/* $NetBSD: isp_pci.c,v 1.105 2008/04/07 19:26:44 cegger Exp $ */ /* * Copyright (C) 1997, 1998, 1999 National Aeronautics & Space Administration * All rights reserved. * * Additional Copyright (C) 2000-2007 by Matthew Jacob * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * PCI specific probe and attach routines for Qlogic ISP SCSI adapters. */ /* * 24XX 4Gb material support provided by MetrumRG Associates. * Many thanks are due to them. */ #include __KERNEL_RCSID(0, "$NetBSD: isp_pci.c,v 1.105 2008/04/07 19:26:44 cegger Exp $"); #include #include #include #include #include #include static uint32_t isp_pci_rd_reg(struct ispsoftc *, int); static void isp_pci_wr_reg(struct ispsoftc *, int, uint32_t); #if !(defined(ISP_DISABLE_1080_SUPPORT) && defined(ISP_DISABLE_12160_SUPPORT)) static uint32_t isp_pci_rd_reg_1080(struct ispsoftc *, int); static void isp_pci_wr_reg_1080(struct ispsoftc *, int, uint32_t); #endif #if !defined(ISP_DISABLE_2100_SUPPORT) && \ !defined(ISP_DISABLE_2200_SUPPORT) && \ !defined(ISP_DISABLE_1020_SUPPORT) && \ !defined(ISP_DISABLE_1080_SUPPORT) && \ !defined(ISP_DISABLE_12160_SUPPORT) static int isp_pci_rd_isr(struct ispsoftc *, uint32_t *, uint16_t *, uint16_t *); #endif #if !(defined(ISP_DISABLE_2300_SUPPORT) && defined(ISP_DISABLE_2322_SUPPORT)) static int isp_pci_rd_isr_2300(struct ispsoftc *, uint32_t *, uint16_t *, uint16_t *); #endif #if !defined(ISP_DISABLE_2400_SUPPORT) static uint32_t isp_pci_rd_reg_2400(struct ispsoftc *, int); static void isp_pci_wr_reg_2400(struct ispsoftc *, int, uint32_t); static int isp_pci_rd_isr_2400(struct ispsoftc *, uint32_t *, uint16_t *, uint16_t *); static int isp2400_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, uint32_t *, uint32_t); #endif static int isp_pci_mbxdma(struct ispsoftc *); static int isp_pci_dmasetup(struct ispsoftc *, XS_T *, ispreq_t *, uint32_t *, uint32_t); static void isp_pci_dmateardown(struct ispsoftc *, XS_T *, uint32_t); static void isp_pci_reset0(struct ispsoftc *); static void isp_pci_reset1(struct ispsoftc *); static void isp_pci_dumpregs(struct ispsoftc *, const char *); static int isp_pci_intr(void *); #if defined(ISP_DISABLE_1020_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_1040_RISC_CODE NULL #else #define ISP_1040_RISC_CODE (const uint16_t *) isp_1040_risc_code #include #endif #if defined(ISP_DISABLE_1080_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_1080_RISC_CODE NULL #else #define ISP_1080_RISC_CODE (const uint16_t *) isp_1080_risc_code #include #endif #if defined(ISP_DISABLE_12160_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_12160_RISC_CODE NULL #else #define ISP_12160_RISC_CODE (const uint16_t *) isp_12160_risc_code #include #endif #if defined(ISP_DISABLE_2100_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_2100_RISC_CODE NULL #else #define ISP_2100_RISC_CODE (const uint16_t *) isp_2100_risc_code #include #endif #if defined(ISP_DISABLE_2200_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_2200_RISC_CODE NULL #else #define ISP_2200_RISC_CODE (const uint16_t *) isp_2200_risc_code #include #endif #if defined(ISP_DISABLE_2300_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_2300_RISC_CODE NULL #else #define ISP_2300_RISC_CODE (const uint16_t *) isp_2300_risc_code #include #endif #if defined(ISP_DISABLE_2322_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_2322_RISC_CODE NULL #else #define ISP_2322_RISC_CODE (const uint16_t *) isp_2322_risc_code #include #endif #if defined(ISP_DISABLE_2400_SUPPORT) || defined(ISP_DISABLE_FW) #define ISP_2400_RISC_CODE NULL #else #define ISP_2400_RISC_CODE (const uint32_t *) isp_2400_risc_code #include #endif #ifndef ISP_DISABLE_1020_SUPPORT static struct ispmdvec mdvec = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_1040_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64, 0 }; #endif #ifndef ISP_DISABLE_1080_SUPPORT static struct ispmdvec mdvec_1080 = { isp_pci_rd_isr, isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_1080_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64, 0 }; #endif #ifndef ISP_DISABLE_12160_SUPPORT static struct ispmdvec mdvec_12160 = { isp_pci_rd_isr, isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_12160_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64, 0 }; #endif #ifndef ISP_DISABLE_2100_SUPPORT static struct ispmdvec mdvec_2100 = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2100_RISC_CODE, 0, 0 }; #endif #ifndef ISP_DISABLE_2200_SUPPORT static struct ispmdvec mdvec_2200 = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2200_RISC_CODE, 0, 0 }; #endif #ifndef ISP_DISABLE_2300_SUPPORT static struct ispmdvec mdvec_2300 = { isp_pci_rd_isr_2300, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2300_RISC_CODE, 0, 0 }; #endif #ifndef ISP_DISABLE_2322_SUPPORT