/* * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * $Id: bt742a.c,v 1.15 1994/03/06 17:18:46 mycroft Exp $ */ /* * BusTech/BusLogic SCSI card driver (all cards) * * Modified to support round-robin mailbox allocation and page-aligned * buffer allocation by Michael VanLoon (michaelv@iastate.edu) */ #include "bt.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB int Debugger(); #else #define Debugger() panic("should call debugger here (bt742a.c)") #endif extern int delaycount; /* from clock setup code */ typedef unsigned long int physaddr; /* * I/O Port Interface */ #define BT_BASE bt_base[unit] #define BT_CTRL_STAT_PORT (BT_BASE + 0x0) /* control & status */ #define BT_CMD_DATA_PORT (BT_BASE + 0x1) /* cmds and datas */ #define BT_INTR_PORT (BT_BASE + 0x2) /* Intr. stat */ /* * BT_CTRL_STAT bits (write) */ #define BT_HRST 0x80 /* Hardware reset */ #define BT_SRST 0x40 /* Software reset */ #define BT_IRST 0x20 /* Interrupt reset */ #define BT_SCRST 0x10 /* SCSI bus reset */ /* * BT_CTRL_STAT bits (read) */ #define BT_STST 0x80 /* Self test in Progress */ #define BT_DIAGF 0x40 /* Diagnostic Failure */ #define BT_INIT 0x20 /* Mbx Init required */ #define BT_IDLE 0x10 /* Host Adapter Idle */ #define BT_CDF 0x08 /* cmd/data out port full */ #define BT_DF 0x04 /* Data in port full */ #define BT_INVDCMD 0x01 /* Invalid command */ /* * BT_CMD_DATA bits (write) */ #define BT_NOP 0x00 /* No operation */ #define BT_MBX_INIT 0x01 /* Mbx initialization */ #define BT_START_SCSI 0x02 /* start scsi command */ #define BT_START_BIOS 0x03 /* start bios command */ #define BT_INQUIRE 0x04 /* Adapter Inquiry */ #define BT_MBO_INTR_EN 0x05 /* Enable MBO available interrupt */ #define BT_SEL_TIMEOUT_SET 0x06 /* set selection time-out */ #define BT_BUS_ON_TIME_SET 0x07 /* set bus-on time */ #define BT_BUS_OFF_TIME_SET 0x08 /* set bus-off time */ #define BT_SPEED_SET 0x09 /* set transfer speed */ #define BT_DEV_GET 0x0a /* return installed devices */ #define BT_CONF_GET 0x0b /* return configuration data */ #define BT_TARGET_EN 0x0c /* enable target mode */ #define BT_SETUP_GET 0x0d /* return setup data */ #define BT_WRITE_CH2 0x1a /* write channel 2 buffer */ #define BT_READ_CH2 0x1b /* read channel 2 buffer */ #define BT_WRITE_FIFO 0x1c /* write fifo buffer */ #define BT_READ_FIFO 0x1d /* read fifo buffer */ #define BT_ECHO 0x1e /* Echo command data */ #define BT_MBX_INIT_EXTENDED 0x81 /* Mbx initialization */ #define BT_INQUIRE_EXTENDED 0x8D /* Adapter Setup Inquiry */ struct bt_cmd_buf { u_char byte[16]; }; /* * BT_INTR_PORT bits (read) */ #define BT_ANY_INTR 0x80 /* Any interrupt */ #define BT_SCRD 0x08 /* SCSI reset detected */ #define BT_HACC 0x04 /* Command complete */ #define BT_MBOA 0x02 /* MBX out empty */ #define BT_MBIF 0x01 /* MBX in full */ /* * Mail box defs */ #define BT_MBX_SIZE 32 /* mail box size */ struct bt_mbx { struct bt_mbx_out { physaddr ccb_addr; unsigned char dummy[3]; unsigned char cmd; } mbo[BT_MBX_SIZE]; struct bt_mbx_in { physaddr ccb_addr; unsigned char btstat; unsigned char sdstat; unsigned char dummy; unsigned char stat; } mbi[BT_MBX_SIZE]; }; /* * mbo.cmd values */ #define BT_MBO_FREE 0x0 /* MBO entry is free */ #define BT_MBO_START 0x1 /* MBO activate entry */ #define BT_MBO_ABORT 0x2 /* MBO abort entry */ #define BT_MBI_FREE 0x0 /* MBI entry is free */ #define BT_MBI_OK 0x1 /* completed without error */ #define BT_MBI_ABORT 0x2 /* aborted ccb */ #define BT_MBI_UNKNOWN 0x3 /* Tried to abort invalid CCB */ #define BT_MBI_ERROR 0x4 /* Completed with error */ #define BT_NSEG 32 struct bt_scat_gath { unsigned long seg_len; physaddr seg_addr; }; struct bt_ccb { unsigned char opcode; unsigned char:3, data_in:1, data_out:1,:3; unsigned char scsi_cmd_length; unsigned char req_sense_length; /*------------------------------------longword boundary */ unsigned long