/* $NetBSD: key.c,v 1.18 2003/04/03 06:21:33 itojun Exp $ */ /* * read_bignum(): * Copyright (c) 1995 Tatu Ylonen , Espoo, Finland * * As far as I am concerned, the code I have written for this software * can be used freely for any purpose. Any derived versions of this * software must be clearly marked as such, and if the derived work is * incompatible with the protocol description in the RFC file, it must be * called by a name other than "ssh" or "Secure Shell". * * * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "includes.h" RCSID("$OpenBSD: key.c,v 1.51 2003/02/12 09:33:04 markus Exp $"); #include #include "xmalloc.h" #include "key.h" #include "rsa.h" #include "uuencode.h" #include "buffer.h" #include "bufaux.h" #include "log.h" Key * key_new(int type) { Key *k; RSA *rsa; DSA *dsa; k = xmalloc(sizeof(*k)); k->type = type; k->flags = 0; k->dsa = NULL; k->rsa = NULL; switch (k->type) { case KEY_RSA1: case KEY_RSA: if ((rsa = RSA_new()) == NULL) fatal("key_new: RSA_new failed"); if ((rsa->n = BN_new()) == NULL) fatal("key_new: BN_new failed"); if ((rsa->e = BN_new()) == NULL) fatal("key_new: BN_new failed"); k->rsa = rsa; break; case KEY_DSA: if ((dsa = DSA_new()) == NULL) fatal("key_new: DSA_new failed"); if ((dsa->p = BN_new()) == NULL) fatal("key_new: BN_new failed"); if ((dsa->q = BN_new()) == NULL) fatal("key_new: BN_new failed"); if ((dsa->g = BN_new()) == NULL) fatal("key_new: BN_new failed"); if ((dsa->pub_key = BN_new()) == NULL) fatal("key_new: BN_new failed"); k->dsa = dsa; break; case KEY_UNSPEC: break; default: fatal("key_new: bad key type %d", k->type); break; } return k; } Key * key_new_private(int type) { Key *k = key_new(type); switch (k->type) { case KEY_RSA1: case KEY_RSA: if ((k->rsa->d = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); if ((k->rsa->iqmp = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); if ((k->rsa->q = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); if ((k->rsa->p = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); if ((k->rsa->dmq1 = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); if ((k->rsa->dmp1 = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); break; case KEY_DSA: if ((k->dsa->priv_key = BN_new()) == NULL) fatal("key_new_private: BN_new failed"); break; case KEY_UNSPEC: break; default: break; } return k; } void key_free(Key *k) { switch (k->type) { case KEY_RSA1: case KEY_RSA: if (k->rsa != NULL) RSA_free(k->rsa); k->rsa = NULL; break; case KEY_DSA: if (k->dsa != NULL) DSA_free(k->dsa); k->dsa = NULL; break; case KEY_UNSPEC: break; default: fatal("key_free: bad key type %d", k->type); break; } xfree(k); } int key_equal(Key *a, Key *b) { if (a == NULL || b == NULL || a->type != b->type) return 0; switch (a->type) { case KEY_RSA1: case KEY_RSA: return a->rsa != NULL && b->rsa != NULL && BN_cmp(a->rsa->e, b->rsa->e) == 0 && BN_cmp(a->rsa->n, b->rsa->n) == 0; break; case KEY_DSA: return a->dsa != NULL && b->dsa != NULL && BN_cmp(a->dsa->p, b->dsa->p) == 0 && BN_cmp(a->dsa->q, b->dsa->q) == 0 && BN_cmp(a->dsa->g, b->dsa->g) == 0 && BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0; break; default: fatal("key_equal: bad key type %d", a->type); break; } return 0; } static u_char * key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length) { const EVP_MD *md = NULL; EVP_MD_CTX ctx; u_char *blob = NULL; u_char *retval = NULL; u_int len = 0; int nlen, elen; *dgst_raw_length = 0; switch (dgst_type) { case SSH_FP_MD5: md = EVP_md5(); break; case SSH_FP_SHA1: md = EVP_sha1(); break; default: fatal("key_fingerprint_raw: bad digest type %d", dgst_type); } switch (k->type) { case KEY_RSA1: nlen = BN_num_bytes(k->rsa->n); elen = BN_num_bytes(k->rsa->e); len = nlen + elen; blob = xmalloc(len); BN_bn2bin(k->rsa->n, blob); BN_bn2bin(k->rsa->e, blob + nlen); break; case KEY_DSA: case KEY_RSA: key_to_blob(k, &blob, &len); break; case KEY_UNSPEC: return retval; break; default: fatal("key_fingerprint_raw: bad key type %d", k->type); break; } if (blob != NULL) { retval = xmalloc(EVP_MAX_MD_SIZE); EVP_DigestInit(&ctx, md); EVP_DigestUpdate(&ctx, blob, len); EVP_DigestFinal(&ctx, retval, dgst_raw_length); memset(blob, 