_FEATURE_SEL, 0xf4 | (clksel & 8) ); #endif /* don't tristate PCLK and PIX */ WSeq (ba, SEQ_ID_COLOR_KEY_CNTL, 0x40 ); /* reset CRC circuit */ WSeq (ba, SEQ_ID_CRC_CONTROL, 0x00 ); /* set RAS/CAS swap */ WSeq (ba, SEQ_ID_PERF_SELECT, 0x20); WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0xf ) | 0x20); WCrt (ba, CRT_ID_HOR_TOTAL, md->HT & 0xff); WCrt (ba, CRT_ID_HOR_DISP_ENA_END, (HDE-1) & 0xff); WCrt (ba, CRT_ID_START_HOR_BLANK, md->HBS & 0xff); WCrt (ba, CRT_ID_END_HOR_BLANK, (md->HBE & 0x1f) | 0x80); WCrt (ba, CRT_ID_START_HOR_RETR, md->HSS & 0xff); WCrt (ba, CRT_ID_END_HOR_RETR, (md->HSE & 0x1f) | ((md->HBE & 0x20)/ 0x20 * 0x80)); WCrt (ba, CRT_ID_VER_TOTAL, (md->VT & 0xff)); WCrt (ba, CRT_ID_OVERFLOW, (( (md->VSS & 0x200) / 0x200 * 0x80) | ((VDE & 0x200) / 0x200 * 0x40) | ((md->VT & 0x200) / 0x200 * 0x20) | 0x10 | ((md->VBS & 0x100) / 0x100 * 8 ) | ((md->VSS & 0x100) / 0x100 * 4 ) | ((VDE & 0x100) / 0x100 * 2 ) | ((md->VT & 0x100) / 0x100 ))); WCrt (ba, CRT_ID_PRESET_ROW_SCAN, 0x00); if (md->DEP == 4) { WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80) | 0x40 | ((md->VBS & 0x200)/0x200 * 0x20) | ((md->FY-1) & 0x1f))); } else { WCrt (ba, CRT_ID_MAX_SCAN_LINE, (( (md->FLG & MDF_DBL)/ MDF_DBL * 0x80) | 0x40 | ((md->VBS & 0x200)/0x200 * 0x20) | (0 & 0x1f))); } WCrt (ba, CRT_ID_CURSOR_START, (md->FY & 0x1f) - 2); WCrt (ba, CRT_ID_CURSOR_END, (md->FY & 0x1f) - 1); WCrt (ba, CRT_ID_START_ADDR_HIGH, 0x00); WCrt (ba, CRT_ID_START_ADDR_LOW, 0x00); WCrt (ba, CRT_ID_CURSOR_LOC_HIGH, 0x00); WCrt (ba, CRT_ID_CURSOR_LOC_LOW, 0x00); WCrt (ba, CRT_ID_START_VER_RETR, md->VSS & 0xff); WCrt (ba, CRT_ID_END_VER_RETR, (md->VSE & 0x0f) | 0x80 | 0x20); WCrt (ba, CRT_ID_VER_DISP_ENA_END, VDE & 0xff); if (md->DEP == 4) WCrt (ba, CRT_ID_OFFSET, (HDE / 2) & 0xff); else WCrt (ba, CRT_ID_OFFSET, (md->TX / 8) & 0xff); WCrt (ba, CRT_ID_UNDERLINE_LOC, (md->FY-1) & 0x1f); WCrt (ba, CRT_ID_START_VER_BLANK, md->VBS & 0xff); WCrt (ba, CRT_ID_END_VER_BLANK, md->VBE & 0xff); /* byte mode + wrap + select row scan counter + cms */ WCrt (ba, CRT_ID_MODE_CONTROL, 0xe3); WCrt (ba, CRT_ID_LINE_COMPARE, 0xff); /* enable extended end bits + those bits */ WCrt (ba, CRT_ID_EXT_HOR_TIMING1, ( 0x20 | ((md->FLG & MDF_LACE) / MDF_LACE * 0x10) | ((md->HT & 0x100) / 0x100 * 0x01) | (((HDE-1) & 0x100) / 0x100 * 0x02) | ((md->HBS & 0x100) / 0x100 * 0x04) | ((md->HSS & 0x100) / 0x100 * 0x08))); if (md->DEP == 4) WCrt (ba, CRT_ID_EXT_START_ADDR, (((HDE / 2) & 0x100)/0x100 * 16)); else WCrt (ba, CRT_ID_EXT_START_ADDR, (((md->TX / 8) & 0x100)/0x100 * 16)); WCrt (ba, CRT_ID_EXT_HOR_TIMING2, ( ((md->HT & 0x200)/ 0x200 * 0x01) | (((HDE-1) & 0x200)/ 0x200 * 0x02) | ((md->HBS & 0x200)/ 0x200 * 0x04) | ((md->HSS & 0x200)/ 0x200 * 0x08) | ((md->HBE & 0xc0) / 0x40 * 0x10) | ((md->HSE & 0x60) / 0x20 * 0x40))); WCrt (ba, CRT_ID_EXT_VER_TIMING, ( ((md->VSE & 0x10) / 0x10 * 0x80) | ((md->VBE & 0x300)/ 0x100 * 0x20) | 0x10 | ((md->VSS & 0x400)/ 0x400 * 0x08) | ((md->VBS & 0x400)/ 0x400 * 0x04) | ((VDE & 0x400)/ 0x400 * 0x02) | ((md->VT & 0x400)/ 0x400 * 0x01))); WGfx (ba, GCT_ID_SET_RESET, 0x00); WGfx (ba, GCT_ID_ENABLE_SET_RESET, 0x00); WGfx (ba, GCT_ID_COLOR_COMPARE, 0x00); WGfx (ba, GCT_ID_DATA_ROTATE, 0x00); WGfx (ba, GCT_ID_READ_MAP_SELECT, 0x00); WGfx (ba, GCT_ID_GRAPHICS_MODE, 0x00); if (md->DEP == 4) WGfx (ba, GCT_ID_MISC, 0x04); else WGfx (ba, GCT_ID_MISC, 0x05); WGfx (ba, GCT_ID_COLOR_XCARE, 0xff); WGfx (ba, GCT_ID_BITMASK, 0xff); /* reset the Attribute Controller flipflop */ vgar (ba, GREG_STATUS1_R); WAttr (ba, ACT_ID_PALETTE0, 0x00); WAttr (ba, ACT_ID_PALETTE1, 0x01); WAttr (ba, ACT_ID_PALETTE2, 0x02); WAttr (ba, ACT_ID_PALETTE3, 0x03); WAttr (ba, ACT_ID_PALETTE4, 0x04); WAttr (ba, ACT_ID_PALETTE5, 0x05); WAttr (ba, ACT_ID_PALETTE6, 0x06); WAttr (ba, ACT_ID_PALETTE7, 0x07); WAttr (ba, ACT_ID_PALETTE8, 0x08); WAttr (ba, ACT_ID_PALETTE9, 0x09); WAttr (ba, ACT_ID_PALETTE10, 0x0a); WAttr (ba, ACT_ID_PALETTE11, 0x0b); WAttr (ba, ACT_ID_PALETTE12, 0x0c); WAttr (ba, ACT_ID_PALETTE13, 0x0d); WAttr (ba, ACT_ID_PALETTE14, 0x0e); WAttr (ba, ACT_ID_PALETTE15, 0x0f); vgar (ba, GREG_STATUS1_R); if (md->DEP == 4) WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x08); else WAttr (ba, ACT_ID_ATTR_MODE_CNTL, 0x09); WAttr (ba, ACT_ID_OVERSCAN_COLOR, 0x00); WAttr (ba, ACT_ID_COLOR_PLANE_ENA, 0x0f); WAttr (ba, ACT_ID_HOR_PEL_PANNING, 0x00); WAttr (ba, ACT_ID_COLOR_SELECT, 0x00); vgar (ba, GREG_STATUS1_R); /* I have *NO* idea what strobing reg-0x20 might do... */ vgaw (ba, ACT_ADDRESS_W, 0x20); if (md->DEP == 4) WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) | 0x40 | ((md->VBS & 0x200)/0x200 * 0x20) | ((md->FY-1) & 0x1f))); else WCrt (ba, CRT_ID_MAX_SCAN_LINE, ( ((md->FLG & MDF_DBL)/ MDF_DBL * 0x80) | 0x40 | ((md->VBS & 0x200)/0x200 * 0x20) | (0 & 0x1f))); /* not it's time for guessing... */ vgaw (ba, VDAC_REG_D, 0x02); /* if this does what I think it does, it selects DAC register 0, and writes the palette in subsequent registers, thus it works similar to the WD33C93 select/data mechanism */ vgaw (ba, VDAC_REG_SELECT, 0x00); { short x = 15; const unsigned char * col = md->PAL; do { vgaw (ba, VDAC_REG_DATA, *col++); vgaw (ba, VDAC_REG_DATA, *col++); vgaw (ba, VDAC_REG_DATA, *col++); } while (x--); if (md->DEP != 4) { short x = 256-17; unsigned char col = 16; do { vgaw(ba, VDAC_REG_DATA, col); vgaw(ba, VDAC_REG_DATA, col); vgaw(ba, VDAC_REG_DATA, col); col++; } while (x--); } } /* now load the font into maps 2 (and 3 for fonts wider than 8 pixels) */ if (md->DEP == 4) { /* first set the whole font memory to a test-pattern, so we can see if something that shouldn't be drawn IS drawn.. */ { volatile caddr_t c = fb; long x; Map(2); for (x = 0; x < 65536; x++) { *c++ = (x & 1)? 0xaa : 0x55; } } { volatile caddr_t c = fb; long x; Map(3); for (x = 0; x < 65536; x++) { *c++ = (x & 1)? 