static struct ispmdvec mdvec_2322 = { isp_pci_rd_isr_2300, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2322_RISC_CODE, 0, 0 }; #endif #ifndef ISP_DISABLE_2400_SUPPORT static struct ispmdvec mdvec_2400 = { isp_pci_rd_isr_2400, isp_pci_rd_reg_2400, isp_pci_wr_reg_2400, isp_pci_mbxdma, isp2400_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, NULL, ISP_2400_RISC_CODE, 0, 0 }; #endif #ifndef PCI_VENDOR_QLOGIC #define PCI_VENDOR_QLOGIC 0x1077 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1020 #define PCI_PRODUCT_QLOGIC_ISP1020 0x1020 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1080 #define PCI_PRODUCT_QLOGIC_ISP1080 0x1080 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1240 #define PCI_PRODUCT_QLOGIC_ISP1240 0x1240 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1280 #define PCI_PRODUCT_QLOGIC_ISP1280 0x1280 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP10160 #define PCI_PRODUCT_QLOGIC_ISP10160 0x1016 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP12160 #define PCI_PRODUCT_QLOGIC_ISP12160 0x1216 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2100 #define PCI_PRODUCT_QLOGIC_ISP2100 0x2100 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2200 #define PCI_PRODUCT_QLOGIC_ISP2200 0x2200 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2300 #define PCI_PRODUCT_QLOGIC_ISP2300 0x2300 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2312 #define PCI_PRODUCT_QLOGIC_ISP2312 0x2312 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2322 #define PCI_PRODUCT_QLOGIC_ISP2322 0x2322 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2422 #define PCI_PRODUCT_QLOGIC_ISP2422 0x2422 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2432 #define PCI_PRODUCT_QLOGIC_ISP2432 0x2432 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP6312 #define PCI_PRODUCT_QLOGIC_ISP6312 0x6312 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP6322 #define PCI_PRODUCT_QLOGIC_ISP6322 0x6322 #endif #define PCI_QLOGIC_ISP ((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1080 \ ((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP10160 \ ((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP12160 \ ((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1240 \ ((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1280 \ ((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2100 \ ((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2200 \ ((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2300 \ ((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2312 \ ((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2322 \ ((PCI_PRODUCT_QLOGIC_ISP2322 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2422 \ ((PCI_PRODUCT_QLOGIC_ISP2422 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2432 \ ((PCI_PRODUCT_QLOGIC_ISP2432 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP6312 \ ((PCI_PRODUCT_QLOGIC_ISP6312 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP6322 \ ((PCI_PRODUCT_QLOGIC_ISP6322 << 16) | PCI_VENDOR_QLOGIC) #define IO_MAP_REG 0x10 #define MEM_MAP_REG 0x14 #define PCIR_ROMADDR 0x30 #define PCI_DFLT_LTNCY 0x40 #define PCI_DFLT_LNSZ 0x10 static int isp_pci_probe(struct device *, struct cfdata *, void *); static void isp_pci_attach(struct device *, struct device *, void *); struct isp_pcisoftc { struct ispsoftc pci_isp; pci_chipset_tag_t pci_pc; pcitag_t pci_tag; bus_space_tag_t pci_st; bus_space_handle_t pci_sh; bus_dmamap_t *pci_xfer_dmap; void * pci_ih; int16_t pci_poff[_NREG_BLKS]; }; CFATTACH_DECL(isp_pci, sizeof (struct isp_pcisoftc), isp_pci_probe, isp_pci_attach, NULL, NULL); static int isp_pci_probe(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; switch (pa->pa_id) { #ifndef ISP_DISABLE_1020_SUPPORT case PCI_QLOGIC_ISP: return (1); #endif #ifndef ISP_DISABLE_1080_SUPPORT case PCI_QLOGIC_ISP1080: case PCI_QLOGIC_ISP1240: case PCI_QLOGIC_ISP1280: return (1); #endif #ifndef ISP_DISABLE_12160_SUPPORT case PCI_QLOGIC_ISP10160: case PCI_QLOGIC_ISP12160: return (1); #endif #ifndef ISP_DISABLE_2100_SUPPORT case PCI_QLOGIC_ISP2100: return (1); #endif #ifndef ISP_DISABLE_2200_SUPPORT case PCI_QLOGIC_ISP2200: return (1); #endif #ifndef ISP_DISABLE_2300_SUPPORT case PCI_QLOGIC_ISP2300: case PCI_QLOGIC_ISP2312: case PCI_QLOGIC_ISP6312: #endif #ifndef ISP_DISABLE_2322_SUPPORT case PCI_QLOGIC_ISP2322: case PCI_QLOGIC_ISP6322: return (1); #endif #ifndef ISP_DISABLE_2400_SUPPORT case PCI_QLOGIC_ISP2422: case PCI_QLOGIC_ISP2432: return (1); #endif default: return (0); } } static void isp_pci_attach(struct device *parent, struct device *self, void *aux) { static const char nomem[] = "\n%s: no mem for sdparam table\n"; uint32_t data, rev, linesz = PCI_DFLT_LNSZ; struct pci_attach_args *pa = aux; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) self; struct