data_length; /*------------------------------------longword boundary */ physaddr data_addr; /*------------------------------------longword boundary */ unsigned char dummy[2]; unsigned char host_stat; unsigned char target_stat; /*------------------------------------longword boundary */ unsigned char target; unsigned char lun; unsigned char scsi_cmd[12]; /* 12 bytes (bytes only) */ unsigned char dummy2[1]; unsigned char link_id; /*------------------------------------4 longword boundary */ physaddr link_addr; /*------------------------------------longword boundary */ physaddr sense_ptr; /*------------------------------------longword boundary */ struct scsi_sense_data scsi_sense; /*------------------------------------longword boundary */ struct bt_scat_gath scat_gath[BT_NSEG]; /*------------------------------------longword boundary */ struct bt_ccb *next; /*------------------------------------longword boundary */ struct scsi_xfer *xfer; /* the scsi_xfer for this cmd */ /*------------------------------------longword boundary */ struct bt_mbx_out *mbx; /* pointer to mail box */ /*------------------------------------longword boundary */ long delta; /* difference from previous */ struct bt_ccb *later, *sooner; int flags; #define CCB_FREE 0 #define CCB_ACTIVE 1 #define CCB_ABORTED 2 unsigned char dummy3[24]; /* align struct to 32 bits */ }; struct bt_ccb *bt_soonest = (struct bt_ccb *) 0; struct bt_ccb *bt_latest = (struct bt_ccb *) 0; long int bt_furthest = 0; /* longest time in the timeout queue */ /* * opcode fields */ #define BT_INITIATOR_CCB 0x00 /* SCSI Initiator CCB */ #define BT_TARGET_CCB 0x01 /* SCSI Target CCB */ #define BT_INIT_SCAT_GATH_CCB 0x02 /* SCSI Initiator with scattter gather */ #define BT_RESET_CCB 0x81 /* SCSI Bus reset */ /* * bt_ccb.host_stat values */ #define BT_OK 0x00 /* cmd ok */ #define BT_LINK_OK 0x0a /* Link cmd ok */ #define BT_LINK_IT 0x0b /* Link cmd ok + int */ #define BT_SEL_TIMEOUT 0x11 /* Selection time out */ #define BT_OVER_UNDER 0x12 /* Data over/under run */ #define BT_BUS_FREE 0x13 /* Bus dropped at unexpected time */ #define BT_INV_BUS 0x14 /* Invalid bus phase/sequence */ #define BT_BAD_MBO 0x15 /* Incorrect MBO cmd */ #define BT_BAD_CCB 0x16 /* Incorrect ccb opcode */ #define BT_BAD_LINK 0x17 /* Not same values of LUN for links */ #define BT_INV_TARGET 0x18 /* Invalid target direction */ #define BT_CCB_DUP 0x19 /* Duplicate CCB received */ #define BT_INV_CCB 0x1a /* Invalid CCB or segment list */ #define BT_ABORTED 42 /* pseudo value from driver */ struct bt_setup { u_char sync_neg:1; u_char parity:1; u_char xxx:6; u_char speed; u_char bus_on; u_char bus_off; u_char num_mbx; u_char mbx[4]; struct { u_char offset:4; u_char period:3; u_char valid:1; } sync[8]; u_char disc_sts; }; struct bt_config { u_char chan; u_char intr; u_char scsi_dev:3; u_char xxx:5; }; #define INT9 0x01 #define INT10 0x02 #define INT11 0x04 #define INT12 0x08 #define INT14 0x20 #define INT15 0x40 #define EISADMA 0x00 #define CHAN0 0x01 #define CHAN5 0x20 #define CHAN6 0x40 #define CHAN7 0x80 #define KVTOPHYS(x) vtophys(x) #define PAGESIZ NBPG #define INVALIDATE_CACHE {asm volatile( ".byte 0x0F ;.byte 0x08" ); } short bt_base[NBT]; /* base port for each board */ struct isa_device *btinfo[NBT]; struct bt_ccb *bt_get_ccb(); int bt_int[NBT]; int bt_dma[NBT]; int bt_scsi_dev[NBT]; int bt_initialized[NBT]; /* we'll malloc memory for these in bt_init() */ struct bt_data { struct bt_mbx bt_mbx; struct bt_ccb bt_ccb[BT_MBX_SIZE]; struct scsi_xfer bt_scsi_xfer; int sleepers; } *btdata[NBT]; struct bt_ccb_lu { struct bt_ccb *kv_addr; physaddr phys_addr; } bt_ccb_lut[NBT][BT_MBX_SIZE]; struct { /* mbo and mbi last used */ u_char mbo; u_char mbi; } bt_last[NBT]; /***********debug values *************/ #define BT_SHOWCCBS 0x01 #define BT_SHOWINTS 0x02 #define BT_SHOWCMDS 0x04 #define