0xaa : 0x55; } } { /* ok, now position at first defined character, and copy over the images */ volatile caddr_t c = fb + md->FLo * 32; const unsigned char * f = md->FData; unsigned short z; Map(2); for (z = md->FLo; z <= md->FHi; z++) { short y = md->FY-1; if (md->FX > 8){ do { *c++ = *f; f += 2; } while (y--); } else { do { *c++ = *f++; } while (y--); } c += 32-md->FY; } if (md->FX > 8) { unsigned short z; Map(3); c = fb + md->FLo*32; f = md->FData+1; for (z = md->FLo; z <= md->FHi; z++) { short y = md->FY-1; do { *c++ = *f; f += 2; } while (y--); c += 32-md->FY; } } } } /* select map 0 */ WGfx (ba, GCT_ID_READ_MAP_SELECT, 0); if (md->DEP == 4) /* allow writes into maps 0 and 1 */ WSeq (ba, SEQ_ID_MAP_MASK, 3); else /* allow writes into all maps */ WSeq (ba, SEQ_ID_MAP_MASK, 0x0f); /* select extended chain4 addressing: !A0/!A1 map 0 character to be displayed !A1/ A1 map 1 attribute of that character A0/!A1 map 2 not used (masked out, ignored) A0/ A1 map 3 not used (masked out, ignored) */ WSeq (ba, SEQ_ID_EXT_VIDEO_ADDR, RSeq(ba, SEQ_ID_EXT_VIDEO_ADDR) | 0x02); if (md->DEP == 4) { /* position in display memory */ unsigned short * c = (unsigned short *) fb; /* fill with blank, white on black */ const unsigned short fill_val = 0x2010; short x = md->XY; do { *c = fill_val; c += 2; } while (x--); /* I won't comment this :-)) */ c = (unsigned short *) fb; c += (md->TX-6)*2; { unsigned short init_msg[6] = {0x520a, 0x450b, 0x540c, 0x490d, 0x4e0e, 0x410f}; unsigned short * f = init_msg; x = 5; do { *c = *f++; c += 2; } while (x--); } } else if (md->DEP == 8) { /* could clear the gfx screen here, but that's what the X server does anyway */ ; } gp->g_data = (caddr_t)md; gi->gd_regaddr = (caddr_t)ztwopa(ba); gi->gd_regsize = 64*1024; gi->gd_fbaddr = (caddr_t)ztwopa(fb); #ifdef BANKEDDEVPAGER gi->gd_fbsize = 4*1024*1024; /* XXX */ gi->gd_bank_size = 64*1024; #else gi->gd_fbsize = 64*1024; /* larger, but that's whats mappable */ #endif gi->gd_colors = 1 << md->DEP; gi->gd_planes = md->DEP; gi->gd_fbwidth = md->MW; gi->gd_fbheight = md->MH; gi->gd_fbx = 0; gi->gd_fby = 0; gi->gd_dwidth = md->TX * md->FX; gi->gd_dheight = md->TY * md->FY; gi->gd_dx = 0; gi->gd_dy = 0; /* initialized, works, return 1 */ return(1); } void grfrtattach __P((struct device *, struct device *, void *)); int grfrtprint __P((void *, char *)); int grfrtmatch __P((struct device *, void *, void *)); int rt_mode __P((struct grf_softc *, u_long, void *, u_long, int)); static int rt_getvmode __P((struct grf_softc *, struct grfvideo_mode *)); static int rt_setvmode __P((struct grf_softc *, unsigned, int)); int rt_getspritepos __P((struct grf_softc *, struct grf_position *)); int rt_setspritepos __P((struct grf_softc *, struct grf_position *)); int rt_getspriteinfo __P((struct grf_softc *, struct grf_spriteinfo *)); int rt_setspriteinfo __P((struct grf_softc *, struct grf_spriteinfo *)); int rt_getspritemax __P((struct grf_softc *, struct grf_position *)); int rt_getcmap __P((struct grf_softc *, struct grf_colormap *)); int rt_putcmap __P((struct grf_softc *, struct grf_colormap *)); int rt_bitblt __P((struct grf_softc *, struct grf_bitblt *)); int rt_blank __P((struct grf_softc *, int *)); struct cfattach grfrt_ca = { sizeof(struct