ispsoftc *isp = &pcs->pci_isp; bus_space_tag_t st, iot, memt; bus_space_handle_t sh, ioh, memh; pci_intr_handle_t ih; pcireg_t mem_type; const char *dstring; const char *intrstr; int ioh_valid, memh_valid; size_t mamt; ioh_valid = (pci_mapreg_map(pa, IO_MAP_REG, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); mem_type = pci_mapreg_type(pa->pa_pc, pa->pa_tag, MEM_MAP_REG); if (PCI_MAPREG_TYPE(mem_type) != PCI_MAPREG_TYPE_MEM) { memh_valid = 0; } else if (PCI_MAPREG_MEM_TYPE(mem_type) != PCI_MAPREG_MEM_TYPE_32BIT && PCI_MAPREG_MEM_TYPE(mem_type) != PCI_MAPREG_MEM_TYPE_64BIT) { memh_valid = 0; } else { memh_valid = (pci_mapreg_map(pa, MEM_MAP_REG, mem_type, 0, &memt, &memh, NULL, NULL) == 0); } if (memh_valid) { st = memt; sh = memh; } else if (ioh_valid) { st = iot; sh = ioh; } else { printf(": unable to map device registers\n"); return; } dstring = "\n"; isp->isp_nchan = 1; mamt = 0; pcs->pci_st = st; pcs->pci_sh = sh; pcs->pci_pc = pa->pa_pc; pcs->pci_tag = pa->pa_tag; pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF; pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF; pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF; pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF; rev = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG) & 0xff; #ifndef ISP_DISABLE_1020_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP) { dstring = ": QLogic 1020 Fast Wide SCSI HBA\n"; isp->isp_mdvec = &mdvec; isp->isp_type = ISP_HA_SCSI_UNKNOWN; mamt = sizeof (sdparam); } #endif #ifndef ISP_DISABLE_1080_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP1080) { dstring = ": QLogic 1080 Ultra-2 Wide SCSI HBA\n"; isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1080; mamt = sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP1240) { dstring = ": QLogic Dual Channel Ultra Wide SCSI HBA\n"; isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1240; isp->isp_nchan++; mamt = sizeof (sdparam) * 2; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP1280) { dstring = ": QLogic Dual Channel Ultra-2 Wide SCSI HBA\n"; isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1280; isp->isp_nchan++; mamt = sizeof (sdparam) * 2; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } #endif #ifndef ISP_DISABLE_12160_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP10160) { dstring = ": QLogic Ultra-3 Wide SCSI HBA\n"; isp->isp_mdvec = &mdvec_12160; isp->isp_type = ISP_HA_SCSI_10160; mamt = sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP12160) { dstring = ": QLogic Dual Channel Ultra-3 Wide SCSI HBA\n"; isp->isp_mdvec = &mdvec_12160; isp->isp_type = ISP_HA_SCSI_12160; isp->isp_nchan++; mamt = sizeof (sdparam) * 2; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } #endif #ifndef ISP_DISABLE_2100_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2100) { dstring = ": QLogic FC-AL HBA\n"; isp->isp_mdvec = &mdvec_2100; isp->isp_type = ISP_HA_FC_2100; mamt = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; if (rev < 3) { /* * XXX: Need to get the actual revision * XXX: number of the 2100 FB. At any rate, * XXX: lower cache line size for early revision * XXX; boards. */ linesz = 1; } } #endif #ifndef ISP_DISABLE_2200_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2200) { dstring = ": QLogic FC-AL and Fabric HBA\n"; isp->isp_mdvec = &mdvec_2200; isp->isp_type = ISP_HA_FC_2200; mamt = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); } #endif #ifndef ISP_DISABLE_2300_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2300 || pa->pa_id == PCI_QLOGIC_ISP2312 || pa->pa_id == PCI_QLOGIC_ISP6312) { isp->isp_mdvec = &mdvec_2300; if (pa->pa_id == PCI_QLOGIC_ISP2300 || pa->pa_id == PCI_QLOGIC_ISP6312) { dstring = ": QLogic FC-AL and 2Gbps Fabric HBA\n"; isp->isp_type = ISP_HA_FC_2300; } else { dstring = ": QLogic Dual Port FC-AL and 2Gbps Fabric HBA\n"; isp->isp_port = pa->pa_function; } isp->isp_type = ISP_HA_FC_2312; mamt = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF; data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); } #endif #ifndef ISP_DISABLE_2322_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2322 || pa->pa_id == PCI_QLOGIC_ISP6322) { isp->isp_mdvec = &mdvec_2322; dstring = ": QLogic FC-AL and 2Gbps Fabric PCI-E HBA\n"; isp->isp_type = ISP_HA_FC_2322; isp->isp_port = pa->pa_function; mamt = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF; data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); } #endif #ifndef ISP_DISABLE_2400_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2422 || pa->pa_id == PCI_QLOGIC_ISP2432) { isp->isp_mdvec = &mdvec_2400; if (pa->pa_id == PCI_QLOGIC_ISP2422) { dstring = ": QLogic FC-AL and 4Gbps Fabric PCI-X HBA\n"; } else { dstring = ": QLogic FC-AL and 4Gbps Fabric PCI-E