/* $NetBSD: uvm_pdaemon.c,v 1.9 1998/07/23 20:36:09 pk Exp $ */ /* * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE! * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<< */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * Copyright (c) 1991, 1993, The Regents of the University of California. * * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles D. Cranor, * Washington University, the University of California, Berkeley and * its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #include "opt_uvmhist.h" /* * uvm_pdaemon.c: the page daemon */ #include #include #include #include #include #include #include #include #include /* * local prototypes */ static void uvmpd_scan __P((void)); static boolean_t uvmpd_scan_inactive __P((struct pglist *)); static void uvmpd_tune __P((void)); /* * uvm_wait: wait (sleep) for the page daemon to free some pages * * => should be called with all locks released * => should _not_ be called by the page daemon (to avoid deadlock) */ void uvm_wait(wmsg) char *wmsg; { int timo = 0; int s = splbio(); /* * check for page daemon going to sleep (waiting for itself) */ if (curproc == uvm.pagedaemon_proc) { /* * now we have a problem: the pagedaemon wants to go to * sleep until it frees more memory. but how can it * free more memory if it is asleep? that is a deadlock. * we have two options: * [1] panic now * [2] put a timeout on the sleep, thus causing the * pagedaemon to only pause (rather than sleep forever) * * note that option [2] will only help us if we get lucky * and some other process on the system breaks the deadlock * by exiting or freeing memory (thus allowing the pagedaemon * to continue). for now we panic if DEBUG is defined, * otherwise we hope for the best with option [2] (better * yet, this should never happen in the first place!). */ printf("pagedaemon: deadlock detected!\n"); timo = hz >> 3; /* set timeout */ #if defined(DEBUG) /* DEBUG: panic so we can debug it */ panic("pagedaemon deadlock"); #endif } simple_lock(&uvm.pagedaemon_lock); thread_wakeup(&uvm.pagedaemon); /* wake the daemon! */ UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvm.pagedaemon_lock, FALSE, wmsg, timo); splx(s); } /* * uvmpd_tune: tune paging parameters * * => called when ever memory is added (or removed?) to the system * => caller must call with page queues locked */ static void uvmpd_tune() { UVMHIST_FUNC("uvmpd_tune"); UVMHIST_CALLED(pdhist); uvmexp.freemin = uvmexp.npages / 20; /* between 16k and 256k */ /* XXX: what are these values good for? */ uvmexp.freemin = max(uvmexp.freemin, (16*1024)/PAGE_SIZE); uvmexp.freemin = min(uvmexp.freemin, (256*1024)/PAGE_SIZE); uvmexp.freetarg = (uvmexp.freemin * 4) / 3; if (uvmexp.freetarg <= uvmexp.freemin) uvmexp.freetarg = uvmexp.freemin + 1; /* uvmexp.inactarg: computed in main daemon loop */ uvmexp.wiredmax = uvmexp.npages / 3; UVMHIST_LOG(pdhist, "<- done, freemin=%d, freetarg=%d, wiredmax=%d", uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0); } /* * uvm_pageout: the main loop for the pagedaemon */ void uvm_pageout() { int npages = 0; int s; struct uvm_aiodesc *aio, *nextaio; UVMHIST_FUNC("uvm_pageout"); UVMHIST_CALLED(pdhist); UVMHIST_LOG(pdhist,"", 0, 0, 0, 0); /* * ensure correct priority and set paging parameters... */ uvm.pagedaemon_proc = curproc; (void) spl0(); uvm_lock_pageq(); npages = uvmexp.npages; uvmpd_tune(); uvm_unlock_pageq(); /* * main loop */ while (TRUE) { /* * carefully attempt to go to sleep (without losing "wakeups"!). * we need splbio because we want to make