/* $NetBSD: ffs_vfsops.c,v 1.196 2007/02/16 17:24:00 hannken Exp $ */ /* * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 */ #include __KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.196 2007/02/16 17:24:00 hannken Exp $"); #if defined(_KERNEL_OPT) #include "opt_ffs.h" #include "opt_quota.h" #include "opt_softdep.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* how many times ffs_init() was called */ int ffs_initcount = 0; extern kmutex_t ufs_hashlock; extern const struct vnodeopv_desc ffs_vnodeop_opv_desc; extern const struct vnodeopv_desc ffs_specop_opv_desc; extern const struct vnodeopv_desc ffs_fifoop_opv_desc; const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = { &ffs_vnodeop_opv_desc, &ffs_specop_opv_desc, &ffs_fifoop_opv_desc, NULL, }; struct vfsops ffs_vfsops = { MOUNT_FFS, ffs_mount, ufs_start, ffs_unmount, ufs_root, ufs_quotactl, ffs_statvfs, ffs_sync, ffs_vget, ffs_fhtovp, ffs_vptofh, ffs_init, ffs_reinit, ffs_done, ffs_mountroot, ffs_snapshot, ffs_extattrctl, ffs_suspendctl, ffs_vnodeopv_descs, 0, { NULL, NULL }, }; VFS_ATTACH(ffs_vfsops); static const struct genfs_ops ffs_genfsops = { .gop_size = ffs_gop_size, .gop_alloc = ufs_gop_alloc, .gop_write = genfs_gop_write, .gop_markupdate = ufs_gop_markupdate, }; static const struct ufs_ops ffs_ufsops = { .uo_itimes = ffs_itimes, .uo_update = ffs_update, .uo_truncate = ffs_truncate, .uo_valloc = ffs_valloc, .uo_vfree = ffs_vfree, .uo_balloc = ffs_balloc, }; POOL_INIT(ffs_inode_pool, sizeof(struct inode), 0, 0, 0, "ffsinopl", &pool_allocator_nointr); POOL_INIT(ffs_dinode1_pool, sizeof(struct ufs1_dinode), 0, 0, 0, "dino1pl", &pool_allocator_nointr); POOL_INIT(ffs_dinode2_pool, sizeof(struct ufs2_dinode), 0, 0, 0, "dino2pl", &pool_allocator_nointr); static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t); static void ffs_oldfscompat_write(struct fs *, struct ufsmount *); /* * Called by main() when ffs is going to be mounted as root. */ int ffs_mountroot(void) { struct fs *fs; struct mount *mp; struct lwp *l = curlwp; /* XXX */ struct ufsmount *ump; int error; if (device_class(root_device) != DV_DISK) return (ENODEV); if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) { vrele(rootvp); return (error); } if ((error = ffs_mountfs(rootvp, mp, l)) != 0) { mp->mnt_op->vfs_refcount--; vfs_unbusy(mp); free(mp, M_MOUNT); return (error); } simple_lock(&mountlist_slock); CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); simple_unlock(&mountlist_slock); ump = VFSTOUFS(mp); fs = ump->um_fs; memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt)); (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0); (void)ffs_statvfs(mp, &mp->mnt_stat, l); vfs_unbusy(mp); setrootfstime((time_t)fs->fs_time); return (0); } /* * VFS Operations. * * mount system call */ int ffs_mount(struct mount *mp, const char *path, void *data, struct nameidata *ndp, struct lwp *l) { struct vnode *devvp = NULL; struct ufs_args args; struct ufsmount *ump = NULL; struct fs *fs; int error, flags, update; mode_t accessmode; if (mp->mnt_flag & MNT_GETARGS) { ump = VFSTOUFS(mp); if (ump == NULL) return EIO; args.fspec = NULL; return copyout(&args, data, sizeof(args)); } error = copyin(data, &args, sizeof (struct ufs_args)); if (error) return (error); #if !defined(SOFTDEP) mp->mnt_flag &= ~MNT_SOFTDEP; #endif update = mp->mnt_flag & MNT_UPDATE; /* Check arguments */ if (args.fspec != NULL) { /* * Look up the name and verify that it's sane. */ NDINIT(ndp, LOOKUP, FOLLOW, UIO_USERSPACE, args.fspec, l); if ((error = namei(ndp)) != 0) return (error); devvp = ndp->ni_vp; if (!update) { /* * Be sure this is a valid block device */ if (devvp->v_type != VBLK) error = ENOTBLK; else if (bdevsw_lookup(devvp->v_rdev) == NULL) error = ENXIO; } else { /* * Be sure we're still naming the same device * used for our initial mount */ ump = VFSTOUFS(mp); if (devvp != ump->um_devvp) { if (devvp->v_rdev != ump->um_devvp->v_rdev) error = EINVAL; else { vrele(devvp); devvp = ump->um_devvp; vref(devvp); } } } } else { if (!update) { /* New mounts must have a filename for the device */ return (EINVAL); } else { /* Use the extant mount */ ump = VFSTOUFS(mp); devvp = ump->um_devvp; vref(devvp); } } /* * If mount by non-root, then verify that user has necessary * permissions on the device. */ if (error == 0 && kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) { accessmode = VREAD; if (update ? (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : (mp->mnt_flag & MNT_RDONLY) == 0) accessmode |= VWRITE; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_ACCESS(devvp, accessmode, l->l_cred, l); VOP_UNLOCK(devvp, 0); } if (error) { vrele(devvp); return (error); } if (!update) { int xflags; /* * Disallow multiple mounts of the same device. * Disallow mounting of a