HBA\n"; } isp->isp_type = ISP_HA_FC_2400; mamt = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF; data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); } #endif if (mamt == 0) { return; } isp->isp_param = malloc(mamt, M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem, device_xname(&isp->isp_osinfo.dev)); return; } memset(isp->isp_param, 0, mamt); mamt = sizeof (struct scsipi_channel) * isp->isp_nchan; isp->isp_osinfo.chan = malloc(mamt, M_DEVBUF, M_NOWAIT); if (isp->isp_osinfo.chan == NULL) { free(isp->isp_param, M_DEVBUF); printf(nomem, device_xname(&isp->isp_osinfo.dev)); return; } memset(isp->isp_osinfo.chan, 0, mamt); isp->isp_osinfo.adapter.adapt_nchannels = isp->isp_nchan; /* * Set up logging levels. */ #ifdef ISP_LOGDEFAULT isp->isp_dblev = ISP_LOGDEFAULT; #else isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR; if (bootverbose) isp->isp_dblev |= ISP_LOGCONFIG|ISP_LOGINFO; #ifdef SCSIDEBUG isp->isp_dblev |= ISP_LOGDEBUG0|ISP_LOGDEBUG1|ISP_LOGDEBUG2; #endif #endif if (isp->isp_dblev & ISP_LOGCONFIG) { printf("\n"); } else { printf(dstring); } isp->isp_dmatag = pa->pa_dmat; isp->isp_revision = rev; /* * Make sure that command register set sanely. */ data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); data |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_INVALIDATE_ENABLE; /* * Not so sure about these- but I think it's important that they get * enabled...... */ data |= PCI_COMMAND_PARITY_ENABLE | PCI_COMMAND_SERR_ENABLE; if (IS_2300(isp)) { /* per QLogic errata */ data &= ~PCI_COMMAND_INVALIDATE_ENABLE; } pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, data); /* * Make sure that the latency timer, cache line size, * and ROM is disabled. */ data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG); data &= ~(PCI_LATTIMER_MASK << PCI_LATTIMER_SHIFT); data &= ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT); data |= (PCI_DFLT_LTNCY << PCI_LATTIMER_SHIFT); data |= (linesz << PCI_CACHELINE_SHIFT); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG, data); data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCIR_ROMADDR); data &= ~1; pci_conf_write(pa->pa_pc, pa->pa_tag, PCIR_ROMADDR, data); if (pci_intr_map(pa, &ih)) { aprint_error_dev(&isp->isp_osinfo.dev, "couldn't map interrupt\n"); free(isp->isp_param, M_DEVBUF); free(isp->isp_osinfo.chan, M_DEVBUF); return; } intrstr = pci_intr_string(pa->pa_pc, ih); if (intrstr == NULL) intrstr = ""; pcs->pci_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO, isp_pci_intr, isp); if (pcs->pci_ih == NULL) { aprint_error_dev(&isp->isp_osinfo.dev, "couldn't establish interrupt at %s\n", intrstr); free(isp->isp_param, M_DEVBUF); free(isp->isp_osinfo.chan, M_DEVBUF); return; } printf("%s: interrupting at %s\n", device_xname(&isp->isp_osinfo.dev), intrstr); isp->isp_confopts = self->dv_cfdata->cf_flags; ISP_LOCK(isp); isp_reset(isp); if (isp->isp_state != ISP_RESETSTATE) { ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); free(isp->isp_osinfo.chan, M_DEVBUF); return; } isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { isp_uninit(isp); ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); free(isp->isp_osinfo.chan, M_DEVBUF); return; } /* * Do platform attach. */ ISP_UNLOCK(isp); isp_attach(isp); } #define IspVirt2Off(a, x) \ (((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \ _BLK_REG_SHFT] + ((x) & 0xff)) #define BXR2(pcs, off) \ bus_space_read_2(pcs->pci_st, pcs->pci_sh, off) #define BXW2(pcs, off, v) \ bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v) #define BXR4(pcs, off) \ bus_space_read_4(pcs->pci_st, pcs->pci_sh, off) #define BXW4(pcs, off, v) \ bus_space_write_4(pcs->pci_st, pcs->pci_sh, off, v) static int isp_pci_rd_debounced(struct ispsoftc *isp, int off, uint16_t *rp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; uint16_t val0, val1; int i = 0; do { val0 = BXR2(pcs, IspVirt2Off(isp, off)); val1 = BXR2(pcs, IspVirt2Off(isp, off)); } while (val0 != val1 && ++i < 1000); if (val0 != val1) { return (1); } *rp = val0; return (0); } #if !defined(ISP_DISABLE_2100_SUPPORT) && \ !defined(ISP_DISABLE_2200_SUPPORT) && \ !defined(ISP_DISABLE_1020_SUPPORT) && \ !defined(ISP_DISABLE_1080_SUPPORT) && \ !defined(ISP_DISABLE_12160_SUPPORT) static int isp_pci_rd_isr(struct ispsoftc *isp, uint32_t *isrp, uint16_t *semap, uint16_t *mbp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; uint16_t isr, sema; if (IS_2100(isp)) { if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) { return (0); } if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) { return (0); } } else { isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR)); sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA)); } isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema); isr &= INT_PENDING_MASK(isp); sema &= BIU_SEMA_LOCK; if (isr == 0 && sema == 0) { return (0); } *isrp = isr; if ((*semap = sema) != 0) { if (IS_2100(isp)) { if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) { return (0); } } else { *mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0)); } } return (1); } #endif #if !