/* $NetBSD: subr_cpufreq.c,v 1.8 2011/10/27 05:25:07 jruoho Exp $ */ /*- * Copyright (c) 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jukka Ruohonen. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_cpufreq.c,v 1.8 2011/10/27 05:25:07 jruoho Exp $"); #include #include #include #include #include #include #include #include static int cpufreq_latency(void); static uint32_t cpufreq_get_max(void); static uint32_t cpufreq_get_min(void); static uint32_t cpufreq_get_raw(struct cpu_info *); static void cpufreq_get_state_raw(uint32_t, struct cpufreq_state *); static void cpufreq_set_raw(struct cpu_info *, uint32_t); static void cpufreq_set_all_raw(uint32_t); static kmutex_t cpufreq_lock __cacheline_aligned; static struct cpufreq *cf_backend __read_mostly = NULL; void cpufreq_init(void) { mutex_init(&cpufreq_lock, MUTEX_DEFAULT, IPL_NONE); cf_backend = kmem_zalloc(sizeof(*cf_backend), KM_SLEEP); } int cpufreq_register(struct cpufreq *cf) { uint32_t c, i, j, k, m; int rv; if (cold != 0) return EBUSY; KASSERT(cf != NULL); KASSERT(cf_backend != NULL); KASSERT(cf->cf_get_freq != NULL); KASSERT(cf->cf_set_freq != NULL); KASSERT(cf->cf_state_count > 0); KASSERT(cf->cf_state_count < CPUFREQ_STATE_MAX); mutex_enter(&cpufreq_lock); if (cf_backend->cf_init != false) { mutex_exit(&cpufreq_lock); return EALREADY; } cf_backend->cf_init = true; cf_backend->cf_mp = cf->cf_mp; cf_backend->cf_cookie = cf->cf_cookie; cf_backend->cf_get_freq = cf->cf_get_freq; cf_backend->cf_set_freq = cf->cf_set_freq; (void)strlcpy(cf_backend->cf_name, cf->cf_name, sizeof(cf->cf_name)); /* * Sanity check the values and verify descending order. */ for (c = i = 0; i < cf->cf_state_count; i++) { CTASSERT(CPUFREQ_STATE_ENABLED != 0); CTASSERT(CPUFREQ_STATE_DISABLED != 0); if (cf->cf_state[i].cfs_freq == 0) continue; if (cf->cf_state[i].cfs_freq > 9999 && cf->cf_state[i].cfs_freq != CPUFREQ_STATE_ENABLED && cf->cf_state[i].cfs_freq != CPUFREQ_STATE_DISABLED) continue; for (j = k = 0; j < i; j++) { if (cf->cf_state[i].cfs_freq >= cf->cf_state[j].cfs_freq) { k = 1; break; } } if (k != 0) continue; cf_backend->cf_state[c].cfs_index = c; cf_backend->cf_state[c].cfs_freq = cf->cf_state[i].cfs_freq; cf_backend->cf_state[c].cfs_power = cf->cf_state[i].cfs_power; c++; } cf_backend->cf_state_count = c; if (cf_backend->cf_state_count == 0) { mutex_exit(&cpufreq_lock); cpufreq_deregister(); return EINVAL; } rv = cpufreq_latency(); if (rv != 0) { mutex_exit(&cpufreq_lock); cpufreq_deregister(); return rv; } m = cpufreq_get_max(); cpufreq_set_all_raw(m); mutex_exit(&cpufreq_lock); return 0; } void cpufreq_deregister(void) { mutex_enter(&cpufreq_lock); memset(cf_backend, 0, sizeof(*cf_backend)); mutex_exit(&cpufreq_lock); } static int cpufreq_latency(void) { struct cpufreq *cf = cf_backend; struct timespec nta, ntb; const uint32_t n = 10; uint32_t i, j, l, m; uint64_t s; l = cpufreq_get_min(); m = cpufreq_get_max(); /* * For each state, sample the average transition * latency required to set the state for all CPUs. */ for (i = 0; i < cf->cf_state_count; i++) { for (s = 0, j = 0; j < n; j++) { /* * Attempt to exclude possible * caching done by the backend. */ if (i == 0) cpufreq_set_all_raw(l); else { cpufreq_set_all_raw(m); } nanotime(&nta); cpufreq_set_all_raw(cf->cf_state[i].cfs_freq); nanotime(&ntb); timespecsub(&ntb, &nta, &ntb); if (ntb.tv_sec != 0 || ntb.tv_nsec > CPUFREQ_LATENCY_MAX) continue; if (s >= UINT64_MAX - CPUFREQ_LATENCY_MAX) break; /* Convert to microseconds to prevent overflow */ s += ntb.tv_nsec / 1000; } /* * Consider the backend unsuitable if * the transition latency was too high. */ if (s == 0) return EMSGSIZE; cf->cf_state[i].cfs_latency = s / n; } return 0; } void cpufreq_suspend(struct cpu_info *ci) { struct cpufreq *cf = cf_backend; uint32_t l, s; mutex_enter(&cpufreq_lock); if (cf->cf_init != true) { mutex_exit(&cpufreq_lock); return; } l = cpufreq_get_min(); s = cpufreq_get_raw(ci); cpufreq_set_raw(ci, l); cf->cf_state_saved = s; mutex_exit(&cpufreq_lock); } void cpufreq_resume(struct cpu_info *ci) { struct cpufreq *cf = cf_backend; mutex_enter(&cpufreq_lock); if (cf->cf_init != true || cf->cf_state_saved == 