sure the aio_done list * is totally empty before we go to sleep. */ s = splbio(); simple_lock(&uvm.pagedaemon_lock); /* * if we've got done aio's, then bypass the sleep */ if (uvm.aio_done.tqh_first == NULL) { UVMHIST_LOG(maphist," <>",0,0,0,0); UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon, &uvm.pagedaemon_lock, FALSE, "daemon_slp", 0); uvmexp.pdwoke++; UVMHIST_LOG(pdhist," <>",0,0,0,0); /* relock pagedaemon_lock, still at splbio */ simple_lock(&uvm.pagedaemon_lock); } /* * check for done aio structures */ aio = uvm.aio_done.tqh_first; /* save current list (if any)*/ if (aio) { TAILQ_INIT(&uvm.aio_done); /* zero global list */ } simple_unlock(&uvm.pagedaemon_lock); /* unlock */ splx(s); /* drop splbio */ /* * first clear out any pending aios (to free space in case we * want to pageout more stuff). */ for (/*null*/; aio != NULL ; aio = nextaio) { uvmexp.paging -= aio->npages; nextaio = aio->aioq.tqe_next; aio->aiodone(aio); } /* Next, drain pool resources */ pool_drain(0); /* * now lock page queues and recompute inactive count */ uvm_lock_pageq(); if (npages != uvmexp.npages) { /* check for new pages? */ npages = uvmexp.npages; uvmpd_tune(); } uvmexp.inactarg = (uvmexp.active + uvmexp.inactive) / 3; if (uvmexp.inactarg <= uvmexp.freetarg) uvmexp.inactarg = uvmexp.freetarg + 1; UVMHIST_LOG(pdhist," free/ftarg=%d/%d, inact/itarg=%d/%d", uvmexp.free, uvmexp.freetarg, uvmexp.inactive, uvmexp.inactarg); /* * scan if needed * [XXX: note we are reading uvm.free without locking] */ if (uvmexp.free < uvmexp.freetarg || uvmexp.inactive < uvmexp.inactarg) uvmpd_scan(); /* * done scan. unlock page queues (the only lock we are holding) */ uvm_unlock_pageq(); /* * done! restart loop. */ thread_wakeup(&uvmexp.free); } /*NOTREACHED*/ } /* * uvmpd_scan_inactive: the first loop of uvmpd_scan broken out into * its own function for ease of reading. * * => called with page queues locked * => we work on meeting our free target by converting inactive pages * into free pages. * => we handle the building of swap-backed clusters * => we return TRUE if we are exiting because we met our target */ static boolean_t uvmpd_scan_inactive(pglst) struct pglist *pglst; { boolean_t retval = FALSE; /* assume we haven't hit target */ int s, free, result; struct vm_page *p, *nextpg; struct uvm_object *uobj; struct vm_page *pps[MAXBSIZE/PAGE_SIZE], **ppsp; int npages; struct vm_page *swpps[MAXBSIZE/PAGE_SIZE]; /* XXX: see below */ int swnpages, swcpages; /* XXX: see below */ int swslot, oldslot; struct vm_anon *anon; boolean_t swap_backed; vm_offset_t start; UVMHIST_FUNC("uvmpd_scan_inactive"); UVMHIST_CALLED(pdhist); /* * note: we currently keep swap-backed pages on a seperate inactive * list from object-backed pages. however, merging the two lists * back together again hasn't been ruled out. thus, we keep our * swap cluster in "swpps" rather than in pps (allows us to mix * clustering types in the event of a mixed inactive queue). */ /* * swslot is non-zero if we are building a swap cluster. we want * to stay in the loop while we have a page to scan or we have * a swap-cluster to build. */ swslot = 0; swnpages = swcpages = 0; free = 0; for (p = pglst->tqh_first ; p != NULL || swslot != 0 ; p = nextpg) { /* * note that p can be NULL iff we have traversed the whole * list and need to do one final swap-backed clustered pageout. */ if (p) { /* * update our copy of "free" and see if we've met * our target */ s = splimp(); uvm_lock_fpageq(); free = uvmexp.free; uvm_unlock_fpageq(); splx(s); if (free >= uvmexp.freetarg) { UVMHIST_LOG(pdhist," met free target: " "exit loop", 0, 0, 0, 0); retval = TRUE; /* hit the target! */ if (swslot == 0) /* exit now if no swap-i/o pending */ break; /* set p to null to signal final swap i/o */ p = NULL; } } uobj = NULL; /* be safe and shut gcc up */ anon = NULL; /* be safe and shut gcc up */ if (p) { /* if (we have a new page to consider) */ /* * we are below target and have a new page to consider. */ uvmexp.pdscans++; nextpg = p->pageq.tqe_next; /* * move referenced pages back to active queue and * skip to next page (unlikely to happen since * inactive pages shouldn't have any valid mappings * and we cleared reference before deactivating). */ if (pmap_is_referenced(PMAP_PGARG(p))) { uvm_pageactivate(p); uvmexp.pdreact++; continue; } /* * first we attempt to lock the object that this page * belongs to. if our attempt fails we skip on to * the next page (no harm done). it is important to * "try" locking the object as we are locking in the * wrong order (pageq -> object) and we don't want to * get deadlocked. * * the only time we exepct to see an ownerless page * (i.e. a page with no uobject and !PQ_ANON) is if an * anon has loaned a page from a uvm_object and the * uvm_object has dropped the ownership. in that * case, the anon can "take over" the loaned page * and make it its own. */ /* is page part of an anon or ownerless ? */ if ((p->pqflags & PQ_ANON) || p->uobject == NULL) { anon = p->uanon; #ifdef DIAGNOSTIC /* to be on inactive q, page must be part * of _something_ */ if (anon == NULL) panic("pagedaemon: page with no anon " "or object detected - loop 1"); #endif if (!simple_lock_try(&anon->an_lock)) /* lock failed, skip this page */ continue; /* * if the page is ownerless, claim it in the * name of "anon"! */ if ((p->pqflags & PQ_ANON) == 0) { #ifdef DIAGNOSTIC if (p->loan_count < 1) panic("pagedaemon: non-loaned " "ownerless page detected -" " loop 1"); #endif p->loan_count--; p->pqflags |= PQ_ANON; /* anon now owns it */ } if (p->flags & PG_BUSY) { simple_unlock(&anon->an_lock); uvmexp.pdbusy++; /* someone else owns page, skip it */ continue; } uvmexp.pdanscan++; } else { uobj = p->uobject; if (!simple_lock_try(&uobj->vmobjlock)) /* lock failed, skip this page */ continue; if (p->flags & PG_BUSY) { simple_unlock(&uobj->vmobjlock); uvmexp.pdbusy++; /* someone else owns page, skip it */ continue; } uvmexp.pdobscan++; } /* * we now have the object and the page queues locked. * the page is not busy. if the page is clean we * can free it now and continue. */ if (p->flags & PG_CLEAN) { /* zap all mappings with pmap_page_protect... */ pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE); uvm_pagefree(p); uvmexp.pdfreed++; if (anon) { #ifdef DIAGNOSTIC /* * an anonymous page can only be clean * if it has valid backing store. */ if (anon->an_swslot == 0) panic("pagedaemon: clean anon " "page without backing store?"); #endif /* remove from object */ anon->u.an_page = NULL; simple_unlock(&anon->an_lock); } else { /* pagefree has already removed the * page from the object */ simple_unlock(&uobj->vmobjlock); } continue; } /* * this page is dirty, skip it if we'll have met our * free target when all the current pageouts complete. */ if (free + uvmexp.paging > uvmexp.freetarg) { if (anon) { simple_unlock(&anon->an_lock); } else { simple_unlock(&uobj->vmobjlock); } continue; } /* * the page we are looking at is dirty. we must * clean it before it can be freed. to do this we * first mark the page busy so that no one else will * touch the page. we