(defined(ISP_DISABLE_2300_SUPPORT) || defined(ISP_DISABLE_2322_SUPPORT)) static int isp_pci_rd_isr_2300(struct ispsoftc *isp, uint32_t *isrp, uint16_t *semap, uint16_t *mbox0p) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; uint32_t r2hisr; if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR)) & BIU2100_ISR_RISC_INT)) { *isrp = 0; return (0); } r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh, IspVirt2Off(pcs, BIU_R2HSTSLO)); isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr); if ((r2hisr & BIU_R2HST_INTR) == 0) { *isrp = 0; return (0); } switch (r2hisr & BIU_R2HST_ISTAT_MASK) { case ISPR2HST_ROM_MBX_OK: case ISPR2HST_ROM_MBX_FAIL: case ISPR2HST_MBX_OK: case ISPR2HST_MBX_FAIL: case ISPR2HST_ASYNC_EVENT: *isrp = r2hisr & 0xffff; *mbox0p = (r2hisr >> 16); *semap = 1; return (1); case ISPR2HST_RIO_16: *isrp = r2hisr & 0xffff; *mbox0p = ASYNC_RIO1; *semap = 1; return (1); case ISPR2HST_FPOST: *isrp = r2hisr & 0xffff; *mbox0p = ASYNC_CMD_CMPLT; *semap = 1; return (1); case ISPR2HST_FPOST_CTIO: *isrp = r2hisr & 0xffff; *mbox0p = ASYNC_CTIO_DONE; *semap = 1; return (1); case ISPR2HST_RSPQ_UPDATE: *isrp = r2hisr & 0xffff; *mbox0p = 0; *semap = 0; return (1); default: return (0); } } #endif #ifndef ISP_DISABLE_2400_SUPPORT static int isp_pci_rd_isr_2400(ispsoftc_t *isp, uint32_t *isrp, uint16_t *semap, uint16_t *mbox0p) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; uint32_t r2hisr; r2hisr = BXR4(pcs, IspVirt2Off(pcs, BIU2400_R2HSTSLO)); isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr); if ((r2hisr & BIU2400_R2HST_INTR) == 0) { *isrp = 0; return (0); } switch (r2hisr & BIU2400_R2HST_ISTAT_MASK) { case ISP2400R2HST_ROM_MBX_OK: case ISP2400R2HST_ROM_MBX_FAIL: case ISP2400R2HST_MBX_OK: case ISP2400R2HST_MBX_FAIL: case ISP2400R2HST_ASYNC_EVENT: *isrp = r2hisr & 0xffff; *mbox0p = (r2hisr >> 16); *semap = 1; return (1); case ISP2400R2HST_RSPQ_UPDATE: case ISP2400R2HST_ATIO_RSPQ_UPDATE: case ISP2400R2HST_ATIO_RQST_UPDATE: *isrp = r2hisr & 0xffff; *mbox0p = 0; *semap = 0; return (1); default: ISP_WRITE(isp, BIU2400_HCCR, HCCR_2400_CMD_CLEAR_RISC_INT); isp_prt(isp, ISP_LOGERR, "unknown interrupt 0x%x\n", r2hisr); return (0); } } static uint32_t isp_pci_rd_reg_2400(ispsoftc_t *isp, int regoff) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; uint32_t rv; int block = regoff & _BLK_REG_MASK; switch (block) { case BIU_BLOCK: break; case MBOX_BLOCK: return (BXR2(pcs, IspVirt2Off(pcs, regoff))); case SXP_BLOCK: isp_prt(isp, ISP_LOGWARN, "SXP_BLOCK read at 0x%x", regoff); return (0xffffffff); case RISC_BLOCK: isp_prt(isp, ISP_LOGWARN, "RISC_BLOCK read at 0x%x", regoff); return (0xffffffff); case DMA_BLOCK: isp_prt(isp, ISP_LOGWARN, "DMA_BLOCK read at 0x%x", regoff); return (0xffffffff); default: isp_prt(isp, ISP_LOGWARN, "unknown block read at 0x%x", regoff); return (0xffffffff); } switch (regoff) { case BIU2400_FLASH_ADDR: case BIU2400_FLASH_DATA: case BIU2400_ICR: case BIU2400_ISR: case BIU2400_CSR: case BIU2400_REQINP: case BIU2400_REQOUTP: case BIU2400_RSPINP: case BIU2400_RSPOUTP: case BIU2400_PRI_REQINP: case BIU2400_PRI_REQOUTP: case BIU2400_ATIO_RSPINP: case BIU2400_ATIO_RSPOUTP: case BIU2400_HCCR: case BIU2400_GPIOD: case BIU2400_GPIOE: case BIU2400_HSEMA: rv = BXR4(pcs, IspVirt2Off(pcs, regoff)); break; case BIU2400_R2HSTSLO: rv = BXR4(pcs, IspVirt2Off(pcs, regoff)); break; case BIU2400_R2HSTSHI: rv = BXR4(pcs, IspVirt2Off(pcs, regoff)) >> 16; break; default: isp_prt(isp, ISP_LOGERR, "isp_pci_rd_reg_2400: unknown offset %x", regoff); rv = 0xffffffff; break; } return (rv); } static void isp_pci_wr_reg_2400(ispsoftc_t *isp, int regoff, uint32_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int block = regoff & _BLK_REG_MASK; volatile int junk; switch (block) { case BIU_BLOCK: break; case MBOX_BLOCK: BXW2(pcs, IspVirt2Off(pcs, regoff), val); junk = BXR2(pcs, IspVirt2Off(pcs, regoff)); return; case SXP_BLOCK: isp_prt(isp, ISP_LOGWARN, "SXP_BLOCK write at 0x%x", regoff); return; case RISC_BLOCK: isp_prt(isp, ISP_LOGWARN, "RISC_BLOCK write at 0x%x", regoff); return; case DMA_BLOCK: isp_prt(isp, ISP_LOGWARN, "DMA_BLOCK write at 0x%x", regoff); return; default: isp_prt(isp, ISP_LOGWARN, "unknown block write at 0x%x", regoff); break; } switch (regoff) { case BIU2400_FLASH_ADDR: case BIU2400_FLASH_DATA: case BIU2400_ICR: case BIU2400_ISR: case BIU2400_CSR: case BIU2400_REQINP: case BIU2400_REQOUTP: case BIU2400_RSPINP: case BIU2400_RSPOUTP: case BIU2400_PRI_REQINP: case