0, len); xfree(blob); } else { fatal("key_fingerprint_raw: blob is null"); } return retval; } static char * key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len) { char *retval; int i; retval = xmalloc(dgst_raw_len * 3 + 1); retval[0] = '\0'; for (i = 0; i < dgst_raw_len; i++) { char hex[4]; snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]); strlcat(retval, hex, dgst_raw_len * 3); } retval[(dgst_raw_len * 3) - 1] = '\0'; return retval; } static char * key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len) { char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; u_int i, j = 0, rounds, seed = 1; char *retval; rounds = (dgst_raw_len / 2) + 1; retval = xmalloc(sizeof(char) * (rounds*6)); retval[j++] = 'x'; for (i = 0; i < rounds; i++) { u_int idx0, idx1, idx2, idx3, idx4; if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) { idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) + seed) % 6; idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15; idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) + (seed / 6)) % 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; if ((i + 1) < rounds) { idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15; idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15; retval[j++] = consonants[idx3]; retval[j++] = '-'; retval[j++] = consonants[idx4]; seed = ((seed * 5) + ((((u_int)(dgst_raw[2 * i])) * 7) + ((u_int)(dgst_raw[(2 * i) + 1])))) % 36; } } else { idx0 = seed % 6; idx1 = 16; idx2 = seed / 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; } } retval[j++] = 'x'; retval[j++] = '\0'; return retval; } char * key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep) { char *retval = NULL; u_char *dgst_raw; u_int dgst_raw_len; dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len); if (!dgst_raw) fatal("key_fingerprint: null from key_fingerprint_raw()"); switch (dgst_rep) { case SSH_FP_HEX: retval = key_fingerprint_hex(dgst_raw, dgst_raw_len); break; case SSH_FP_BUBBLEBABBLE: retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len); break; default: fatal("key_fingerprint_ex: bad digest representation %d", dgst_rep); break; } memset(dgst_raw, 0, dgst_raw_len); xfree(dgst_raw); return retval; } /* * Reads a multiple-precision integer in decimal from the buffer, and advances * the pointer. The integer must already be initialized. This function is * permitted to modify the buffer. This leaves *cpp to point just beyond the * last processed (and maybe modified) character. Note that this may modify * the buffer containing the number. */ static int read_bignum(char **cpp, BIGNUM * value) { char *cp = *cpp; int old; /* Skip any leading whitespace. */ for (; *cp == ' ' || *cp == '\t'; cp++) ; /* Check that it begins with a decimal digit. */ if (*cp < '0' || *cp > '9') return 0; /* Save starting position. */ *cpp = cp; /* Move forward until all decimal digits skipped. */ for (; *cp >= '0' && *cp <= '9'; cp++) ; /* Save the old terminating character, and replace it by \0. */ old = *cp; *cp = 0; /* Parse the number. */ if (BN_dec2bn(&value, *cpp) == 0) return 0; /* Restore old terminating character. */ *cp = old; /* Move beyond the number and return success. */ *cpp = cp; return 1; } static int write_bignum(FILE *f, BIGNUM *num) { char *buf = BN_bn2dec(num); if (buf == NULL) { error("write_bignum: BN_bn2dec() failed"); return 0; } fprintf(f, " %s", buf); OPENSSL_free(buf); return 1; } /* returns 1 ok, -1 error */ int key_read(Key *ret, char **cpp) { Key *k; int success = -1; char *cp, *space; int len, n, type; u_int bits; u_char *blob; cp = *cpp; switch (ret->type) { case KEY_RSA1: /* Get number of bits. */ if (*cp < '0' || *cp > '9') return -1; /* Bad bit count... */ for (bits = 0; *cp >= '0' && *cp <= '9'; cp++) bits = 10 * bits + *cp - '0'; if (bits == 0) return -1; *cpp = cp; /* Get public exponent, public modulus. */ if (!read_bignum(cpp, ret->rsa->e)) return -1; if (!read_bignum(cpp, ret->rsa->n)) return -1; success = 1; break; case KEY_UNSPEC: case KEY_RSA: case KEY_DSA: space = strchr(cp, ' '); if (space == NULL) { debug3("key_read: missing whitespace"); return -1; } *space = '\0'; type = key_type_from_name(cp); *space = ' '; if (type == KEY_UNSPEC) { debug3("key_read: missing keytype"); return -1; } cp = space+1; if (*cp == '\0') { debug3("key_read: short string"); return -1; } if (ret->type == KEY_UNSPEC) { ret->type = type; } else if (ret->type != type) { /* is a key, but different type */ debug3("key_read: type mismatch"); return -1; } len = 2*strlen(cp); blob = xmalloc(len); n = uudecode(cp, blob, len); if (n < 0) { error("key_read: uudecode %s failed", cp); xfree(blob); return -1; } k = key_from_blob(blob, n); xfree(blob); if (k == NULL) { error("key_read: key_from_blob %s failed", cp); return -1; } if (k->type != type) { error("key_read: type mismatch: encoding error"); key_free(k); return -1; } /*XXXX*/ if (ret->type == KEY_RSA) { if (ret->rsa != NULL) RSA_free(ret->rsa); ret->rsa = k->rsa; k->rsa = NULL; success = 1; #ifdef DEBUG_PK RSA_print_fp(stderr, ret->rsa, 8); #endif } else { if (ret->dsa != NULL) DSA_free(ret->dsa); ret->dsa = k->dsa; k->dsa = NULL; success = 1; #ifdef DEBUG_PK DSA_print_fp(stderr, ret->dsa, 8); #endif } /*XXXX*/ key_free(k); if (success != 1) break; /* advance cp: skip whitespace and data */ while (*cp == ' ' || *cp == '\t') cp++; while (*cp != '\0' && *cp != ' ' && *cp != '\t') cp++; *cpp = cp; break; default: fatal("key_read: bad key type: %d", ret->type); break; } return success; } int key_write(Key *key, FILE *f) { int n, success = 0; u_int len, bits = 0; u_char *blob; char *uu; if (key->type == KEY_RSA1 && key->rsa != NULL) { /* size of modulus 'n' */ bits = BN_num_bits(key->rsa->n); fprintf(f, "%u", bits); if (write_bignum(f, key->rsa->e) && write_bignum(f, key->rsa->n)) { success = 1; } else { error("key_write: failed for RSA key"); } } else if ((key->type == KEY_DSA && key->dsa != NULL) || (key->type == KEY_RSA && key->rsa != NULL)) { key_to_blob(key, &blob, &len); uu = xmalloc(2*len); n = uuencode(blob, len, uu, 2*len); if (n > 0) { fprintf(f, "%s %s", key_ssh_name(key), uu); success = 1; } xfree(blob); xfree(uu); } return success; } char * key_type(Key *k) { switch (k->type) { case KEY_RSA1: return "RSA1"; break; case KEY_RSA: return "RSA"; break; case KEY_DSA: return "DSA"; break; } return "unknown"; } char * key_ssh_name(Key *k) { switch (k->type) { case KEY_RSA: return "ssh-rsa"; break; case KEY_DSA: return "ssh-dss"; break; } return "ssh-unknown"; } u_int key_size(Key *k) { switch (k->type) { case KEY_RSA1: case KEY_RSA: return BN_num_bits(k->rsa->n); break; case KEY_DSA: return BN_num_bits(k->dsa->p); break; } return 0; } static RSA * rsa_generate_private_key(u_int bits) { RSA *private; private = RSA_generate_key(bits, 35, NULL, NULL); if (private == NULL) fatal("rsa_generate_private_key: key generation failed."); return private; } static DSA* dsa_generate_private_key(u_int bits) { DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL); if (private == NULL) fatal("dsa_generate_private_key: DSA_generate_parameters failed"); if (!DSA_generate_key(private)) fatal("dsa_generate_private_key: DSA_generate_key failed."); if (private == NULL) fatal("dsa_generate_private_key: NULL."); return private; } Key * key_generate(int type, u_int bits) { Key *k = key_new(KEY_UNSPEC); switch (type) { case KEY_DSA: k->dsa = dsa_generate_private_key(bits); break; case KEY_RSA: case KEY_RSA1: k->rsa = rsa_generate_private_key(bits); break; default: fatal("key_generate: unknown type %d", type); } k->type = type; return k; } Key * key_from_private(Key *k) { Key *n = NULL; switch (k->type) { case KEY_DSA: n = key_new(k->type); BN_copy(n->dsa->p, k->dsa->p); BN_copy(n->dsa->q, k->dsa->q); BN_copy(n->dsa->g, k->dsa->g); BN_copy(n->dsa->pub_key, k->dsa->pub_key); break; case KEY_RSA: case KEY_RSA1: n = key_new(k->type); BN_copy(n->rsa->n, k->rsa->n); BN_copy(n->rsa->e, k->rsa->e); break; default: fatal("key_from_private: unknown type %d", k->type); break; } return n; } int key_type_from_name(char *name) { if (strcmp(name, "rsa1") == 0) { return KEY_RSA1; } else if (strcmp(name, "rsa") == 0) { return KEY_RSA; } else if (strcmp(name, "dsa") == 0) { return KEY_DSA; } else if (strcmp(name, "ssh-rsa") == 0) { return KEY_RSA; } else if (strcmp(name, "ssh-dss") == 0) { return