write protect all the mappings * of the page so that no one touches it while it is * in I/O. */ swap_backed = ((p->pqflags & PQ_SWAPBACKED) != 0); p->flags |= PG_BUSY; /* now we own it */ UVM_PAGE_OWN(p, "scan_inactive"); pmap_page_protect(PMAP_PGARG(p), VM_PROT_READ); uvmexp.pgswapout++; /* * for swap-backed pages we need to (re)allocate * swap space. */ if (swap_backed) { /* * free old swap slot (if any) */ if (anon) { if (anon->an_swslot) { uvm_swap_free(anon->an_swslot, 1); anon->an_swslot = 0; } } else { oldslot = uao_set_swslot(uobj, p->offset/PAGE_SIZE, 0); if (oldslot) uvm_swap_free(oldslot, 1); } /* * start new cluster (if necessary) */ if (swslot == 0) { /* want this much */ swnpages = MAXBSIZE/PAGE_SIZE; swslot = uvm_swap_alloc(&swnpages, TRUE); if (swslot == 0) { /* no swap? give up! */ p->flags &= ~PG_BUSY; UVM_PAGE_OWN(p, NULL); if (anon) simple_unlock( &anon->an_lock); else simple_unlock( &uobj->vmobjlock); continue; } swcpages = 0; /* cluster is empty */ } /* * add block to cluster */ swpps[swcpages] = p; uvmexp.pgswapout++; if (anon) anon->an_swslot = swslot + swcpages; else uao_set_swslot(uobj, p->offset/PAGE_SIZE, swslot + swcpages); swcpages++; /* done (swap-backed) */ } /* end: if (p) ["if we have new page to consider"] */ } else { /* if p == NULL we must be doing a last swap i/o */ swap_backed = TRUE; } /* * now consider doing the pageout. * * for swap-backed pages, we do the pageout if we have either * filled the cluster (in which case (swnpages == swcpages) or * run out of pages (p == NULL). * * for object pages, we always do the pageout. */ if (swap_backed) { if (p) { /* if we just added a page to cluster */ if (anon) simple_unlock(&anon->an_lock); else simple_unlock(&uobj->vmobjlock); /* cluster not full yet? */ if (swcpages < swnpages) continue; } /* starting I/O now... set up for it */ npages = swcpages; ppsp = swpps; /* for swap-backed pages only */ start = (vm_offset_t) swslot; /* if this is final pageout we could have a few * extra swap blocks */ if (swcpages < swnpages) { uvm_swap_free(swslot + swcpages, (swnpages - swcpages)); } } else { /* normal object pageout */ ppsp = pps; npages = sizeof(pps) / sizeof(struct vm_page *); /* not looked at because PGO_ALLPAGES is set */ start = 0; } /* * now do the pageout. * * for swap_backed pages we have already built the cluster. * for !swap_backed pages, uvm_pager_put will call the object's * "make put cluster" function to build a cluster on our behalf. * * we pass the PGO_PDFREECLUST flag to uvm_pager_put to instruct * it to free the cluster pages for us on a successful I/O (it * always does this for un-successful I/O requests). this * allows us to do clustered pageout without having to deal * with cluster pages at this level. * * note locking semantics of uvm_pager_put with PGO_PDFREECLUST: * IN: locked: uobj (if !swap_backed), page queues * OUT: locked: uobj (if !swap_backed && result !=VM_PAGER_PEND) * !locked: pageqs, uobj (if swap_backed || VM_PAGER_PEND) * * [the bit about VM_PAGER_PEND saves us one lock-unlock pair] */ /* locked: uobj (if !swap_backed), page queues */ uvmexp.pdpageouts++; result = uvm_pager_put((swap_backed) ? NULL : uobj, p, &ppsp, &npages, PGO_ALLPAGES|PGO_PDFREECLUST, start, 0); /* locked: uobj (if !swap_backed && result != PEND) */ /* unlocked: pageqs, object (if swap_backed ||result == PEND) */ /* * if we did i/o to swap, zero swslot to indicate that we are * no longer building a swap-backed cluster. */ if (swap_backed) swslot = 0; /* done with this cluster */ /* * first, we