grf_softc), grfrtmatch, grfrtattach }; struct cfdriver grfrt_cd = { NULL, "grfrt", DV_DULL, NULL, 0 }; /* * only used in console init */ static struct cfdata *cfdata; /* * we make sure to only init things once. this is somewhat * tricky regarding the console. */ int grfrtmatch(pdp, match, auxp) struct device *pdp; void *match, *auxp; { #ifdef RETINACONSOLE struct cfdata *cfp = match; static int rtconunit = -1; #endif struct zbus_args *zap; zap = auxp; /* * allow only one retina console */ if (amiga_realconfig == 0) #ifdef RETINACONSOLE if (rtconunit != -1) #endif return(0); /* * check that this is a retina board. */ if (zap->manid != 18260 || zap->prodid != 6) return(0); #ifdef RETINACONSOLE if (amiga_realconfig == 0 || rtconunit != cfp->cf_unit) { #endif if ((unsigned)retina_default_mon >= retina_mon_max || monitor_defs[retina_default_mon].DEP == 8) retina_default_mon = 0; current_mon = monitor_defs + retina_default_mon; if (retina_alive(current_mon) == 0) return(0); #ifdef RETINACONSOLE if (amiga_realconfig == 0) { rtconunit = cfp->cf_unit; cfdata = cfp; } } #endif return(1); } /* * attach to the grfbus (zbus) */ void grfrtattach(pdp, dp, auxp) struct device *pdp, *dp; void *auxp; { static struct grf_softc congrf; struct zbus_args *zap; struct grf_softc *gp; zap = auxp; if (dp == NULL) gp = &congrf; else gp = (struct grf_softc *)dp; if (dp != NULL && congrf.g_regkva != 0) { /* * we inited earlier just copy the info * take care not to copy the device struct though. */ bcopy(&congrf.g_display, &gp->g_display, (char *)&gp[1] - (char *)&gp->g_display); } else { gp->g_regkva = (volatile caddr_t)zap->va; gp->g_fbkva = (volatile caddr_t)zap->va + 64 * 1024; gp->g_unit = GRF_RETINAII_UNIT; gp->g_flags = GF_ALIVE; gp->g_mode = rt_mode; gp->g_conpri = grfrt_cnprobe(); grfrt_iteinit(gp); (void)rt_load_mon(gp, current_mon); } if (dp != NULL) printf("\n"); /* * attach grf */ amiga_config_found(cfdata, &gp->g_device, gp, grfrtprint); } int grfrtprint(auxp, pnp) void *auxp; char *pnp; { if (pnp) printf("grf%d at %s", ((struct grf_softc *)auxp)->g_unit, pnp); return(UNCONF); } static int rt_getvmode (gp, vm) struct grf_softc *gp; struct grfvideo_mode *vm; { struct MonDef *md; if (vm->mode_num && vm->mode_num > retina_mon_max) return (EINVAL); if (! vm->mode_num) vm->mode_num = (current_mon - monitor_defs) + 1; md = monitor_defs + (vm->mode_num - 1); strncpy (vm->mode_descr, monitor_descr[vm->mode_num - 1], sizeof (vm->mode_descr)); vm->pixel_clock = md->FQ; vm->disp_width = md->MW; vm->disp_height = md->MH; vm->depth = md->DEP; /* * From observation of the monitor definition table above, I guess that * the horizontal timings are in units of longwords. Hence, I get the * pixels by multiplication with 32 and division by the depth. * The text modes, apparently marked by depth == 4, are even more wierd. * According to a comment above, they are computed from a depth==8 mode * (thats for us: * 32 / 8) by applying another factor of 4 / font width. * Reverse applying the latter formula most of the constants