KEY_DSA; } debug2("key_type_from_name: unknown key type '%s'", name); return KEY_UNSPEC; } int key_names_valid2(const char *names) { char *s, *cp, *p; if (names == NULL || strcmp(names, "") == 0) return 0; s = cp = xstrdup(names); for ((p = strsep(&cp, ",")); p && *p != '\0'; (p = strsep(&cp, ","))) { switch (key_type_from_name(p)) { case KEY_RSA1: case KEY_UNSPEC: xfree(s); return 0; } } debug3("key names ok: [%s]", names); xfree(s); return 1; } Key * key_from_blob(u_char *blob, int blen) { Buffer b; char *ktype; int rlen, type; Key *key = NULL; #ifdef DEBUG_PK dump_base64(stderr, blob, blen); #endif buffer_init(&b); buffer_append(&b, blob, blen); ktype = buffer_get_string(&b, NULL); type = key_type_from_name(ktype); switch (type) { case KEY_RSA: key = key_new(type); buffer_get_bignum2(&b, key->rsa->e); buffer_get_bignum2(&b, key->rsa->n); #ifdef DEBUG_PK RSA_print_fp(stderr, key->rsa, 8); #endif break; case KEY_DSA: key = key_new(type); buffer_get_bignum2(&b, key->dsa->p); buffer_get_bignum2(&b, key->dsa->q); buffer_get_bignum2(&b, key->dsa->g); buffer_get_bignum2(&b, key->dsa->pub_key); #ifdef DEBUG_PK DSA_print_fp(stderr, key->dsa, 8); #endif break; case KEY_UNSPEC: key = key_new(type); break; default: error("key_from_blob: cannot handle type %s", ktype); break; } rlen = buffer_len(&b); if (key != NULL && rlen != 0) error("key_from_blob: remaining bytes in key blob %d", rlen); xfree(ktype); buffer_free(&b); return key; } int key_to_blob(Key *key, u_char **blobp, u_int *lenp) { Buffer b; int len; if (key == NULL) { error("key_to_blob: key == NULL"); return 0; } buffer_init(&b); switch (key->type) { case KEY_DSA: buffer_put_cstring(&b, key_ssh_name(key)); buffer_put_bignum2(&b, key->dsa->p); buffer_put_bignum2(&b, key->dsa->q); buffer_put_bignum2(&b, key->dsa->g); buffer_put_bignum2(&b, key->dsa->pub_key); break; case KEY_RSA: buffer_put_cstring(&b, key_ssh_name(key)); buffer_put_bignum2(&b, key->rsa->e); buffer_put_bignum2(&b, key->rsa->n); break; default: error("key_to_blob: unsupported key type %d", key->type); buffer_free(&b); return 0; } len = buffer_len(&b); if (lenp != NULL) *lenp = len; if (blobp != NULL) { *blobp = xmalloc(len); memcpy(*blobp, buffer_ptr(&b), len); } memset(buffer_ptr(&b), 0, len); buffer_free(&b); return len; } int key_sign( Key *key, u_char **sigp, u_int *lenp, u_char *data, u_int datalen) { switch (key->type) { case KEY_DSA: return ssh_dss_sign(key, sigp, lenp, data, datalen); break; case KEY_RSA: return ssh_rsa_sign(key, sigp, lenp, data, datalen); break; default: error("key_sign: illegal key type %d", key->type); return -1; break; } } /* * key_verify returns 1 for a correct signature, 0 for an incorrect signature * and -1 on error. */ int key_verify( Key *key, u_char *signature, u_int signaturelen, u_char *data, u_int datalen) { if (signaturelen == 0) return -1; switch (key->type) { case KEY_DSA: return ssh_dss_verify(key, signature, signaturelen, data, datalen); break; case KEY_RSA: return ssh_rsa_verify(key, signature, signaturelen, data, datalen); break; default: error("key_verify: illegal key type %d", key->type); return -1; break; } } /* Converts a private to a public key */ Key * key_demote(Key *k) { Key *pk; pk = xmalloc(sizeof(*pk)); pk->type = k->type; pk->flags = k->flags; pk->dsa = NULL; pk->rsa = NULL; switch (k->type) { case KEY_RSA1: case KEY_RSA: if ((pk->rsa = RSA_new()) == NULL) fatal("key_demote: RSA_new failed"); if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL) fatal("key_demote: BN_dup failed"); if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL) fatal("key_demote: BN_dup failed"); break; case KEY_DSA: if ((pk->dsa = DSA_new()) == NULL) fatal("key_demote: DSA_new failed"); if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL) fatal("key_demote: BN_dup failed"); if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL) fatal("key_demote: BN_dup failed"); if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL) fatal("key_demote: BN_dup failed"); if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) fatal("key_demote: BN_dup failed"); break; default: fatal("key_free: bad key type %d", k->type); break; } return (pk); }