0) { mutex_exit(&cpufreq_lock); return; } cpufreq_set_raw(ci, cf->cf_state_saved); mutex_exit(&cpufreq_lock); } uint32_t cpufreq_get(struct cpu_info *ci) { struct cpufreq *cf = cf_backend; uint32_t freq; mutex_enter(&cpufreq_lock); if (cf->cf_init != true) { mutex_exit(&cpufreq_lock); return 0; } freq = cpufreq_get_raw(ci); mutex_exit(&cpufreq_lock); return freq; } static uint32_t cpufreq_get_max(void) { struct cpufreq *cf = cf_backend; KASSERT(cf->cf_init != false); KASSERT(mutex_owned(&cpufreq_lock) != 0); return cf->cf_state[0].cfs_freq; } static uint32_t cpufreq_get_min(void) { struct cpufreq *cf = cf_backend; KASSERT(cf->cf_init != false); KASSERT(mutex_owned(&cpufreq_lock) != 0); return cf->cf_state[cf->cf_state_count - 1].cfs_freq; } static uint32_t cpufreq_get_raw(struct cpu_info *ci) { struct cpufreq *cf = cf_backend; uint32_t freq = 0; uint64_t xc; KASSERT(cf->cf_init != false); KASSERT(mutex_owned(&cpufreq_lock) != 0); xc = xc_unicast(0, (*cf->cf_get_freq), cf->cf_cookie, &freq, ci); xc_wait(xc); return freq; } int cpufreq_get_backend(struct cpufreq *dst) { struct cpufreq *cf = cf_backend; mutex_enter(&cpufreq_lock); if (cf->cf_init != true || dst == NULL) { mutex_exit(&cpufreq_lock); return ENODEV; } memcpy(dst, cf, sizeof(*cf)); mutex_exit(&cpufreq_lock); return 0; } int cpufreq_get_state(uint32_t freq, struct cpufreq_state *cfs) { struct cpufreq *cf = cf_backend; mutex_enter(&cpufreq_lock); if (cf->cf_init != true || cfs == NULL) { mutex_exit(&cpufreq_lock); return ENODEV; } cpufreq_get_state_raw(freq, cfs); mutex_exit(&cpufreq_lock); return 0; } int cpufreq_get_state_index(uint32_t index, struct cpufreq_state *cfs) { struct cpufreq *cf = cf_backend; mutex_enter(&cpufreq_lock); if (cf->cf_init != true || cfs == NULL) { mutex_exit(&cpufreq_lock); return ENODEV; } if (index >= cf->cf_state_count) { mutex_exit(&cpu_lock); return EINVAL; } memcpy(cfs, &cf->cf_state[index], sizeof(*cfs)); mutex_exit(&cpufreq_lock); return 0; } static void cpufreq_get_state_raw(uint32_t freq, struct cpufreq_state *cfs) { struct cpufreq *cf = cf_backend; uint32_t f, hi, i = 0, lo = 0; KASSERT(mutex_owned(&cpufreq_lock) != 0); KASSERT(cf->cf_init != false && cfs != NULL); hi = cf->cf_state_count; while (lo < hi) { i = (lo + hi) >> 1; f = cf->cf_state[i].cfs_freq; if (freq == f) break; else if (freq > f) hi = i; else { lo = i + 1; } } memcpy(cfs, &cf->cf_state[i], sizeof(*cfs)); } void cpufreq_set(struct cpu_info *ci, uint32_t freq) { struct cpufreq *cf = cf_backend; mutex_enter(&cpufreq_lock); if (__predict_false(cf->cf_init != true)) { mutex_exit(&cpufreq_lock); return; } cpufreq_set_raw(ci, freq); mutex_exit(&cpufreq_lock); } static void cpufreq_set_raw(struct cpu_info *ci, uint32_t freq) { struct cpufreq *cf = cf_backend; uint64_t xc; KASSERT(cf->cf_init != false); KASSERT(mutex_owned(&cpufreq_lock) != 0); xc = xc_unicast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq, ci); xc_wait(xc); } void cpufreq_set_all(uint32_t freq) { struct cpufreq *cf = cf_backend; mutex_enter(&cpufreq_lock); if (__predict_false(cf->cf_init != true)) { mutex_exit(&cpufreq_lock); return; } cpufreq_set_all_raw(freq); mutex_exit(&cpufreq_lock); } static void cpufreq_set_all_raw(uint32_t freq) { struct cpufreq *cf = cf_backend; uint64_t xc; KASSERT(cf->cf_init != false); KASSERT(mutex_owned(&cpufreq_lock) != 0); xc = xc_broadcast(0, (*cf->cf_set_freq), cf->cf_cookie, &freq); xc_wait(xc); } #ifdef notyet void cpufreq_set_higher(struct cpu_info *ci) { cpufreq_set_step(ci, -1); } void cpufreq_set_lower(struct cpu_info *ci) { cpufreq_set_step(ci, 1); } static void cpufreq_set_step(struct cpu_info *ci, int32_t step) { struct cpufreq *cf = cf_backend; struct cpufreq_state cfs; uint32_t freq; int32_t index; mutex_enter(&cpufreq_lock); if (__predict_false(cf->cf_init != true)) { mutex_exit(&cpufreq_lock); return; } freq = cpufreq_get_raw(ci); if (__predict_false(freq == 0)) { mutex_exit(&cpufreq_lock); return; } cpufreq_get_state_raw(freq, &cfs); index = cfs.cfs_index + step; if (index < 0 || index >= (int32_t)cf->cf_state_count) { mutex_exit(&cpufreq_lock); return; } cpufreq_set_raw(ci, cf->cf_state[index].cfs_freq); mutex_exit(&cpufreq_lock); } #endif