cancel * themselves and we are left with a nice (* font width). * That is, internal timings are in units of longwords for graphics * modes, or in units of characters widths for text modes. * We better don't WRITE modes until this has been real live checked. * - Ignatios Souvatzis */ if (md->DEP == 4) { vm->hblank_start = md->HBS * 32 / md->DEP; vm->hblank_stop = md->HBE * 32 / md->DEP; vm->hsync_start = md->HSS * 32 / md->DEP; vm->hsync_stop = md->HSE * 32 / md->DEP; vm->htotal = md->HT * 32 / md->DEP; } else { vm->hblank_start = md->HBS * md->FX; vm->hblank_stop = md->HBE * md->FX; vm->hsync_start = md->HSS * md->FX; vm->hsync_stop = md->HSE * md->FX; vm->htotal = md->HT * md->FX; } vm->vblank_start = md->VBS; vm->vblank_stop = md->VBE; vm->vsync_start = md->VSS; vm->vsync_stop = md->VSE; vm->vtotal = md->VT; return (0); } static int rt_setvmode (gp, mode, txtonly) struct grf_softc *gp; unsigned mode; int txtonly; { int error; if (!mode || mode > retina_mon_max) return (EINVAL); if (txtonly && monitor_defs[mode-1].DEP == 8) return (EINVAL); current_mon = monitor_defs + (mode - 1); error = rt_load_mon (gp, current_mon) ? 0 : EINVAL; return (error); } /* * Change the mode of the display. * Return a UNIX error number or 0 for success. */ int rt_mode(gp, cmd, arg, a2, a3) struct grf_softc *gp; u_long cmd; void *arg; u_long a2; int a3; { /* implement these later... */ switch (cmd) { case GM_GRFON: rt_setvmode (gp, retina_default_gfx + 1, 0); return (0); case GM_GRFOFF: rt_setvmode (gp, retina_default_mon + 1, 0); return (0); case GM_GRFCONFIG: return (0); case GM_GRFGETVMODE: return (rt_getvmode (gp, (struct grfvideo_mode *) arg)); case GM_GRFSETVMODE: return (rt_setvmode (gp, *(unsigned *) arg, 1)); case GM_GRFGETNUMVM: *(int *)arg = retina_mon_max; return (0); #ifdef BANKEDDEVPAGER case GM_GRFGETBANK: *(int *)arg = rt_getbank (gp, a2, a3); return (0); case GM_GRFGETCURBANK: *(int *)arg = rt_getcurbank (gp); return (0); case GM_GRFSETBANK: return (rt_setbank (gp, arg)); #endif case GM_GRFIOCTL: return (rt_ioctl (gp, a2, arg)); default: break; } return (EINVAL); } int rt_ioctl (gp, cmd, data) register struct grf_softc *gp; u_long cmd; void *data; { switch (cmd) { case GRFIOCGSPRITEPOS: return (rt_getspritepos (gp, (struct grf_position *) data)); case GRFIOCSSPRITEPOS: return (rt_setspritepos (gp, (struct grf_position *) data)); case GRFIOCSSPRITEINF: return (rt_setspriteinfo (gp, (struct grf_spriteinfo *) data)); case GRFIOCGSPRITEINF: return (rt_getspriteinfo (gp, (struct grf_spriteinfo *) data)); case GRFIOCGSPRITEMAX: return (rt_getspritemax (gp, (struct grf_position *) data)); case GRFIOCGETCMAP: return (rt_getcmap (gp, (struct grf_colormap *) data)); case GRFIOCPUTCMAP: return (rt_putcmap (gp, (struct grf_colormap *) data)); case GRFIOCBITBLT: return (rt_bitblt (gp, (struct grf_bitblt *) data)); case GRFIOCBLANK: return (rt_blank(gp, (int *)data)); } return (EINVAL); } #ifdef BANKEDDEVPAGER /* Retina banks can overlap. Don't use this information (yet?), and only switch 