BIU2400_PRI_REQOUTP: case BIU2400_ATIO_RSPINP: case BIU2400_ATIO_RSPOUTP: case BIU2400_HCCR: case BIU2400_GPIOD: case BIU2400_GPIOE: case BIU2400_HSEMA: BXW4(pcs, IspVirt2Off(pcs, regoff), val); junk = BXR4(pcs, IspVirt2Off(pcs, regoff)); break; default: isp_prt(isp, ISP_LOGERR, "isp_pci_wr_reg_2400: bad offset 0x%x", regoff); break; } } #endif static uint32_t isp_pci_rd_reg(struct ispsoftc *isp, int regoff) { uint32_t rv; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP); } rv = BXR2(pcs, IspVirt2Off(isp, regoff)); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf); } return (rv); } static void isp_pci_wr_reg(struct ispsoftc *isp, int regoff, uint32_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP); } BXW2(pcs, IspVirt2Off(isp, regoff), val); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf); } } #if !(defined(ISP_DISABLE_1080_SUPPORT) && defined(ISP_DISABLE_12160_SUPPORT)) static uint32_t isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff) { uint16_t rv, oc = 0; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { uint16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc | BIU_PCI1080_CONF1_DMA); } rv = BXR2(pcs, IspVirt2Off(isp, regoff)); if (oc) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc); } return (rv); } static void isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, uint32_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int oc = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { uint16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc | BIU_PCI1080_CONF1_DMA); } BXW2(pcs, IspVirt2Off(isp, regoff), val); if (oc) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc); } } #endif static int isp_pci_mbxdma(struct ispsoftc *isp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dma_tag_t dmat = isp->isp_dmatag; bus_dma_segment_t sg; bus_size_t len, dbound; fcparam *fcp; int rs, i; if (isp->isp_rquest_dma) /* been here before? */ return (0); if (isp->isp_type <= ISP_HA_SCSI_1040B) { dbound = 1 << 24; } else { /* * For 32-bit PCI DMA, the range is 32 bits or zero :-) */ dbound = 0; } len = isp->isp_maxcmds * sizeof (XS_T *); isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK); if (isp->isp_xflist == NULL) { isp_prt(isp, ISP_LOGERR, "cannot malloc xflist array"); return (1); } memset(isp->isp_xflist, 0, len); len = isp->isp_maxcmds * sizeof (bus_dmamap_t); pcs->pci_xfer_dmap = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK); if (pcs->pci_xfer_dmap == NULL) { free(isp->isp_xflist, M_DEVBUF); isp->isp_xflist = NULL; isp_prt(isp, ISP_LOGERR, "cannot malloc DMA map array"); return (1); } for (i = 0; i < isp->isp_maxcmds; i++) { if (bus_dmamap_create(dmat, MAXPHYS, (MAXPHYS / PAGE_SIZE) + 1, MAXPHYS, dbound, BUS_DMA_NOWAIT, &pcs->pci_xfer_dmap[i])) { isp_prt(isp, ISP_LOGERR, "cannot create DMA maps"); break; } } if (i < isp->isp_maxcmds) { while (--i >= 0) { bus_dmamap_destroy(dmat, pcs->pci_xfer_dmap[i]); } free(isp->isp_xflist, M_DEVBUF); free(pcs->pci_xfer_dmap, M_DEVBUF); isp->isp_xflist = NULL; pcs->pci_xfer_dmap = NULL; return (1); } /* * Allocate and map the request queue. */ len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); if (bus_dmamem_alloc(dmat, len, PAGE_SIZE, 0, &sg, 1, &rs, 0)) { goto dmafail; } if (bus_dmamem_map(isp->isp_dmatag, &sg, rs, len, (void *)&isp->isp_rquest, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) { goto dmafail; } if (bus_dmamap_create(dmat, len, 1, len, dbound, BUS_DMA_NOWAIT, &isp->isp_rqdmap)) { goto dmafail; } if (bus_dmamap_load(dmat, isp->isp_rqdmap, isp->isp_rquest, len, NULL, BUS_DMA_NOWAIT)) { goto dmafail; } isp->isp_rquest_dma = isp->isp_rqdmap->dm_segs[0].ds_addr; /* * Allocate and map the result queue. */ len = ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); if (bus_dmamem_alloc(dmat, len, PAGE_SIZE, 0, &sg, 1, &rs, BUS_DMA_NOWAIT)) { goto dmafail; } if (bus_dmamem_map(dmat, &sg, rs, len, (void *)&isp->isp_result, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) { goto dmafail; } if (bus_dmamap_create(dmat, len, 1, len, dbound, BUS_DMA_NOWAIT, &isp->isp_rsdmap)) { goto dmafail; } if (bus_dmamap_load(dmat, isp->isp_rsdmap, isp->isp_result, len, NULL, BUS_DMA_NOWAIT)) { goto dmafail; } isp->isp_result_dma = isp->isp_rsdmap->dm_segs[0].ds_addr; if (IS_SCSI(isp)) { return (0); } /* * Allocate and map an FC scratch area */ fcp = isp->isp_param; len = ISP_FC_SCRLEN; if (bus_dmamem_alloc(dmat, len, sizeof (uint64_t), 0, &sg, 1, &rs, BUS_DMA_NOWAIT)) { goto dmafail; } if (bus_dmamem_map(dmat, &sg, rs, len, (void *)&fcp->isp_scratch, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) { goto dmafail; } if (bus_dmamap_create(dmat, len, 1, len, dbound, BUS_DMA_NOWAIT, &isp->isp_scdmap)) { goto dmafail; } if (bus_dmamap_load(dmat, isp->isp_scdmap, fcp->isp_scratch, len, NULL, BUS_DMA_NOWAIT)) { goto