BT_SHOWMISC 0x08 int bt_debug = 0; int btprobe(), btattach(); int btintr(); struct isa_driver btdriver = { btprobe, btattach, "bt" }; static int btunit = 0; #define bt_abortmbx(mbx) \ (mbx)->cmd = BT_MBO_ABORT; \ outb(BT_CMD_DATA_PORT, BT_START_SCSI); #define bt_startmbx(mbx) \ (mbx)->cmd = BT_MBO_START; \ outb(BT_CMD_DATA_PORT, BT_START_SCSI); int bt_scsi_cmd(); int bt_timeout(); void btminphys(); long int bt_adapter_info(); struct scsi_switch bt_switch[NBT]; #define BT_CMD_TIMEOUT_FUDGE 200 /* multiplied to get Secs */ #define BT_RESET_TIMEOUT 1000000 /* */ #define BT_SCSI_TIMEOUT_FUDGE 20 /* divided by for mSecs */ /* * Activate Adapter command * icnt: number of args (outbound bytes written after opcode) * ocnt: number of expected returned bytes * wait: number of seconds to wait for response * retval: buffer where to place returned bytes * opcode: opcode BT_NOP, BT_MBX_INIT, BT_START_SCSI ... * args: parameters * * Performs an adapter command through the ports. Not to be confused * with a scsi command, which is read in via the dma * One of the adapter commands tells it to read in a scsi command */ bt_cmd(unit, icnt, ocnt, wait, retval, opcode, args) u_char *retval; unsigned opcode; u_char args; { unsigned *ic = &opcode; u_char oc; register i; int sts; struct bt_data *bt = btdata[unit]; /* * multiply the wait argument by a big constant * zero defaults to 1 */ if (!wait) wait = BT_CMD_TIMEOUT_FUDGE * delaycount; else wait *= BT_CMD_TIMEOUT_FUDGE * delaycount; /* * Wait for the adapter to go idle, unless it's one of * the commands which don't need this */ if (opcode != BT_MBX_INIT && opcode != BT_START_SCSI) { i = BT_CMD_TIMEOUT_FUDGE * delaycount; /* 1 sec? */ while (--i) { sts = inb(BT_CTRL_STAT_PORT); if (sts & BT_IDLE) { break; } } if (!i) { printf("bt_cmd: bt742a host not idle(0x%x)\n", sts); return (ENXIO); } } /* * Now that it is idle, if we expect output, preflush the* * queue feeding to us. */ if (ocnt) { while ((inb(BT_CTRL_STAT_PORT)) & BT_DF) inb(BT_CMD_DATA_PORT); } /* * Output the command and the number of arguments given * for each byte, first check the port is empty. */ icnt++; /* include the command */ while (icnt--) { sts = inb(BT_CTRL_STAT_PORT); for (i = 0; i < wait; i++) { sts = inb(BT_CTRL_STAT_PORT); if (!(sts & BT_CDF)) break; } if (i >= wait) { printf("bt_cmd: bt742a cmd/data port full\n"); outb(BT_CTRL_STAT_PORT, BT_SRST); return (ENXIO); } outb(BT_CMD_DATA_PORT, (u_char) (*ic++)); } /* * If we expect input, loop that many times, each time, * looking for the data register to have valid data */ while (ocnt--) { sts = inb(BT_CTRL_STAT_PORT); for (i = 0; i < wait; i++) { sts = inb(BT_CTRL_STAT_PORT); if (sts & BT_DF) break; } if (i >= wait) { printf("bt_cmd: bt742a cmd/data port empty %d\n", ocnt); return (ENXIO); } oc = inb(BT_CMD_DATA_PORT); if (retval) *retval++ = oc; } /* * Wait for the board to report a finised instruction */ i = BT_CMD_TIMEOUT_FUDGE * delaycount; /* 1 sec? */ while (--i) { sts = inb(BT_INTR_PORT); if (sts & BT_HACC) { break; } } if (!i) { printf("bt_cmd: bt742a host not finished(0x%x)\n", sts); return (ENXIO); } outb(BT_CTRL_STAT_PORT, BT_IRST); return (0); } /* * Check if the device can be found at the port given * and if so, set it up ready for further work * as an argument, takes the isa_device structure from * autoconf.c */ btprobe(dev) struct isa_device *dev; { /* * find unit and check we have that many defined */ int unit = btunit; struct bt_data *bt = btdata[unit]; dev->id_unit = unit; bt_base[unit] = dev->id_iobase; if (unit >= NBT) { printf("bt: unit number (%d) too high\n", unit); return (0); } /* * Try initialise a unit at this location * sets up dma and bus speed, loads bt_int[unit]* */ if (bt_init(unit) != 0) { return (0); } /* * If it's there, put in it's interrupt vectors */ dev->id_irq = (1 << bt_int[unit]); dev->id_drq = bt_dma[unit]; btunit++; return (8); } /* * Attach all the sub-devices we can find */ btattach(dev) struct isa_device *dev; { static int firsttime; static int firstswitch[NBT]; int masunit = dev->id_masunit; int r; if (!firstswitch[masunit]) { firstswitch[masunit] = 1; bt_switch[masunit].name = "bt"; bt_switch[masunit].scsi_cmd = bt_scsi_cmd; bt_switch[masunit].scsi_minphys = btminphys; bt_switch[masunit].open_target_lu = 0; bt_switch[masunit].close_target_lu = 0; bt_switch[masunit].adapter_info = bt_adapter_info; for (r = 0; r < 8; r++) { bt_switch[masunit].empty[r] = 0; bt_switch[masunit].used[r] = 0; bt_switch[masunit].printed[r] = 0; } } r = scsi_attach(masunit, bt_scsi_dev[masunit], &bt_switch[masunit], &dev->id_physid, &dev->id_unit, dev->id_flags); /* only one for all boards */ if (firsttime == 0) { firsttime = 1; bt_timeout(0); } return r; } /* * Return some information to the caller about * the adapter and it's capabilities */ long bt_adapter_info(unit) int unit; { /* 2 outstanding requests at a time per device */ return (2); } /* * Catch an interrupt from the adaptor */ btintr(unit) { struct bt_ccb *ccb; unsigned char stat; register int i, j; u_char found_one = 0, done = 0; struct bt_data *bt = btdata[unit]; if ((scsi_debug & PRINTROUTINES) || bt_debug) printf("btintr "); /* * First acknowlege the interrupt, Then if it's * not telling about a completed operation * just return. */ stat = inb(BT_INTR_PORT); outb(BT_CTRL_STAT_PORT, BT_IRST); if ((scsi_debug & TRACEINTERRUPTS) || bt_debug) printf("int = 0x%x ", stat); if (!(stat & BT_MBIF)) return 1; if (scsi_debug & TRACEINTERRUPTS) printf("mbxi "); /* * If it IS then process the competed operation */ for (i = bt_last[unit].mbi; !done && (i < BT_MBX_SIZE); i++) { if (bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) { found_one++; for (j = BT_MBX_SIZE - 1; j >= 0; j--) if (bt_ccb_lut[unit][j].phys_addr == bt->bt_mbx.mbi[i].ccb_addr) { ccb = bt_ccb_lut[unit][j]. kv_addr; break; } if ((bt_debug & BT_SHOWCCBS) && ccb) printf(" ", ccb, KVTOPHYS(ccb)); if ((stat = bt->bt_mbx.mbi[i].stat) != BT_MBI_OK) { switch (stat) { case BT_MBI_ABORT: if (bt_debug & BT_SHOWMISC) printf("abort "); ccb->host_stat = BT_ABORTED; break; case BT_MBI_UNKNOWN: ccb = (struct bt_ccb *) 0; if (bt_debug & BT_SHOWMISC) printf("unknown ccb for abort"); break; case BT_MBI_ERROR: break; default: printf("bad mbxi status %d, in mbx at 0x%x (0x%x)\n", stat, &bt->bt_mbx.mbi[i], KVTOPHYS(&bt->bt_mbx.mbi[i])); Debugger(); } if ((bt_debug & BT_SHOWCMDS) && ccb) { u_char *cp; cp = ccb->scsi_cmd; printf("op=%x %x %x %x %x %x\n", cp[0], cp[1], cp[2], cp[3], cp[4], cp[5]); printf("stat %x for mbi[%d]\n", bt->bt_mbx.mbi[i].stat, i); printf("addr = 0x%x\n", ccb); } } if (ccb) { bt_remove_timeout(ccb); bt_done(unit, ccb); } bt->bt_mbx.mbi[i].stat = BT_MBI_FREE; } else { /* free mailbox -- done if following a used mbi */ if (found_one) done++; } } if (done) { bt_last[unit].mbi = i % BT_MBX_SIZE; return (1); } for (i = 0; !done && (i < bt_last[unit].mbi); i++) { if (bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) { found_one++; for (j = BT_MBX_SIZE - 1; j >= 0; j--) if (bt_ccb_lut[unit][j].phys_addr == bt->bt_mbx.mbi[i].ccb_addr) { ccb = bt_ccb_lut[unit][j]. kv_addr; break; } if ((bt_debug & BT_SHOWCCBS) && ccb) printf(" ", ccb, KVTOPHYS(ccb)); if ((stat = bt->bt_mbx.mbi[i].stat) != BT_MBI_OK) { switch (stat) { case BT_MBI_ABORT: if (bt_debug & BT_SHOWMISC) printf("abort "); ccb->host_stat = BT_ABORTED; break; case BT_MBI_UNKNOWN: ccb = (struct bt_ccb *) 0; if (bt_debug & BT_SHOWMISC) printf("unknown ccb for abort"); break; case BT_MBI_ERROR: break; default: printf("bad mbxi status %d, in mbx at 0x%x (0x%x)\n", stat, &bt->bt_mbx.mbi[i], KVTOPHYS(&bt->bt_mbx.mbi[i])); Debugger(); } if ((bt_debug & BT_SHOWCMDS) && ccb) { u_char *cp; cp = ccb->scsi_cmd; printf("op=%x %x %x %x %x %x\n", cp[0], cp[1], cp[2], cp[3], cp[4], cp[5]); printf("stat %x for mbi[%d]\n", bt->bt_mbx.mbi[i].stat, i); printf("addr = 0x%x\n", ccb); } } if (ccb) { bt_remove_timeout(ccb); bt_done(unit, ccb); } bt->bt_mbx.mbi[i].stat = BT_MBI_FREE; } else { /* free mailbox -- done if following a used mbi */ if (found_one) done++; } } bt_last[unit].mbi = i % BT_MBX_SIZE; return (1); } /* * A ccb (and hence a mbx-out is put onto the * free list. */ bt_free_ccb(unit, ccb, flags) struct bt_ccb *ccb; { unsigned int opri; struct bt_data *bt = btdata[unit]; if (scsi_debug & PRINTROUTINES) printf("ccb%d(0x%x)> ", unit, flags); if (!(flags & SCSI_NOMASK)) opri = splbio(); ccb->flags = CCB_FREE; /* * If there were none, wake abybody waiting for * one to come free, starting with queued entries */ if (bt->sleepers) { bt->sleepers = 0; wakeup((caddr_t) & bt->sleepers); } if (!(flags & SCSI_NOMASK)) splx(opri); } /* * Get a free ccb (and hence mbox-out entry) */ struct bt_ccb * bt_get_ccb(unit, flags) { unsigned int opri; struct bt_ccb *rc = NULL; struct bt_data *bt = btdata[unit]; int next_mbx = bt_last[unit].mbo; if (scsi_debug & PRINTROUTINES) printf("bt_ccb[next_mbx].flags == CCB_FREE) && !(flags & SCSI_NOSLEEP)) { bt->sleepers = 1; sleep((caddr_t) & bt->sleepers, PRIBIO); } if (bt->bt_ccb[next_mbx].flags == CCB_FREE) { rc = &bt->bt_ccb[next_mbx]; bt_last[unit].mbo = (bt_last[unit].mbo + 1) % BT_MBX_SIZE; rc->flags = CCB_ACTIVE; } if (!(flags & SCSI_NOMASK)) splx(opri); return (rc); } /* * We have a ccb which has been processed by the * adaptor, now we look to see how the operation * went. Wake up the owner if waiting */ bt_done(unit, ccb) struct bt_ccb *ccb; { struct scsi_sense_data *s1, *s2; struct scsi_xfer *xs = ccb->xfer; struct bt_data *bt = btdata[unit]; if (scsi_debug & (PRINTROUTINES | TRACEINTERRUPTS)) printf("bt_done "); /* * Otherwise, put the results of the operation * into the xfer and call whoever started it */ if ((ccb->host_stat != BT_OK || ccb->target_stat != SCSI_OK) && (!(xs->flags & SCSI_ERR_OK))) { s1 = &(ccb->scsi_sense); s2 = &(xs->sense); if (ccb->host_stat) { switch (ccb->host_stat) { case BT_ABORTED: /* No response */ case BT_SEL_TIMEOUT: /* No response */ if (bt_debug & BT_SHOWMISC) { printf("timeout reported back\n"); } xs->error = XS_TIMEOUT; break; default: /* Other scsi protocol messes */ xs->error = XS_DRIVER_STUFFUP; if (bt_debug & BT_SHOWMISC) { printf("unexpected host_stat: %x\n", ccb->host_stat); } } } else { switch (ccb->target_stat) { case 0x02: *s2 = *s1; xs->error = XS_SENSE; break; case 0x08: xs->error = XS_BUSY; break; default: if (bt_debug & BT_SHOWMISC) { printf("unexpected target_stat: %x\n", ccb->target_stat); } xs->error = XS_DRIVER_STUFFUP; } } } else { /* All went correctly OR errors expected */ xs->resid = 0; } xs->flags |= ITSDONE; bt_free_ccb(unit, ccb, xs->flags); if (xs->when_done) (*(xs->when_done)) (xs->done_arg, xs->done_arg2); } /* * Start the board, ready for normal operation */ bt_init(unit) int unit; { unsigned char ad[4]; volatile int i, sts; struct bt_config conf; struct bt_data *bt; /* * reset board, If it doesn't respond, assume * that it's not there.. good for the probe */ outb(BT_CTRL_STAT_PORT, BT_HRST | BT_SRST); for (i = 0; i < BT_RESET_TIMEOUT; i++) { sts = inb(BT_CTRL_STAT_PORT); if (sts == (BT_IDLE | BT_INIT)) break; } if (i >= BT_RESET_TIMEOUT) { if (bt_debug & BT_SHOWMISC) printf("bt_init: No answer from bt742a board\n"); return (ENXIO); } /* * Assume we have a board at this stage * setup dma channel from jumpers and save int * level */ delay(200); bt_cmd(unit, 0, sizeof(conf), 0, &conf, BT_CONF_GET); switch (conf.chan) { case EISADMA: bt_dma[unit] = -1; break; case CHAN0: outb(0x0b, 0x0c); outb(0x0a, 0x00); bt_dma[unit] = 0; break; case CHAN5: outb(0xd6, 0xc1); outb(0xd4, 0x01); bt_dma[unit] = 