64k sized banks. */ int rt_getbank (gp, offs, prot) struct grf_softc *gp; u_long offs; int prot; { /* XXX */ if (offs < 0 || offs >= 4*1024*1024) return (-1); else return (offs >> 16); } int rt_getcurbank (gp) struct grf_softc *gp; { struct grfinfo *gi = &gp->g_display; volatile unsigned char *ba; int bank; ba = gp->g_regkva; bank = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO) | (RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI) << 8); /* bank register is multiple of 64 byte, make this multiple of 64k */ bank >>= 10; return (bank); } int rt_setbank (gp, bank) struct grf_softc *gp; int bank; { volatile unsigned char *ba; ba = gp->g_regkva; /* bank register is multiple of 64 byte, make this multiple of 64k */ bank <<= 10; WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, (unsigned char) bank); bank >>= 8; WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, (unsigned char) bank); return (0); } #endif /* BANKEDDEVPAGER */ int rt_getcmap (gfp, cmap) struct grf_softc *gfp; struct grf_colormap *cmap; { volatile unsigned char *ba; u_char red[256], green[256], blue[256], *rp, *gp, *bp; short x; int error; if (cmap->count == 0 || cmap->index >= 256) return (0); if (cmap->index + cmap->count > 256) cmap->count = 256 - cmap->index; ba = gfp->g_regkva; /* first read colors out of the chip, then copyout to userspace */ vgaw (ba, VDAC_REG_SELECT, cmap->index); x = cmap->count - 1; rp = red + cmap->index; gp = green + cmap->index; bp = blue + cmap->index; do { *rp++ = vgar (ba, VDAC_REG_DATA); *gp++ = vgar (ba, VDAC_REG_DATA); *bp++ = vgar (ba, VDAC_REG_DATA); } while (x--); if (!(error = copyout (red + cmap->index, cmap->red, cmap->count)) && !(error = copyout (green + cmap->index, cmap->green, cmap->count)) && !(error = copyout (blue + cmap->index, cmap->blue, cmap->count))) return (0); return (error); } int rt_putcmap (gfp, cmap) struct grf_softc *gfp; struct grf_colormap *cmap; { volatile unsigned char *ba; u_char red[256], green[256], blue[256], *rp, *gp, *bp; short x; int error; if (cmap->count == 0 || cmap->index >= 256) return 0; if (cmap->index + cmap->count > 256) cmap->count = 256 - cmap->index; /* first copy the colors into kernelspace */ if (!(error = copyin (cmap->red, red + cmap->index, cmap->count)) && !(error = copyin (cmap->green, green + cmap->index, cmap->count)) && !(error = copyin (cmap->blue, blue + cmap->index, cmap->count))) { ba = gfp->g_regkva; vgaw (ba, VDAC_REG_SELECT, cmap->index); x = cmap->count - 1; rp = red + cmap->index; gp = green + cmap->index; bp = blue + cmap->index; do { vgaw (ba, VDAC_REG_DATA, *rp++); vgaw (ba, VDAC_REG_DATA, *gp++); vgaw (ba, VDAC_REG_DATA, *bp++); } while (x--); return (0); } else return (error); } int rt_getspritepos (gp, pos) struct grf_softc *gp; struct grf_position *pos; { volatile unsigned char *ba; ba = gp->g_regkva; pos->x = vgar (ba, SEQ_ID_CURSOR_X_LOC_LO) | (vgar (ba, SEQ_ID_CURSOR_X_LOC_HI) << 8); pos->y = vgar (ba, SEQ_ID_CURSOR_Y_LOC_LO) | (vgar (ba, SEQ_ID_CURSOR_Y_LOC_HI) << 8); return (0); } int rt_setspritepos (gp, pos) struct grf_softc *gp; struct grf_position *pos; { volatile unsigned char *ba; ba = gp->g_regkva; vgaw (ba, SEQ_ID_CURSOR_X_LOC_LO, pos->x & 0xff); vgaw (ba, SEQ_ID_CURSOR_X_LOC_HI, (pos->x >> 8) & 0x07); vgaw (ba, SEQ_ID_CURSOR_Y_LOC_LO, pos->y & 0xff); vgaw (ba, SEQ_ID_CURSOR_Y_LOC_HI, (pos->y >> 8) & 0x07); return (0); } /* assume an at least 2M retina (XXX), sprite is last in memory. * According to the bogus docs, the cursor can be at most 128 lines * in height, and the x-hostspot can be placed at most at pos 31, * this gives width of a long */ #define SPRITE_ADDR (2*1024*1024 - 128*4) int rt_getspriteinfo (gp, info) struct grf_softc *gp; struct grf_spriteinfo *info; { volatile caddr_t ba, fb; ba = gp->g_regkva; fb = gp->g_fbkva; if (info->set & GRFSPRSET_ENABLE) info->enable = vgar (ba, SEQ_ID_CURSOR_CONTROL) & 0x01; if (info->set & GRFSPRSET_POS) rt_getspritepos (gp, &info->pos); if (info->set & GRFSPRSET_HOT) { info->hot.x = vgar (ba, SEQ_ID_CURSOR_X_INDEX) & 0x1f; info->hot.y = vgar (ba, SEQ_ID_CURSOR_Y_INDEX) & 0x7f; } if (info->set & GRFSPRSET_CMAP) { struct grf_colormap cmap; int index; cmap.index = 0; cmap.count = 256; rt_getcmap (gp, &cmap); index = vgar (ba, SEQ_ID_CURSOR_COLOR0); info->cmap.red[0] = cmap.red[index]; info->cmap.green[0] = cmap.green[index]; info->cmap.blue[0] = cmap.blue[index]; index = vgar (ba, SEQ_ID_CURSOR_COLOR1); info->cmap.red[1] = cmap.red[index]; info->cmap.green[1] = cmap.green[index]; info->cmap.blue[1] = cmap.blue[index]; } if (info->set & GRFSPRSET_SHAPE) { int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO); int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI); int last_bank = SPRITE_ADDR >> 6; int last_bank_lo = last_bank & 0xff; int last_bank_hi = last_bank >> 8; u_char mask; WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi); copyout (fb, info->image, 128*4); mask = RSeq (ba, SEQ_ID_CURSOR_PIXELMASK); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi); copyout (&mask, info->mask, 1); info->size.x = 32; /* ??? */ info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4; } return (0); } int rt_setspriteinfo (gp, info) struct grf_softc *gp; struct grf_spriteinfo *info; { volatile caddr_t ba, fb; u_char control; ba = gp->g_regkva; fb = gp->g_fbkva; control = vgar (ba, SEQ_ID_CURSOR_CONTROL); if (info->set & GRFSPRSET_ENABLE) { if (info->enable) control |= 1; else control &= ~1; vgaw (ba, SEQ_ID_CURSOR_CONTROL, control); } if (info->set & GRFSPRSET_POS) rt_setspritepos (gp, &info->pos); if (info->set & GRFSPRSET_HOT) { vgaw (ba, SEQ_ID_CURSOR_X_INDEX, info->hot.x & 0x1f); vgaw (ba, SEQ_ID_CURSOR_Y_INDEX, info->hot.y & 0x7f); } if (info->set & GRFSPRSET_CMAP) { /* hey cheat a bit here.. XXX */ vgaw (ba, SEQ_ID_CURSOR_COLOR0, 0); vgaw (ba, SEQ_ID_CURSOR_COLOR1, 1); } if (info->set & GRFSPRSET_SHAPE) { int saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO); int saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI); int last_bank = SPRITE_ADDR >> 6; int last_bank_lo = last_bank & 0xff; int last_bank_hi = last_bank >> 8; u_char mask; WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, last_bank_lo); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, last_bank_hi); copyin (info->image, fb, 128*4); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, saved_bank_lo); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, saved_bank_hi); copyin (info->mask, &mask, 1); WSeq (ba, SEQ_ID_CURSOR_PIXELMASK, mask); /* info->size.x = 32; *//* ??? */ info->size.y = (RSeq (ba, SEQ_ID_CURSOR_CONTROL) & 6) << 4; control = (control & ~6) | ((info->size.y >> 4) & 6); vgaw (ba, SEQ_ID_CURSOR_CONTROL, control); /* sick intel bull-addressing.. */ WSeq (ba, SEQ_ID_CURSOR_STORE_LO, SPRITE_ADDR & 0x0f); WSeq (ba, SEQ_ID_CURSOR_STORE_HI, 0); WSeq (ba, SEQ_ID_CURSOR_ST_OFF_LO, (SPRITE_ADDR >> 4) & 0xff); WSeq (ba, SEQ_ID_CURSOR_ST_OFF_HI, ((SPRITE_ADDR >> 4) >> 8) & 0xff); } return (0); } int rt_getspritemax (gp, pos) struct grf_softc *gp; struct grf_position *pos; { pos->x = 32; pos->y = 128; return (0); } /* * !!! THIS AREA UNDER CONSTRUCTION !!! */ int rt_bitblt (gp, bb) struct grf_softc *gp; struct grf_bitblt *bb; { return (EINVAL); #if 0 volatile caddr_t ba, fb; u_char control; u_char saved_bank_lo; u_char saved_bank_hi; u_char src_bank_lo, src_bank_hi; u_char dst_bank_lo, dst_bank_hi; u_long src_offset, dst_offset; u_short src_bank, dst_bank; u_char *srcp, *dstp; short x, y; u_long tot; ba = gp->g_regkva; fb = gp->g_fbkva; saved_bank_lo = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO); saved_bank_hi = RSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI); /* for now, only GRFBBcopy is supported, and only for depth 8. No clipping is performed, either... */ if (bb->op != GRFBBcopy && gp->g_display.gd_planes != 8) return EINVAL; src_offset = op->src_x + op->src_y * gp->g_display.gd_fbwidth; dst_offset = op->dst_x + op->dst_y * gp->g_display.gd_fbwidth; tot = op->w * op->h; /* set write mode 1, "[...] data in the read latches is written to memory during CPU memory write cycles. [...]" */ WGfx (ba, GCT_ID_GRAPHICS_MODE, (RGfx(ba, GCT_ID_GRAPHICS_MODE) & 0xfc) | 1); /* write to primary, read from secondary */ WSeq (ba, SEQ_ID_EXTENDED_MEM_ENA, (RSeq(ba, SEQ_ID_EXTENDED_MEM_ENA) & 0x1f) | 0 ); if (src_offset < dst_offset) { /* start at end */ src_offset += tot; dst_offset += tot; } src_bank_lo = (src_offset >> 6) & 0xff; src_bank_hi = (src_offset >> 14) & 0xff; dst_bank_lo = (dst_offset >> 6) & 0xff; dst_bank_hi = (dst_offset >> 14) & 0xff; while (tot) { WSeq (ba, SEQ_ID_SEC_HOST_OFF_LO, src_bank_lo); WSeq (ba, SEQ_ID_SEC_HOST_OFF_HI, src_bank_hi); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_LO, dst_bank_lo); WSeq (ba, SEQ_ID_PRIM_HOST_OFF_HI, dst_bank_hi); if (src_offset < dst_offset) { } else { } } #endif } int rt_blank(gp, on) struct grf_softc *gp; int *on; { int r; r = RSeq(gp->g_regkva, SEQ_ID_CLOCKING_MODE); r &= 0xdf; /* set Bit 5 to 0 */ WSeq(gp->g_regkva, SEQ_ID_CLOCKING_MODE, r | (*on ? 0x00 : 0x20)); return(0); } #endif /* NGRF */