device that is currently in use * (except for root, which might share swap device for * miniroot). */ error = vfs_mountedon(devvp); if (error) goto fail; if (vcount(devvp) > 1 && devvp != rootvp) { error = EBUSY; goto fail; } if (mp->mnt_flag & MNT_RDONLY) xflags = FREAD; else xflags = FREAD|FWRITE; error = VOP_OPEN(devvp, xflags, FSCRED, l); if (error) goto fail; error = ffs_mountfs(devvp, mp, l); if (error) { vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); (void)VOP_CLOSE(devvp, xflags, NOCRED, l); VOP_UNLOCK(devvp, 0); goto fail; } ump = VFSTOUFS(mp); fs = ump->um_fs; if ((mp->mnt_flag & (MNT_SOFTDEP | MNT_ASYNC)) == (MNT_SOFTDEP | MNT_ASYNC)) { printf("%s fs uses soft updates, " "ignoring async mode\n", fs->fs_fsmnt); mp->mnt_flag &= ~MNT_ASYNC; } } else { /* * Update the mount. */ /* * The initial mount got a reference on this * device, so drop the one obtained via * namei(), above. */ vrele(devvp); ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { /* * Changing from r/w to r/o */ vn_start_write(NULL, &mp, V_WAIT); flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; if (mp->mnt_flag & MNT_SOFTDEP) error = softdep_flushfiles(mp, flags, l); else error = ffs_flushfiles(mp, flags, l); if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("%s: update error: blocks %" PRId64 " files %d\n", fs->fs_fsmnt, fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } if (error == 0 && ffs_cgupdate(ump, MNT_WAIT) == 0 && fs->fs_clean & FS_WASCLEAN) { if (mp->mnt_flag & MNT_SOFTDEP) fs->fs_flags &= ~FS_DOSOFTDEP; fs->fs_clean = FS_ISCLEAN; (void) ffs_sbupdate(ump, MNT_WAIT); } vn_finished_write(mp, 0); if (error) return (error); fs->fs_ronly = 1; fs->fs_fmod = 0; } /* * Flush soft dependencies if disabling it via an update * mount. This may leave some items to be processed, * so don't do this yet XXX. */ if ((fs->fs_flags & FS_DOSOFTDEP) && !(mp->mnt_flag & MNT_SOFTDEP) && fs->fs_ronly == 0) { #ifdef notyet vn_start_write(NULL, &mp, V_WAIT); flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; error = softdep_flushfiles(mp, flags, l); if (error == 0 && ffs_cgupdate(ump, MNT_WAIT) == 0) fs->fs_flags &= ~FS_DOSOFTDEP; (void) ffs_sbupdate(ump, MNT_WAIT); vn_finished_write(mp); #elif defined(SOFTDEP) mp->mnt_flag |= MNT_SOFTDEP; #endif } /* * When upgrading to a softdep mount, we must first flush * all vnodes. (not done yet -- see above) */ if (!(fs->fs_flags & FS_DOSOFTDEP) && (mp->mnt_flag & MNT_SOFTDEP) && fs->fs_ronly == 0) { #ifdef notyet vn_start_write(NULL, &mp, V_WAIT); flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; error = ffs_flushfiles(mp, flags, l); vn_finished_write(mp); #else mp->mnt_flag &= ~MNT_SOFTDEP; #endif } if (mp->mnt_flag & MNT_RELOAD) { error = ffs_reload(mp, l->l_cred, l); if (error) return (error); } if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { /* * Changing from read-only to read/write */ fs->fs_ronly = 0; fs->fs_clean <<= 1; fs->fs_fmod = 1; if ((fs->fs_flags & FS_DOSOFTDEP)) { error = softdep_mount(devvp, mp, fs, l->l_cred); if (error) return (error); } if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); } if (args.fspec == NULL) return EINVAL; if ((mp->mnt_flag & (MNT_SOFTDEP | MNT_ASYNC)) == (MNT_SOFTDEP | MNT_ASYNC)) { printf("%s fs uses soft updates, ignoring async mode\n", fs->fs_fsmnt); mp->mnt_flag &= ~MNT_ASYNC; } } error = set_statvfs_info(path, UIO_USERSPACE, args.fspec, UIO_USERSPACE, mp, l); if (error == 0) (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, sizeof(fs->fs_fsmnt)); if (mp->mnt_flag & MNT_SOFTDEP) fs->fs_flags |= FS_DOSOFTDEP; else fs->fs_flags &= ~FS_DOSOFTDEP; if (fs->fs_fmod != 0) { /* XXX */ fs->fs_fmod = 0; if (fs->fs_clean & FS_WASCLEAN) fs->fs_time = time_second; else { printf("%s: file system not clean (fs_clean=%x); please fsck(8)\n", mp->mnt_stat.f_mntfromname, fs->fs_clean); printf("%s: lost blocks %" PRId64 " files %d\n", mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks, fs->fs_pendinginodes); } (void) ffs_cgupdate(ump, MNT_WAIT); } return (error); fail: vrele(devvp); return (error); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). The filesystem must * be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) re-read summary information from disk. * 4) invalidate all inactive vnodes. * 5) invalidate all cached file data. * 6) re-read inode data for all active vnodes. */ int ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l) { struct vnode *vp, *nvp, *devvp; struct inode *ip; void *space; struct buf *bp; struct fs *fs, *newfs; struct partinfo dpart; int i, blks, size, error; int32_t *lp; struct ufsmount *ump; daddr_t sblockloc; if ((mp->mnt_flag & MNT_RDONLY) == 0) return (EINVAL); ump = VFSTOUFS(mp); /* * Step 1: invalidate all cached meta-data. */ devvp = ump->um_devvp; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = vinvalbuf(devvp, 0, cred, l, 0, 0); VOP_UNLOCK(devvp, 0); if (error) panic("ffs_reload: dirty1"); /* * Step 2: re-read superblock from disk. */ fs = ump->um_fs; if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, l) != 0) size = DEV_BSIZE; else size = dpart.disklab->d_secsize; /* XXX we don't handle possibility that superblock moved. */ error = bread(devvp, fs->fs_sblockloc / size, fs->fs_sbsize, NOCRED, &bp); if (error) { brelse(bp); return (error); } newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK); memcpy(newfs, bp->b_data, fs->fs_sbsize); #ifdef FFS_EI if (ump->um_flags & UFS_NEEDSWAP) { ffs_sb_swap((struct fs*)bp->b_data, newfs); fs->fs_flags |= FS_SWAPPED; } else #endif fs->fs_flags &= ~FS_SWAPPED; if ((newfs->fs_magic != FS_UFS1_MAGIC && newfs->fs_magic != FS_UFS2_MAGIC)|| newfs->fs_bsize > MAXBSIZE || newfs->fs_bsize < sizeof(struct fs)) { brelse(bp); free(newfs, M_UFSMNT); return (EIO); /* XXX needs translation */ } /* Store off old fs_sblockloc for fs_oldfscompat_read. */ sblockloc = fs->fs_sblockloc; /* * Copy pointer fields back into superblock before copying in XXX * new superblock. These should really be in the ufsmount. XXX * Note that important parameters (eg fs_ncg) are unchanged. */ newfs->fs_csp = fs->fs_csp; newfs->fs_maxcluster = fs->fs_maxcluster; newfs->fs_contigdirs = fs->fs_contigdirs; newfs->fs_ronly = fs->fs_ronly; newfs->fs_active = fs->fs_active; memcpy(fs, newfs, (u_int)fs->fs_sbsize); brelse(bp); free(newfs, M_UFSMNT); /* Recheck for apple UFS filesystem */ ump->um_flags &= ~UFS_ISAPPLEUFS; /* First check to see if this is tagged as an Apple UFS filesystem * in the disklabel */ if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) == 0) && (dpart.part->p_fstype == FS_APPLEUFS)) { ump->um_flags |= UFS_ISAPPLEUFS; } #ifdef APPLE_UFS else { /* Manually look for an apple ufs label, and if a valid one * is found, then treat it like an Apple UFS filesystem anyway */ error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size), APPLEUFS_LABEL_SIZE, cred, &bp); if (error) { brelse(bp); return (error); } error = ffs_appleufs_validate(fs->fs_fsmnt, (struct appleufslabel *)bp->b_data,NULL); if (error == 0) ump->um_flags |= UFS_ISAPPLEUFS; brelse(bp); bp = NULL; } #else if (ump->um_flags & UFS_ISAPPLEUFS) return (EIO); #endif if (UFS_MPISAPPLEUFS(ump)) { /* see comment about NeXT below */ ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN; ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ; mp->mnt_iflag |= IMNT_DTYPE; } else { ump->um_maxsymlinklen = fs->fs_maxsymlinklen; ump->um_dirblksiz = DIRBLKSIZ; if (ump->um_maxsymlinklen > 0) mp->mnt_iflag |= IMNT_DTYPE; else mp->mnt_iflag &= ~IMNT_DTYPE; } ffs_oldfscompat_read(fs, ump, sblockloc); ump->um_maxfilesize = fs->fs_maxfilesize; if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } ffs_statvfs(mp, &mp->mnt_stat, l); /* * Step 3: re-read summary information from disk. */ blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, NOCRED, &bp); if (error) { brelse(bp); return (error); } #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_csum_swap((struct csum *)bp->b_data, (struct csum *)space, size); else #endif memcpy(space, bp->b_data, (size_t)size); space = (char *)space + size; brelse(bp); } if ((fs->fs_flags & FS_DOSOFTDEP)) softdep_mount(devvp, mp, fs, cred); if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); /* * We no longer know anything about clusters per cylinder group. */ if (fs->fs_contigsumsize > 0) { lp = fs->fs_maxcluster; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; } loop: /* * NOTE: not using the TAILQ_FOREACH here since in this loop vgone() * and vclean() can be called indirectly */ simple_lock(&mntvnode_slock); for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { if (vp->v_mount != mp) { simple_unlock(&mntvnode_slock); goto loop; } /* * Step 4: invalidate all inactive vnodes. */ if (vrecycle(vp, &mntvnode_slock, l)) goto loop; /* * Step 5: invalidate all cached file data. */ simple_lock(&vp->v_interlock); nvp = TAILQ_NEXT(vp, v_mntvnodes); simple_unlock(&mntvnode_slock); if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) goto loop; if (vinvalbuf(vp, 0, cred, l, 0, 0)) panic("ffs_reload: dirty2"); /* * Step 6: re-read inode data for all active vnodes. */ ip = VTOI(vp); error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { brelse(bp); vput(vp); return (error); } ffs_load_inode(bp, ip, fs, ip->i_number); ip->i_ffs_effnlink = ip->i_nlink; brelse(bp); vput(vp); simple_lock(&mntvnode_slock); } simple_unlock(&mntvnode_slock); return (0); } /* * Possible superblock locations ordered from most to least likely. */ static const int sblock_try[] = SBLOCKSEARCH; /* * Common code for mount and mountroot */ int ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) { struct ufsmount *ump; struct buf *bp; struct fs *fs; dev_t dev; struct partinfo dpart; void *space; daddr_t sblockloc, fsblockloc; int blks, fstype; int error, i, size, ronly; #ifdef FFS_EI int needswap = 0; /* keep gcc happy */ #endif int32_t *lp; kauth_cred_t cred; u_int32_t sbsize = 8192; /* keep gcc happy*/ dev = devvp->v_rdev; cred = l ? l->l_cred : NOCRED; /* Flush out any old buffers remaining from a previous use. */ vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); VOP_UNLOCK(devvp, 0); if (error) return (error); ronly = (mp->mnt_flag & MNT_RDONLY) != 0; if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) != 0) size = DEV_BSIZE; else size = dpart.disklab->d_secsize; bp = NULL; ump = NULL; fs = NULL; sblockloc = 0; fstype = 0; /* * Try reading the superblock in each of its possible locations. */ for (i = 0; ; i++) { if (bp != NULL) { bp->b_flags |= B_NOCACHE; brelse(bp); bp = NULL; } if (sblock_try[i] == -1) { error = EINVAL; fs = NULL; goto out; } error = bread(devvp, sblock_try[i] / size, SBLOCKSIZE, cred, &bp); if (error) { fs = NULL; goto out; } fs = (struct fs*)bp->b_data; fsblockloc = sblockloc = sblock_try[i]; if (fs->fs_magic == FS_UFS1_MAGIC) { sbsize = fs->fs_sbsize; fstype = UFS1; #ifdef FFS_EI needswap = 0; } else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) { sbsize = bswap32(fs->fs_sbsize); fstype = UFS1; needswap = 1; #endif } else if (fs->fs_magic == FS_UFS2_MAGIC) { sbsize = fs->fs_sbsize; fstype = UFS2; #ifdef FFS_EI needswap = 0; } else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) { sbsize = bswap32(fs->fs_sbsize); fstype = UFS2; needswap = 1; #endif } else continue; /* fs->fs_sblockloc isn't defined for old filesystems */ if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) { if (sblockloc == SBLOCK_UFS2) /* * This is likely to be the first alternate * in a filesystem with 64k blocks. * Don't use it. */ continue; fsblockloc = sblockloc; } else { fsblockloc = fs->fs_sblockloc; #ifdef FFS_EI if (needswap) fsblockloc = bswap64(fsblockloc); #endif } /* Check we haven't found an alternate superblock */ if (fsblockloc != sblockloc) continue; /* Validate size of superblock */ if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs)) continue; /* Ok seems to be a good superblock */ break; } fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK); memcpy(fs, bp->b_data, sbsize); ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK); memset(ump, 0, sizeof *ump); TAILQ_INIT(&ump->um_snapshots); ump->um_fs = fs; ump->um_ops = &ffs_ufsops; #ifdef FFS_EI if (needswap) { ffs_sb_swap((struct fs*)bp->b_data, fs); fs->fs_flags |= FS_SWAPPED; } else #endif fs->fs_flags &= ~FS_SWAPPED; ffs_oldfscompat_read(fs, ump, sblockloc); ump->um_maxfilesize = fs->fs_maxfilesize; if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } ump->um_fstype = fstype; if (fs->fs_sbsize < SBLOCKSIZE) bp->b_flags |= B_INVAL; brelse(bp); bp = NULL; /* First check to see if this is tagged as an Apple UFS filesystem * in the disklabel */ if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) == 0) && (dpart.part->p_fstype == FS_APPLEUFS)) { ump->um_flags |= UFS_ISAPPLEUFS; } #ifdef APPLE_UFS else { /* Manually look for an apple ufs label, and if a valid one * is found, then treat it like an Apple UFS filesystem anyway */ error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / size), APPLEUFS_LABEL_SIZE, cred, &bp); if (error) goto out; error = ffs_appleufs_validate(fs->fs_fsmnt, (struct appleufslabel *)bp->b_data,NULL); if (error == 0) { ump->um_flags |= UFS_ISAPPLEUFS; } brelse(bp); bp = NULL; } #else if (ump->um_flags & UFS_ISAPPLEUFS) { error = EINVAL; goto out; } #endif /* * verify that we can access the last block in the fs * if we're mounting read/write. */ if (!ronly) { error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize, cred, &bp); if (bp->b_bcount != fs->fs_fsize) error = EINVAL; bp->b_flags |= B_INVAL; if (error) goto out; brelse(bp); bp = NULL; } fs->fs_ronly = ronly; if (ronly == 0) { fs->fs_clean <<= 1; fs->fs_fmod = 1; } size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); if (fs->fs_contigsumsize > 0) size += fs->fs_ncg * sizeof(int32_t); size += fs->fs_ncg * sizeof(*fs->fs_contigdirs); space = malloc((u_long)size, M_UFSMNT, M_WAITOK); fs->fs_csp = space; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, cred, &bp); if (error) { free(fs->fs_csp, M_UFSMNT); goto out; } #ifdef FFS_EI if (needswap) ffs_csum_swap((struct csum *)bp->b_data, (struct csum *)space, size); else #endif memcpy(space, bp->b_data, (u_int)size); space = (char *)space + size; brelse(bp); bp = NULL; } if (fs->fs_contigsumsize > 0) { fs->fs_maxcluster = lp = space; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; space = lp; } size = fs->fs_ncg * sizeof(*fs->fs_contigdirs); fs->fs_contigdirs = space; space = (char *)space + size; memset(fs->fs_contigdirs, 0, size); /* Compatibility for old filesystems - XXX */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; fs->fs_active = NULL; mp->mnt_data = ump; mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS); mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; mp->mnt_stat.f_namemax = FFS_MAXNAMLEN; if (UFS_MPISAPPLEUFS(ump)) { /* NeXT used to keep short symlinks in the inode even * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen * is probably -1, but we still need to be able to identify * short symlinks. */ ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN; ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ; mp->mnt_iflag |= IMNT_DTYPE; } else { ump->um_maxsymlinklen = fs->fs_maxsymlinklen; ump->um_dirblksiz = DIRBLKSIZ; if (ump->um_maxsymlinklen > 0) mp->mnt_iflag |= IMNT_DTYPE; else mp->mnt_iflag &= ~IMNT_DTYPE; } mp->mnt_fs_bshift = fs->fs_bshift; mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */ mp->mnt_flag |= MNT_LOCAL; mp->mnt_iflag |= IMNT_HAS_TRANS; #ifdef FFS_EI if (needswap) ump->um_flags |= UFS_NEEDSWAP; #endif ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_nindir = fs->fs_nindir; ump->um_lognindir = ffs(fs->fs_nindir) - 1; ump->um_bptrtodb = fs->fs_fsbtodb; ump->um_seqinc = fs->fs_frag; for (i = 0; i < MAXQUOTAS; i++) ump->um_quotas[i] = NULLVP; devvp->v_specmountpoint = mp; if (ronly == 0 && (fs->fs_flags & FS_DOSOFTDEP)) { error = softdep_mount(devvp, mp, fs, cred); if (error) { free(fs->fs_csp, M_UFSMNT); goto out; } } if (ronly == 0 && fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); #ifdef UFS_EXTATTR /* * Initialize file-backed extended attributes on UFS1 file * systems. */ if (ump->um_fstype == UFS1) { ufs_extattr_uepm_init(&ump->um_extattr); #ifdef UFS_EXTATTR_AUTOSTART /* * XXX Just ignore errors. Not clear that we should * XXX fail the mount in this case. */ (void) ufs_extattr_autostart(mp, l); #endif } #endif /* UFS_EXTATTR */ return (0); out: if (fs) free(fs, M_UFSMNT); devvp->v_specmountpoint = NULL; if (bp) brelse(bp); if (ump) { if (ump->um_oldfscompat) free(ump->um_oldfscompat, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; } return (error); } /* * Sanity checks for loading old filesystem superblocks. * See ffs_oldfscompat_write below for unwound actions. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ static void ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc) { off_t maxfilesize; int32_t *extrasave; if ((fs->fs_magic != FS_UFS1_MAGIC) || (fs->fs_old_flags & FS_FLAGS_UPDATED)) return; if (!ump->um_oldfscompat) ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t), M_UFSMNT, M_WAITOK); memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512); extrasave = ump->um_oldfscompat; extrasave += 512/sizeof(int32_t); extrasave[0] = fs->fs_old_npsect; extrasave[1] = fs->fs_old_interleave; extrasave[2] = fs->fs_old_trackskew; /* These fields will be overwritten by their * original values in fs_oldfscompat_write, so it is harmless * to modify them here. */ fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; fs->fs_maxbsize = fs->fs_bsize; fs->fs_time = fs->fs_old_time; fs->fs_size = fs->fs_old_size; fs->fs_dsize = fs->fs_old_dsize; fs->fs_csaddr = fs->fs_old_csaddr; fs->fs_sblockloc = sblockloc; fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL); if (fs->fs_old_postblformat == FS_42POSTBLFMT) { fs->fs_old_nrpos = 8; fs->fs_old_npsect = fs->fs_old_nsect; fs->fs_old_interleave = 1; fs->fs_old_trackskew = 0; } if (fs->fs_old_inodefmt < FS_44INODEFMT) { ump->um_maxfilesize = (u_quad_t) 1LL << 39; fs->fs_qbmask = ~fs->fs_bmask; fs->fs_qfmask = ~fs->fs_fmask; } maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1; if (ump->um_maxfilesize > maxfilesize) ump->um_maxfilesize = maxfilesize; /* Compatibility for old filesystems */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; #if 0 if (bigcgs) { fs->fs_save_cgsize = fs->fs_cgsize; fs->fs_cgsize = fs->fs_bsize; } #endif } /* * Unwinding superblock updates for old filesystems. * See ffs_oldfscompat_read above for details. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ static void ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump) { int32_t *extrasave; if ((fs->fs_magic != FS_UFS1_MAGIC) || (fs->fs_old_flags & FS_FLAGS_UPDATED)) return; fs->fs_old_time = fs->fs_time; fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; fs->fs_old_flags = fs->fs_flags; #if 0 if (bigcgs) { fs->fs_cgsize = fs->fs_save_cgsize; } #endif memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512); extrasave = ump->um_oldfscompat; extrasave += 512/sizeof(int32_t); fs->fs_old_npsect = extrasave[0]; fs->fs_old_interleave = extrasave[1]; fs->fs_old_trackskew = extrasave[2]; } /* * unmount system call */ int ffs_unmount(struct mount *mp, int mntflags, struct lwp *l) { struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs = ump->um_fs; int error, flags, penderr; penderr = 0; flags = 0; if (mntflags & MNT_FORCE) flags |= FORCECLOSE; #ifdef UFS_EXTATTR if (ump->um_fstype == UFS1) { error = ufs_extattr_stop(mp, l); if (error) { if (error != EOPNOTSUPP) printf("%s: ufs_extattr_stop returned %d\n", fs->fs_fsmnt, error); } else ufs_extattr_uepm_destroy(&ump->um_extattr); } #endif /* UFS_EXTATTR */ if (mp->mnt_flag & MNT_SOFTDEP) { if ((error = softdep_flushfiles(mp, flags, l)) != 0) return (error); } else { if ((error = ffs_flushfiles(mp, flags, l)) != 0) return (error); } if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("%s: unmount pending error: blocks %" PRId64 " files %d\n", fs->fs_fsmnt, fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; penderr = 1; } if (fs->fs_ronly == 0 && ffs_cgupdate(ump, MNT_WAIT) == 0 && fs->fs_clean & FS_WASCLEAN) { /* * XXXX don't mark fs clean in the case of softdep * pending block errors, until they are fixed. */ if (penderr == 0) { if (mp->mnt_flag & MNT_SOFTDEP) fs->fs_flags &= ~FS_DOSOFTDEP; fs->fs_clean = FS_ISCLEAN; } fs->fs_fmod = 0; (void) ffs_sbupdate(ump, MNT_WAIT); } if (ump->um_devvp->v_type != VBAD) ump->um_devvp->v_specmountpoint = NULL; vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD|FWRITE, NOCRED, l); vput(ump->um_devvp); free(fs->fs_csp, M_UFSMNT); free(fs, M_UFSMNT); if (ump->um_oldfscompat != NULL) free(ump->um_oldfscompat, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; mp->mnt_flag &= ~MNT_LOCAL; return (0); } /* * Flush out all the files in a filesystem. */ int ffs_flushfiles(struct mount *mp, int flags, struct lwp *l) { extern int doforce; struct ufsmount *ump; int error; if (!doforce) flags &= ~FORCECLOSE; ump = VFSTOUFS(mp); #ifdef QUOTA if (mp->mnt_flag & MNT_QUOTA) { int i; if ((error = vflush(mp, NULLVP, SKIPSYSTEM|flags)) != 0) return (error); for (i = 0; i < MAXQUOTAS; i++) { if (ump->um_quotas[i] == NULLVP) continue; quotaoff(l, mp, i); } /* * Here we fall through to vflush again to ensure * that we have gotten rid of all the system vnodes. */ } #endif if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0) return (error); ffs_snapshot_unmount(mp); /* * Flush all the files. */ error = vflush(mp, NULLVP, flags); if (error) return (error); /* * Flush filesystem metadata. */ vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0, l); VOP_UNLOCK(ump->um_devvp, 0); return (error); } /* * Get file system statistics. */ int ffs_statvfs(struct mount *mp, struct statvfs *sbp, struct lwp *l) { struct ufsmount *ump; struct fs *fs; ump = VFSTOUFS(mp); fs = ump->um_fs; sbp->f_bsize = fs->fs_bsize; sbp->f_frsize = fs->fs_fsize; sbp->f_iosize = fs->fs_bsize; sbp->f_blocks = fs->fs_dsize; sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) + fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t) fs->fs_minfree) / (u_int64_t) 100; if (sbp->f_bfree > sbp->f_bresvd) sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; else sbp->f_bavail = 0; sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO; sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; sbp->f_favail = sbp->f_ffree; sbp->f_fresvd = 0; copy_statvfs_info(sbp, mp); return (0); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Note: we are always called with the filesystem marked `MPBUSY'. */ int ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred, struct lwp *l) { struct vnode *vp, *nvp; struct inode *ip; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; int error, count, allerror = 0; fs = ump->um_fs; if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */ printf("fs = %s\n", fs->fs_fsmnt); panic("update: rofs mod"); } if ((error = fstrans_start(mp, FSTRANS_SHARED)) != 0) return error; /* * Write back each (modified) inode. */ simple_lock(&mntvnode_slock); loop: /* * NOTE: not using the TAILQ_FOREACH here since in this loop vgone() * and vclean() can be called indirectly */ for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { /* * If the vnode that we are about to sync is no longer * associated with this mount point, start over. */ if (vp->v_mount != mp) goto loop; simple_lock(&vp->v_interlock); nvp = TAILQ_NEXT(vp, v_mntvnodes); ip = VTOI(vp); if (vp->v_type == VNON || ((ip->i_flag & (IN_CHANGE | IN_UPDATE | IN_MODIFIED)) == 0 && LIST_EMPTY(&vp->v_dirtyblkhd) && vp->v_uobj.uo_npages == 0)) { simple_unlock(&vp->v_interlock); continue; } if (vp->v_type == VBLK && fstrans_getstate(mp) == FSTRANS_SUSPENDING) { simple_unlock(&vp->v_interlock); continue; } simple_unlock(&mntvnode_slock); error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK); if (error) { simple_lock(&mntvnode_slock); if (error == ENOENT) goto loop; continue; } if (vp->v_type == VREG && waitfor == MNT_LAZY) error = ffs_update(vp, NULL, NULL, 0); else error = VOP_FSYNC(vp, cred, waitfor == MNT_WAIT ? FSYNC_WAIT : 0, 0, 0, l); if (error) allerror = error; vput(vp); simple_lock(&mntvnode_slock); } simple_unlock(&mntvnode_slock); /* * Force stale file system control information to be flushed. */ if (waitfor == MNT_WAIT && (ump->um_mountp->mnt_flag & MNT_SOFTDEP)) { if ((error = softdep_flushworklist(ump->um_mountp, &count, l))) allerror = error; /* Flushed work items may create new vnodes to clean */ if (allerror == 0 && count) { simple_lock(&mntvnode_slock); goto loop; } } if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 || !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) { vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); if ((error = VOP_FSYNC(ump->um_devvp, cred, waitfor == MNT_WAIT ? FSYNC_WAIT : 0, 0, 0, l)) != 0) allerror = error; VOP_UNLOCK(ump->um_devvp, 0); if (allerror == 0 && waitfor == MNT_WAIT) { simple_lock(&mntvnode_slock); goto loop; } } #ifdef QUOTA qsync(mp); #endif /* * Write back modified superblock. */ if (fs->fs_fmod != 0) { fs->fs_fmod = 0; fs->fs_time = time_second; if ((error = ffs_cgupdate(ump, waitfor))) allerror = error; } fstrans_done(mp); return (allerror); } /* * Look up a FFS dinode number to find its incore vnode, otherwise read it * in from disk. If it is in core, wait for the lock bit to clear, then * return the inode locked. Detection and handling of mount points must be * done by the calling routine. */ int ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) { struct fs *fs; struct inode *ip; struct ufsmount *ump; struct buf *bp; struct vnode *vp; dev_t dev; int error; ump = VFSTOUFS(mp); dev = ump->um_dev; if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) return (0); /* Allocate a new vnode/inode. */ if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) { *vpp = NULL; return (error); } ip = pool_get(&ffs_inode_pool, PR_WAITOK); /* * If someone beat us to it while sleeping in getnewvnode(), * push back the freshly allocated vnode we don't need, and return. */ mutex_enter(&ufs_hashlock); if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) { mutex_exit(&ufs_hashlock); ungetnewvnode(vp); pool_put(&ffs_inode_pool, ip); return (0); } vp->v_flag |= VLOCKSWORK; /* * XXX MFS ends up here, too, to allocate an inode. Should we * XXX create another pool for MFS inodes? */ memset(ip, 0, sizeof(struct inode)); vp->v_data = ip; ip->i_vnode = vp; ip->i_ump = ump; ip->i_fs = fs = ump->um_fs; ip->i_dev = dev; ip->i_number = ino; LIST_INIT(&ip->i_pcbufhd); #ifdef QUOTA { int i; for (i = 0; i < MAXQUOTAS; i++) ip->i_dquot[i] = NODQUOT; } #endif /* * Put it onto its hash chain and lock it so that other requests for * this inode will block if they arrive while we are sleeping waiting * for old data structures to be purged or for the contents of the * disk portion of this inode to be read. */ ufs_ihashins(ip); mutex_exit(&ufs_hashlock); /* Read in the disk contents for the inode, copy into the inode. */ error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { /* * The inode does not contain anything useful, so it would * be misleading to leave it on its hash chain. With mode * still zero, it will be unlinked and returned to the free * list by vput(). */ vput(vp); brelse(bp); *vpp = NULL; return (error); } if (ip->i_ump->um_fstype == UFS1) ip->i_din.ffs1_din = pool_get(&ffs_dinode1_pool, PR_WAITOK); else ip->i_din.ffs2_din = pool_get(&ffs_dinode2_pool, PR_WAITOK); ffs_load_inode(bp, ip, fs, ino); if (DOINGSOFTDEP(vp)) softdep_load_inodeblock(ip); else ip->i_ffs_effnlink = ip->i_nlink; brelse(bp); /* * Initialize the vnode from the inode, check for aliases. * Note that the underlying vnode may have changed. */ ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp); /* * Finish inode initialization now that aliasing has been resolved. */ genfs_node_init(vp, &ffs_genfsops); ip->i_devvp = ump->um_devvp; VREF(ip->i_devvp); /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_uid = ip->i_ffs1_ouid; /* XXX */ ip->i_gid = ip->i_ffs1_ogid; /* XXX */ } /* XXX */ uvm_vnp_setsize(vp, ip->i_size); *vpp = vp; return (0); } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - call ffs_vget() to get the locked inode * - check for an unallocated inode (i_mode == 0) * - check that the given client host has export rights and return * those rights via. exflagsp and credanonp */ int ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) { struct ufid ufh; struct fs *fs; if (fhp->fid_len != sizeof(struct ufid)) return EINVAL; memcpy(&ufh, fhp, sizeof(ufh)); fs = VFSTOUFS(mp)->um_fs; if (ufh.ufid_ino < ROOTINO || ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg) return (ESTALE); return (ufs_fhtovp(mp, &ufh, vpp)); } /* * Vnode pointer to File handle */ /* ARGSUSED */ int ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) { struct inode *ip; struct ufid ufh; if (*fh_size < sizeof(struct ufid)) { *fh_size = sizeof(struct ufid); return E2BIG; } ip = VTOI(vp); *fh_size = sizeof(struct ufid); memset(&ufh, 0, sizeof(ufh)); ufh.ufid_len = sizeof(struct ufid); ufh.ufid_ino = ip->i_number; ufh.ufid_gen = ip->i_gen; memcpy(fhp, &ufh, sizeof(ufh)); return (0); } void ffs_init(void) { if (ffs_initcount++ > 0) return; #ifdef _LKM pool_init(&ffs_inode_pool, sizeof(struct inode), 0, 0, 0, "ffsinopl", &pool_allocator_nointr); pool_init(&ffs_dinode1_pool, sizeof(struct ufs1_dinode), 0, 0, 0, "dino1pl", &pool_allocator_nointr); pool_init(&ffs_dinode2_pool, sizeof(struct ufs2_dinode), 0, 0, 0, "dino2pl", &pool_allocator_nointr); #endif softdep_initialize(); ufs_init(); } void ffs_reinit(void) { softdep_reinitialize(); ufs_reinit(); } void ffs_done(void) { if (--ffs_initcount > 0) return; /* XXX softdep cleanup ? */ ufs_done(); #ifdef _LKM pool_destroy(&ffs_dinode2_pool); pool_destroy(&ffs_dinode1_pool); pool_destroy(&ffs_inode_pool); #endif } SYSCTL_SETUP(sysctl_vfs_ffs_setup, "sysctl vfs.ffs subtree setup") { #if 0 extern int doasyncfree; #endif extern int ffs_log_changeopt; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "vfs", NULL, NULL, 0, NULL, 0, CTL_VFS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ffs", SYSCTL_DESCR("Berkeley Fast File System"), NULL, 0, NULL, 0, CTL_VFS, 1, CTL_EOL); /* * @@@ should we even bother with these first three? */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doclusterread", NULL, sysctl_notavail, 0, NULL, 0, CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doclusterwrite", NULL, sysctl_notavail, 0, NULL, 0, CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doreallocblks", NULL, sysctl_notavail, 0, NULL, 0, CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL); #if 0 sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "doasyncfree", SYSCTL_DESCR("Release dirty blocks asynchronously"), NULL, 0, &doasyncfree, 0, CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL); #endif sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "log_changeopt", SYSCTL_DESCR("Log changes in optimization strategy"), NULL, 0, &ffs_log_changeopt, 0, CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL); } /* * Write a superblock and associated information back to disk. */ int ffs_sbupdate(struct ufsmount *mp, int waitfor) { struct fs *fs = mp->um_fs; struct buf *bp; int error = 0; u_int32_t saveflag; bp = getblk(mp->um_devvp, fs->fs_sblockloc >> (fs->fs_fshift - fs->fs_fsbtodb), (int)fs->fs_sbsize, 0, 0); saveflag = fs->fs_flags & FS_INTERNAL; fs->fs_flags &= ~FS_INTERNAL; memcpy(bp->b_data, fs, fs->fs_sbsize); ffs_oldfscompat_write((struct fs *)bp->b_data, mp); #ifdef FFS_EI if (mp->um_flags & UFS_NEEDSWAP) ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data); #endif fs->fs_flags |= saveflag; if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); return (error); } int ffs_cgupdate(struct ufsmount *mp, int waitfor) { struct fs *fs = mp->um_fs; struct buf *bp; int blks; void *space; int i, size, error = 0, allerror = 0; allerror = ffs_sbupdate(mp, waitfor); blks = howmany(fs->fs_cssize, fs->fs_fsize); space = fs->fs_csp; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; bp = getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 0, 0); #ifdef FFS_EI if (mp->um_flags & UFS_NEEDSWAP) ffs_csum_swap((struct csum*)space, (struct csum*)bp->b_data, size); else #endif memcpy(bp->b_data, space, (u_int)size); space = (char *)space + size; if (waitfor == MNT_WAIT) error = bwrite(bp); else bawrite(bp); } if (!allerror && error) allerror = error; return (allerror); } int ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp, int attrnamespace, const char *attrname, struct lwp *l) { #ifdef UFS_EXTATTR /* * File-backed extended attributes are only supported on UFS1. * UFS2 has native extended attributes. */ if (VFSTOUFS(mp)->um_fstype == UFS1) return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname, l)); #endif return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname, l)); } int ffs_suspendctl(struct mount *mp, int cmd) { int error; struct lwp *l = curlwp; switch (cmd) { case SUSPEND_SUSPEND: if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0) return error; error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred, l); if (error == 0) error = fstrans_setstate(mp, FSTRANS_SUSPENDED); if (error != 0) { (void) fstrans_setstate(mp, FSTRANS_NORMAL); return error; } return 0; case SUSPEND_RESUME: return fstrans_setstate(mp, FSTRANS_NORMAL); default: return EINVAL; } }