5; break; case CHAN6: outb(0xd6, 0xc2); outb(0xd4, 0x02); bt_dma[unit] = 6; break; case CHAN7: outb(0xd6, 0xc3); outb(0xd4, 0x03); bt_dma[unit] = 7; break; default: printf("illegal dma setting %x\n", conf.chan); return (EIO); } switch (conf.intr) { case INT9: bt_int[unit] = 9; break; case INT10: bt_int[unit] = 10; break; case INT11: bt_int[unit] = 11; break; case INT12: bt_int[unit] = 12; break; case INT14: bt_int[unit] = 14; break; case INT15: bt_int[unit] = 15; break; default: printf("illegal int setting\n"); return (EIO); } /* who are we on the scsi bus */ bt_scsi_dev[unit] = conf.scsi_dev; printf("bt%d: mbx (%d@) %d, ccb %d * %d, xs %d, bt %d bytes\n", unit, BT_MBX_SIZE, sizeof(struct bt_mbx), BT_MBX_SIZE, sizeof(struct bt_ccb), sizeof(struct scsi_xfer), sizeof(struct bt_data)); bt = malloc(sizeof(struct bt_data), M_DEVBUF, M_NOWAIT); if (!bt) { printf("bt%d: cannot malloc buffers\n", unit); return (0); } if (bt_debug) printf("bt%d: buffer allocated at 0x%x (0x%x)\n", unit, bt, KVTOPHYS(bt)); bzero(bt, sizeof(struct bt_data)); btdata[unit] = bt; /* * Initialize mail box */ *((physaddr *) ad) = KVTOPHYS(&bt->bt_mbx); if (bt_debug) { printf("bt%d: mailbox struct at 0x%x (0x%x)\n", unit, &bt->bt_mbx, *(physaddr *) ad); printf("bt%d: ccb struct at 0x%x (0x%x)\n", unit, bt->bt_ccb, KVTOPHYS(bt->bt_ccb)); printf("bt%d: xs struct at 0x%x (0x%x)\n", unit, &bt->bt_scsi_xfer, KVTOPHYS(&bt->bt_scsi_xfer)); printf("bt%d: sleepers at 0x%x (0x%x)\n", unit, &bt->sleepers, KVTOPHYS(&bt->sleepers)); } bt_cmd(unit, 5, 0, 0, 0, BT_MBX_INIT_EXTENDED, BT_MBX_SIZE, ad[0], ad[1], ad[2], ad[3]); /* * link the ccb's with the mbox-out entries and * into a free-list */ bt_last[unit].mbo = bt_last[unit].mbi = 0; for (i = 0; i < (BT_MBX_SIZE - 1); i++) { bt->bt_ccb[i].next = &bt->bt_ccb[i + 1]; bt->bt_ccb[i].flags = CCB_FREE; bt->bt_ccb[i].mbx = &bt->bt_mbx.mbo[i]; bt->bt_mbx.mbo[i].ccb_addr = KVTOPHYS(&bt->bt_ccb[i]); bt_ccb_lut[unit][i].kv_addr = &bt->bt_ccb[i]; bt_ccb_lut[unit][i].phys_addr = bt->bt_mbx.mbo[i].ccb_addr; } bt->bt_ccb[i].next = &bt->bt_ccb[0]; /* loop around to first ccb */ bt->bt_ccb[i].flags = CCB_FREE; bt->bt_ccb[i].mbx = &bt->bt_mbx.mbo[i]; bt->bt_mbx.mbo[i].ccb_addr = KVTOPHYS(&bt->bt_ccb[i]); bt_ccb_lut[unit][i].kv_addr = &bt->bt_ccb[i]; bt_ccb_lut[unit][i].phys_addr = bt->bt_mbx.mbo[i].ccb_addr; /* * Note that we are going and return (to probe) */ bt_initialized[unit]++; return (0); } #ifndef min #define min(x,y) (x < y ? x : y) #endif /* min */ void btminphys(bp) struct buf *bp; { if (bp->b_bcount > ((BT_NSEG - 1) * PAGESIZ)) { bp->b_bcount = ((BT_NSEG - 1) * PAGESIZ); } } /* * start a scsi operation given the command and the * data address. Also needs the unit, target and lu */ int bt_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_sense_data *s1, *s2; struct bt_ccb *ccb; struct bt_scat_gath *sg; int seg; /* scatter gather seg being worked on */ int i = 0; int rc = 0; int thiskv; physaddr thisphys, nextphys; int unit = xs->adapter; int bytes_this_seg, bytes_this_page, datalen, flags; struct iovec *iovp; struct bt_data *bt = btdata[unit]; int done, count; if (scsi_debug & PRINTROUTINES) printf("bt_scsi_cmd "); /* * get a ccb (mbox-out) to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if (xs->bp) flags |= (SCSI_NOSLEEP); /* just to be sure */ if (flags & ITSDONE) { printf("Already done?"); xs->flags &= ~ITSDONE; } if (!(flags & INUSE)) { printf("Not in use?"); xs->flags |= INUSE; } if (!(ccb = bt_get_ccb(unit, flags))) { xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } if (bt_debug & BT_SHOWCCBS) printf("", ccb, KVTOPHYS(ccb)); if (ccb->mbx->cmd != BT_MBO_FREE) printf("MBO not free (%x(%x))\n", ccb->mbx, KVTOPHYS(ccb->mbx)); /* * Put all the arguments for the xfer in the ccb */ ccb->xfer = xs; if (flags & SCSI_RESET) { ccb->opcode = BT_RESET_CCB; } else { /* can't use S/G if zero length */ ccb->opcode = (xs->datalen ? BT_INIT_SCAT_GATH_CCB : BT_INITIATOR_CCB); } ccb->target = xs->targ;; ccb->data_out = 0; ccb->data_in = 0; ccb->lun = xs->lu; ccb->scsi_cmd_length = xs->cmdlen; ccb->sense_ptr = KVTOPHYS(&(ccb->scsi_sense)); ccb->req_sense_length = sizeof(ccb->scsi_sense); if ((xs->datalen) && (!