dmafail; } fcp->isp_scdma = isp->isp_scdmap->dm_segs[0].ds_addr; return (0); dmafail: isp_prt(isp, ISP_LOGERR, "mailbox DMA setup failure"); for (i = 0; i < isp->isp_maxcmds; i++) { bus_dmamap_destroy(dmat, pcs->pci_xfer_dmap[i]); } free(isp->isp_xflist, M_DEVBUF); free(pcs->pci_xfer_dmap, M_DEVBUF); isp->isp_xflist = NULL; pcs->pci_xfer_dmap = NULL; return (1); } static int isp_pci_dmasetup(struct ispsoftc *isp, struct scsipi_xfer *xs, ispreq_t *rq, uint32_t *nxtip, uint32_t optr) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap; uint32_t starti = isp->isp_reqidx, nxti = *nxtip; ispreq_t *qep; int segcnt, seg, error, ovseg, seglim, drq; qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, starti); dmap = pcs->pci_xfer_dmap[isp_handle_index(rq->req_handle)]; if (xs->datalen == 0) { rq->req_seg_count = 1; goto mbxsync; } if (xs->xs_control & XS_CTL_DATA_IN) { drq = REQFLAG_DATA_IN; } else { drq = REQFLAG_DATA_OUT; } if (IS_FC(isp)) { seglim = ISP_RQDSEG_T2; ((ispreqt2_t *)rq)->req_totalcnt = xs->datalen; ((ispreqt2_t *)rq)->req_flags |= drq; } else { rq->req_flags |= drq; if (XS_CDBLEN(xs) > 12) { seglim = 0; } else { seglim = ISP_RQDSEG; } } error = bus_dmamap_load(isp->isp_dmatag, dmap, xs->data, xs->datalen, NULL, ((xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK) | BUS_DMA_STREAMING | ((xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE)); if (error) { isp_prt(isp, ISP_LOGWARN, "unable to load DMA (%d)", error); XS_SETERR(xs, HBA_BOTCH); if (error == EAGAIN || error == ENOMEM) return (CMD_EAGAIN); else return (CMD_COMPLETE); } segcnt = dmap->dm_nsegs; isp_prt(isp, ISP_LOGDEBUG2, "%d byte %s %p in %d segs", xs->datalen, (xs->xs_control & XS_CTL_DATA_IN)? "read to" : "write from", xs->data, segcnt); for (seg = 0, rq->req_seg_count = 0; seglim && seg < segcnt && rq->req_seg_count < seglim; seg++, rq->req_seg_count++) { if (IS_FC(isp)) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; rq2->req_dataseg[rq2->req_seg_count].ds_count = dmap->dm_segs[seg].ds_len; rq2->req_dataseg[rq2->req_seg_count].ds_base = dmap->dm_segs[seg].ds_addr; } else { rq->req_dataseg[rq->req_seg_count].ds_count = dmap->dm_segs[seg].ds_len; rq->req_dataseg[rq->req_seg_count].ds_base = dmap->dm_segs[seg].ds_addr; } isp_prt(isp, ISP_LOGDEBUG2, "seg0.[%d]={0x%lx,%lu}", rq->req_seg_count, (long) dmap->dm_segs[seg].ds_addr, (unsigned long) dmap->dm_segs[seg].ds_len); } if (seg == segcnt) { goto dmasync; } do { uint32_t onxti; ispcontreq_t *crq, *cqe, local; crq = &local; cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti); onxti = nxti; nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp)); if (nxti == optr) { isp_prt(isp, ISP_LOGERR, "Request Queue Overflow++"); bus_dmamap_unload(isp->isp_dmatag, dmap); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } rq->req_header.rqs_entry_count++; memset((void *)crq, 0, sizeof (*crq)); crq->req_header.rqs_entry_count = 1; crq->req_header.rqs_entry_type = RQSTYPE_DATASEG; for (ovseg = 0; seg < segcnt && ovseg < ISP_CDSEG; rq->req_seg_count++, seg++, ovseg++) { crq->req_dataseg[ovseg].ds_count = dmap->dm_segs[seg].ds_len; crq->req_dataseg[ovseg].ds_base = dmap->dm_segs[seg].ds_addr; isp_prt(isp, ISP_LOGDEBUG2, "seg%d.[%d]={0x%lx,%lu}", rq->req_header.rqs_entry_count - 1, rq->req_seg_count, (long)dmap->dm_segs[seg].ds_addr, (unsigned long) dmap->dm_segs[seg].ds_len); } isp_put_cont_req(isp, crq, cqe); MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN); } while (seg < segcnt); dmasync: bus_dmamap_sync(isp->isp_dmatag, dmap, 0, dmap->dm_mapsize, (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); mbxsync: switch (rq->req_header.rqs_entry_type) { case RQSTYPE_REQUEST: isp_put_request(isp, rq, qep); break; case RQSTYPE_CMDONLY: isp_put_extended_request(isp, (ispextreq_t *)rq, (ispextreq_t *)qep); break; case RQSTYPE_T2RQS: if (ISP_CAP_2KLOGIN(isp)) { isp_put_request_t2e(isp, (ispreqt2e_t *) rq, (ispreqt2e_t *) qep); } else { isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep); } break; } *nxtip = nxti; return (CMD_QUEUED); } #if !defined(ISP_DISABLE_2400_SUPPORT) static int isp2400_pci_dmasetup(struct ispsoftc *isp, struct scsipi_xfer *xs, ispreq_t *ispreq, uint32_t *nxtip, uint32_t optr) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap; bus_dma_segment_t *dm_segs, *eseg; uint32_t starti = isp->isp_reqidx, nxti = *nxtip; ispreqt7_t *rq; void *qep; int nseg, datalen, error, seglim; rq = (ispreqt7_t *) ispreq; qep = ISP_QUEUE_ENTRY(isp->isp_rquest, starti); dmap = pcs->pci_xfer_dmap[isp_handle_index(rq->req_handle)]; if (xs->datalen == 0) { rq->req_seg_count = 1; goto mbxsync; } error = bus_dmamap_load(isp->isp_dmatag, dmap, xs->data, xs->datalen, NULL, ((xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK) | BUS_DMA_STREAMING | ((xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE)); if (error) { isp_prt(isp, ISP_LOGWARN, "unable to load DMA (%d)", error); XS_SETERR(xs, HBA_BOTCH); if (error == EAGAIN || error == ENOMEM) { return (CMD_EAGAIN); } else { return (CMD_COMPLETE); } } nseg = dmap->dm_nsegs; dm_segs = dmap->dm_segs; isp_prt(isp, ISP_LOGDEBUG2, "%d byte %s %p in %d segs", xs->datalen, (xs->xs_control & XS_CTL_DATA_IN)? "read to" : "write from", xs->data, nseg); /* * We're passed an initial partially filled in entry that * has most fields filled in except for data transfer * related values. * * Our job is to fill in the initial request queue entry and * then to start allocating and filling in continuation entries * until we've covered the entire transfer. */ rq->req_header.rqs_entry_type = RQSTYPE_T7RQS; rq->req_dl = xs->datalen; datalen = xs->datalen; if (xs->xs_control & XS_CTL_DATA_IN) { rq->req_alen_datadir = 0x2; } else { rq->req_alen_datadir = 0x1; } eseg = dm_segs + nseg; rq->req_dataseg.ds_base = DMA_LO32(dm_segs->ds_addr); rq->req_dataseg.ds_basehi = DMA_HI32(dm_segs->ds_addr); rq->req_dataseg.ds_count = dm_segs->ds_len; datalen -= dm_segs->ds_len; dm_segs++; rq->req_seg_count++; while (datalen > 0 && dm_segs != eseg) { uint32_t onxti; ispcontreq64_t local, *crq = &local, *cqe; cqe = (ispcontreq64_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti); onxti = nxti; nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp)); if (nxti == optr) { isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++"); return (CMD_EAGAIN); } rq->req_header.rqs_entry_count++; MEMZERO((void *)crq, sizeof (*crq)); crq->req_header.rqs_entry_count = 1; crq->req_header.rqs_entry_type = RQSTYPE_A64_CONT; seglim = 0; while (datalen > 0 && seglim < ISP_CDSEG64 && dm_segs != eseg) { crq->req_dataseg[seglim].ds_base = DMA_LO32(dm_segs->ds_addr); crq->req_dataseg[seglim].ds_basehi = DMA_HI32(dm_segs->ds_addr); crq->req_dataseg[seglim].ds_count = dm_segs->ds_len; rq->req_seg_count++; dm_segs++; seglim++; datalen -= dm_segs->ds_len; } if (isp->isp_dblev & ISP_LOGDEBUG1) { isp_print_bytes(isp, "Continuation", QENTRY_LEN, crq); } isp_put_cont64_req(isp, crq, cqe); MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN); } *nxtip = nxti; bus_dmamap_sync(isp->isp_dmatag, dmap, 0, dmap->dm_mapsize, (xs->xs_control & XS_CTL_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); mbxsync: isp_put_request_t7(isp, rq, qep); *nxtip = nxti; return (CMD_QUEUED); } #endif static int isp_pci_intr(void *arg) { uint32_t isr; uint16_t sema, mbox; struct ispsoftc *isp = arg; isp->isp_intcnt++; if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) { isp->isp_intbogus++; return (0); } else { isp->isp_osinfo.onintstack = 1; isp_intr(isp, isr, sema, mbox); isp->isp_osinfo.onintstack = 0; return (1); } } static void isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, uint32_t handle) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap = pcs->pci_xfer_dmap[isp_handle_index(handle)]; bus_dmamap_sync(isp->isp_dmatag, dmap, 0, dmap->dm_mapsize, xs->xs_control & XS_CTL_DATA_IN ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(isp->isp_dmatag, dmap); } static void isp_pci_reset0(ispsoftc_t *isp) { ISP_DISABLE_INTS(isp); } static void isp_pci_reset1(ispsoftc_t *isp) { if (!IS_24XX(isp)) { /* Make sure the BIOS is disabled */ isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS); } /* and enable interrupts */ ISP_ENABLE_INTS(isp); } static void isp_pci_dumpregs(struct ispsoftc *isp, const char *msg) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; if (msg) printf("%s: %s\n", device_xname(&isp->isp_osinfo.dev), msg); if (IS_SCSI(isp)) printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1)); else printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR)); printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR), ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA)); printf("risc_hccr=%x\n", ISP_READ(isp, HCCR)); if (IS_SCSI(isp)) { ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n", ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS), ISP_READ(isp, CDMA_FIFO_STS)); printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n", ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS), ISP_READ(isp, DDMA_FIFO_STS)); printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n", ISP_READ(isp, SXP_INTERRUPT), ISP_READ(isp, SXP_GROSS_ERR), ISP_READ(isp, SXP_PINS_CTRL)); ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); } printf(" mbox regs: %x %x %x %x %x\n", ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1), ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3), ISP_READ(isp, OUTMAILBOX4)); printf(" PCI Status Command/Status=%x\n", pci_conf_read(pcs->pci_pc, pcs->pci_tag, PCI_COMMAND_STATUS_REG)); }