check for VM_PAGER_PEND which means that the * async I/O is in progress and the async I/O done routine * will clean up after us. in this case we move on to the * next page. * * there is a very remote chance that the pending async i/o can * finish _before_ we get here. if that happens, our page "p" * may no longer be on the inactive queue. so we verify this * when determining the next page (starting over at the head if * we've lost our inactive page). */ if (result == VM_PAGER_PEND) { uvmexp.paging += npages; uvm_lock_pageq(); /* relock page queues */ uvmexp.pdpending++; if (p) { if (p->pqflags & PQ_INACTIVE) /* reload! */ nextpg = p->pageq.tqe_next; else /* reload! */ nextpg = pglst->tqh_first; } else { nextpg = NULL; /* done list */ } continue; } /* * clean up "p" if we have one */ if (p) { /* * the I/O request to "p" is done and uvm_pager_put * has freed any cluster pages it may have allocated * during I/O. all that is left for us to do is * clean up page "p" (which is still PG_BUSY). * * our result could be one of the following: * VM_PAGER_OK: successful pageout * * VM_PAGER_AGAIN: tmp resource shortage, we skip * to next page * VM_PAGER_{FAIL,ERROR,BAD}: an error. we * "reactivate" page to get it out of the way (it * will eventually drift back into the inactive * queue for a retry). * VM_PAGER_UNLOCK: should never see this as it is * only valid for "get" operations */ /* relock p's object: page queues not lock yet, so * no need for "try" */ /* !swap_backed case: already locked... */ if (swap_backed) { if (anon) simple_lock(&anon->an_lock); else simple_lock(&uobj->vmobjlock); } #ifdef DIAGNOSTIC if (result == VM_PAGER_UNLOCK) panic("pagedaemon: pageout returned " "invalid 'unlock' code"); #endif /* handle PG_WANTED now */ if (p->flags & PG_WANTED) /* still holding object lock */ thread_wakeup(p); p->flags &= ~(PG_BUSY|PG_WANTED); UVM_PAGE_OWN(p, NULL); /* released during I/O? */ if (p->flags & PG_RELEASED) { if (anon) { /* remove page so we can get nextpg */ anon->u.an_page = NULL; /* XXX needed? */ simple_unlock(&anon->an_lock); uvm_anfree(anon); /* kills anon */ pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE); anon = NULL; uvm_lock_pageq(); nextpg = p->pageq.tqe_next; /* free released page */ uvm_pagefree(p); } else { #ifdef DIAGNOSTIC if (uobj->pgops->pgo_releasepg == NULL) panic("pagedaemon: no " "pgo_releasepg function"); #endif /* * pgo_releasepg nukes the page and * gets "nextpg" for us. it returns * with the page queues locked (when * given nextpg ptr). */ if (!uobj->pgops->pgo_releasepg(p, &nextpg)) /* uobj died after release */ uobj = NULL; /* * lock page queues here so that they're * always locked at the end of the loop. */ uvm_lock_pageq(); } } else { /* page was not released during I/O */ uvm_lock_pageq(); nextpg = p->pageq.tqe_next; if (result != VM_PAGER_OK) { /* pageout was a failure... */ if (result != VM_PAGER_AGAIN) uvm_pageactivate(p); pmap_clear_reference(PMAP_PGARG(p)); /* XXXCDC: if (swap_backed) FREE p's * swap block? */ } else { /* pageout was a success... */ pmap_clear_reference(PMAP_PGARG(p)); pmap_clear_modify(PMAP_PGARG(p)); p->flags |= PG_CLEAN; /* XXX: could free page here, but old * pagedaemon does not */ } } /* * drop object lock (if there is an object left). do * a safety check of nextpg to make sure it is on the * inactive queue (it should be since PG_BUSY pages on * the inactive queue can't be re-queued [note: not * true for active queue]). */ if (anon) simple_unlock(&anon->an_lock); else if (uobj) simple_unlock(&uobj->vmobjlock); } /* if (p) */ else { /* if p is null in this loop, make sure it stays null * in next loop */ nextpg = NULL; /* * lock page queues here just so they're always locked * at the end of the loop. */ uvm_lock_pageq(); } if (nextpg && (nextpg->pqflags & PQ_INACTIVE) == 0) { printf("pagedaemon: invalid nextpg! reverting to " "queue head\n"); nextpg = pglst->tqh_first; /* reload! */ } } /* end of "inactive" 'for' loop */ return (retval); } /* * uvmpd_scan: scan the page queues and attempt to meet our targets. * * => called with pageq's locked */ void uvmpd_scan() { int s, free, pages_freed, page_shortage; struct vm_page *p, *nextpg; struct uvm_object *uobj; boolean_t got_it; UVMHIST_FUNC("uvmpd_scan"); UVMHIST_CALLED(pdhist); uvmexp.pdrevs++; /* counter */ #ifdef __GNUC__ uobj = NULL; /* XXX gcc */ #endif /* * get current "free" page count */ s = splimp(); uvm_lock_fpageq(); free = uvmexp.free; uvm_unlock_fpageq(); splx(s); #ifndef __SWAP_BROKEN /* * swap out some processes if we are below our free target. * we need to unlock the page queues for this. */ if (free < uvmexp.freetarg) { uvmexp.pdswout++; UVMHIST_LOG(pdhist," free %d < target %d: swapout", free, uvmexp.freetarg, 0, 0); uvm_unlock_pageq(); uvm_swapout_threads(); pmap_update(); /* update so we can scan inactive q */ uvm_lock_pageq(); } #endif /* * now we want to work on meeting our targets. first we work on our * free target by converting inactive pages into free pages. then * we work on meeting our inactive target by converting active pages * to inactive ones. */ UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0); pages_freed = uvmexp.pdfreed; /* so far... */ /* * do loop #1! alternate starting queue between swap and object based * on the low bit of uvmexp.pdrevs (which we bump by one each call). */ got_it = FALSE; if ((uvmexp.pdrevs & 1) != 0 && uvmexp.nswapdev != 0) got_it = uvmpd_scan_inactive(&uvm.page_inactive_swp); if (!got_it) got_it = uvmpd_scan_inactive(&uvm.page_inactive_obj); if (!got_it && (uvmexp.pdrevs & 1) == 0 && uvmexp.nswapdev != 0) (void) uvmpd_scan_inactive(&uvm.page_inactive_swp); /* * we have done the scan to get free pages. now we work on meeting * our inactive target. */ page_shortage = uvmexp.inactarg - uvmexp.inactive; pages_freed = uvmexp.pdfreed - pages_freed; /* # pages freed in loop */ if (page_shortage <= 0 && pages_freed == 0) page_shortage = 1; UVMHIST_LOG(pdhist, " second loop: page_shortage=%d", page_shortage, 0, 0, 0); for (p = uvm.page_active.tqh_first ; p != NULL && page_shortage > 0 ; p = nextpg) { nextpg = p->pageq.tqe_next; if (p->flags & PG_BUSY) continue; /* quick check before trying to lock */ /* * lock owner */ /* is page anon owned or ownerless? */ if ((p->pqflags & PQ_ANON) || p->uobject == NULL) { #ifdef DIAGNOSTIC if (p->uanon == NULL) panic("pagedaemon: page with no anon or " "object detected - loop 2"); #endif if (!simple_lock_try(&p->uanon->an_lock)) continue; /* take over the page? */ if ((p->pqflags & PQ_ANON) == 0) { #ifdef DIAGNOSTIC if (p->loan_count < 1) panic("pagedaemon: non-loaned " "ownerless page detected - loop 2"); #endif p->loan_count--; p->pqflags |= PQ_ANON; } } else { if (!simple_lock_try(&p->uobject->vmobjlock)) continue; } if ((p->flags & PG_BUSY) == 0) { pmap_page_protect(PMAP_PGARG(p), VM_PROT_NONE); /* no need to check wire_count as pg is "active" */ uvm_pagedeactivate(p); uvmexp.pddeact++; page_shortage--; } if (p->pqflags & PQ_ANON) simple_unlock(&p->uanon->an_lock); else simple_unlock(&p->uobject->vmobjlock); } /* * done scan */ }