(flags & SCSI_RESET))) { /* can use S/G only if not zero length */ ccb->data_addr = KVTOPHYS(ccb->scat_gath); sg = ccb->scat_gath; seg = 0; if (flags & SCSI_DATA_UIO) { iovp = ((struct uio *) xs->data)->uio_iov; datalen = ((struct uio *) xs->data)->uio_iovcnt; xs->datalen = 0; while (datalen && (seg < BT_NSEG)) { sg->seg_addr = (physaddr) iovp->iov_base; xs->datalen += sg->seg_len = iovp->iov_len; if (scsi_debug & SHOWSCATGATH) printf("(0x%x@0x%x)", iovp->iov_len, iovp->iov_base); sg++; iovp++; seg++; datalen--; } } else { /* * Set up the scatter gather block */ if (scsi_debug & SHOWSCATGATH) printf("%d @0x%x:- ", xs->datalen, xs->data); datalen = xs->datalen; thiskv = (int) xs->data; thisphys = KVTOPHYS(thiskv); while ((datalen) && (seg < BT_NSEG)) { bytes_this_seg = 0; /* put in the base address */ sg->seg_addr = thisphys; if (scsi_debug & SHOWSCATGATH) printf("0x%x", thisphys); /* do it at least once */ nextphys = thisphys; while ((datalen) && (thisphys == nextphys)) { /* * This page is contiguous (physically) with * the the last, just extend the length * how far to the end of the page */ nextphys = (thisphys & (~(PAGESIZ - 1))) + PAGESIZ; bytes_this_page = nextphys - thisphys; /**** or the data ****/ bytes_this_page = min(bytes_this_page, datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ thiskv = (thiskv & (~(PAGESIZ - 1))) + PAGESIZ; if (datalen) thisphys = KVTOPHYS(thiskv); } /* * next page isn't contiguous, finish the seg */ if (scsi_debug & SHOWSCATGATH) printf("(0x%x)", bytes_this_seg); sg->seg_len = bytes_this_seg; sg++; seg++; } } /* end of iov/kv decision */ ccb->data_length = seg * sizeof(struct bt_scat_gath); if (scsi_debug & SHOWSCATGATH) printf("\n"); if (datalen) { /* there's still data, must have run out of segs! */ printf("bt_scsi_cmd%d: more than %d DMA segs\n", unit, BT_NSEG); xs->error = XS_DRIVER_STUFFUP; bt_free_ccb(unit, ccb, flags); return (HAD_ERROR); } } else { /* No data xfer, use non S/G values */ ccb->data_addr = (physaddr) 0; ccb->data_length = 0; } ccb->link_id = 0; ccb->link_addr = (physaddr) 0; /* * Put the scsi command in the ccb and start it */ if (!(flags & SCSI_RESET)) { bcopy(xs->cmd, ccb->scsi_cmd, ccb->scsi_cmd_length); } if (scsi_debug & SHOWCOMMANDS) { u_char *b = ccb->scsi_cmd; if (!(flags & SCSI_RESET)) { int i = 0; printf("bt%d:%d:%d-", unit, ccb->target, ccb->lun); while (i < ccb->scsi_cmd_length) { if (i) printf(","); printf("%x", b[i++]); } printf("-\n"); } else printf("bt%d:%d:%d-RESET- ", unit, ccb->target, ccb->lun); } bt_startmbx(ccb->mbx); /* * Usually return SUCCESSFULLY QUEUED */ if (scsi_debug & TRACEINTERRUPTS) printf("cmd_sent "); if (!(flags & SCSI_NOMASK)) { bt_add_timeout(ccb, xs->timeout); return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll on completion */ done = 0; count = delaycount * xs->timeout / BT_SCSI_TIMEOUT_FUDGE; if (scsi_debug & TRACEINTERRUPTS) printf("wait "); while ((!done) && count) { i = 0; while (!done && i < BT_MBX_SIZE) { struct bt_ccb *mbx_ccb = NULL; int j; for (j = BT_MBX_SIZE - 1; j >= 0; j--) if (bt_ccb_lut[unit][j].phys_addr == bt->bt_mbx.mbi[i].ccb_addr) { mbx_ccb = bt_ccb_lut[unit][j].kv_addr; break; } if ((bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) && mbx_ccb == ccb) { bt->bt_mbx.mbi[i].stat = BT_MBI_FREE; bt_done(unit, ccb); done++; } i++; } count--; } if (!count) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); bt_abortmbx(ccb->mbx); count = delaycount * 2000 / BT_SCSI_TIMEOUT_FUDGE; while (!done && count) { i = 0; while (!done && i < BT_MBX_SIZE) { struct bt_ccb *mbx_ccb = NULL; int j; for (j = BT_MBX_SIZE - 1; j >= 0; j--) if (bt_ccb_lut[unit][j].phys_addr == bt->bt_mbx.mbi[i].ccb_addr) { mbx_ccb = bt_ccb_lut[unit][j].kv_addr; break; } if ((bt->bt_mbx.mbi[i].stat != BT_MBI_FREE) && mbx_ccb == ccb) { bt->bt_mbx.mbi[i].stat = BT_MBI_FREE; bt_done(unit, ccb); done++; } i++; } count--; } if (!count) { printf("abort failed in wait\n"); ccb->mbx->cmd = BT_MBO_FREE; } bt_free_ccb(unit, ccb, flags); btintr(unit); xs->error = XS_DRIVER_STUFFUP; return (HAD_ERROR); } btintr(unit); if (xs->error) return (HAD_ERROR); return (COMPLETE); } /* * +----------+ +----------+ +----------+ * bt_soonest--->| later |---->| later|---->| later|--->0 * | [Delta] | | [Delta] | | [Delta] | * 0<-----|sooner |<----|sooner |<----|sooner |<----bt_latest * +----------+ +----------+ +----------+ * * bt_furthest = sum(Delta[1..n]) */ bt_add_timeout(ccb, time) struct bt_ccb *ccb; int time; { int timeprev; struct bt_ccb *prev; int s = splbio(); prev = bt_latest; if (prev) timeprev = bt_furthest; else timeprev = 0; while (prev && (timeprev > time)) { timeprev -= prev->delta; prev = prev->sooner; } if (prev) { ccb->delta = time - timeprev; if (ccb->later = prev->later) { /* yes an assign */ ccb->later->sooner = ccb; ccb->later->delta -= ccb->delta; } else { bt_furthest = time; bt_latest = ccb; } ccb->sooner = prev; prev->later = ccb; } else { if (ccb->later = bt_soonest) { /* yes, an assign */ ccb->later->sooner = ccb; ccb->later->delta -= time; } else { bt_furthest = time; bt_latest = ccb; } ccb->delta = time; ccb->sooner = (struct bt_ccb *) 0; bt_soonest = ccb; } splx(s); } bt_remove_timeout(ccb) struct bt_ccb *ccb; { int s = splbio(); if (ccb->sooner) ccb->sooner->later = ccb->later; else bt_soonest = ccb->later; if (ccb->later) { ccb->later->sooner = ccb->sooner; ccb->later->delta += ccb->delta; } else { bt_latest = ccb->sooner; bt_furthest -= ccb->delta; } ccb->sooner = ccb->later = (struct bt_ccb *) 0; splx(s); } extern int hz; /* #define ONETICK 500 /* milliseconds */ #define ONETICK 250 /* milliseconds */ #define SLEEPTIME ((hz * 1000) / ONETICK) bt_timeout(arg) int arg; { struct bt_ccb *ccb; int unit; int s = splbio(); while (ccb = bt_soonest) { if (ccb->delta <= ONETICK) { /* * It has timed out, we need to do some work */ unit = ccb->xfer->adapter; btintr(unit); printf("bt%d:%d device timed out\n", unit, ccb->xfer->targ); if (bt_debug & BT_SHOWCCBS) tfs_print_active_ccbs(); /* * Unlink it from the queue */ bt_remove_timeout(ccb); /* * If The ccb's mbx is not free, then * the board has gone south */ if (ccb->mbx->cmd != BT_MBO_FREE) { printf("bt%d not taking commands!\n", unit); printf("bt: ccb->mbx->cmd = %x\n", ccb->mbx->cmd); tfs_print_ccb(ccb); Debugger(); } /* * If it has been through before, then * a previous abort has failed, don't * try abort again */ if (ccb->flags == CCB_ABORTED) { /* abort timed out */ printf("AGAIN"); ccb->xfer->retries = 0; /* I MEAN IT ! */ ccb->host_stat = BT_ABORTED; bt_done(unit, ccb); } else {/* abort the operation that has timed out */ printf("abort mbx\n"); bt_abortmbx(ccb->mbx); /* 2 secs for the abort */ bt_add_timeout(ccb, 2000 + ONETICK); ccb->flags = CCB_ABORTED; } } else { /* * It has not timed out, adjust and leave */ ccb->delta -= ONETICK; bt_furthest -= ONETICK; break; } } splx(s); timeout((timeout_t) bt_timeout, (caddr_t) arg, SLEEPTIME); } tfs_print_ccb(ccb) struct bt_ccb *ccb; { printf("ccb:%x op:%x cmdlen:%d senlen:%d\n", ccb, ccb->opcode, ccb->scsi_cmd_length, ccb->req_sense_length); printf(" datlen:%d hstat:%x tstat:%x delta:%d flags:%x\n", ccb->data_length, ccb->host_stat, ccb->target_stat, ccb->delta, ccb->flags); } tfs_print_active_ccbs() { struct bt_ccb *ccb = bt_soonest; while (ccb) { tfs_print_ccb(ccb); ccb = ccb->later; } printf("Furthest = %d\n", bt_furthest); }