/* $NetBSD: if_vlan.c,v 1.67 2011/04/08 13:56:51 sborrill Exp $ */ /*- * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright 1998 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp */ /* * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be * extended some day to also handle IEEE 802.1P priority tagging. This is * sort of sneaky in the implementation, since we need to pretend to be * enough of an Ethernet implementation to make ARP work. The way we do * this is by telling everyone that we are an Ethernet interface, and then * catch the packets that ether_output() left on our output queue when it * calls if_start(), rewrite them for use by the real outgoing interface, * and ask it to send them. * * TODO: * * - Need some way to notify vlan interfaces when the parent * interface changes MTU. */ #include __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.67 2011/04/08 13:56:51 sborrill Exp $"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif struct vlan_mc_entry { LIST_ENTRY(vlan_mc_entry) mc_entries; /* * A key to identify this entry. The mc_addr below can't be * used since multiple sockaddr may mapped into the same * ether_multi (e.g., AF_UNSPEC). */ union { struct ether_multi *mcu_enm; } mc_u; struct sockaddr_storage mc_addr; }; #define mc_enm mc_u.mcu_enm struct ifvlan { union { struct ethercom ifvu_ec; } ifv_u; struct ifnet *ifv_p; /* parent interface of this vlan */ struct ifv_linkmib { const struct vlan_multisw *ifvm_msw; int ifvm_encaplen; /* encapsulation length */ int ifvm_mtufudge; /* MTU fudged by this much */ int ifvm_mintu; /* min transmission unit */ uint16_t ifvm_proto; /* encapsulation ethertype */ uint16_t ifvm_tag; /* tag to apply on packets */ } ifv_mib; LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead; LIST_ENTRY(ifvlan) ifv_list; int ifv_flags; }; #define IFVF_PROMISC 0x01 /* promiscuous mode enabled */ #define ifv_ec ifv_u.ifvu_ec #define ifv_if ifv_ec.ec_if #define ifv_msw ifv_mib.ifvm_msw #define ifv_encaplen ifv_mib.ifvm_encaplen #define ifv_mtufudge ifv_mib.ifvm_mtufudge #define ifv_mintu ifv_mib.ifvm_mintu #define ifv_tag ifv_mib.ifvm_tag struct vlan_multisw { int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *); int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *); void (*vmsw_purgemulti)(struct ifvlan *); }; static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *); static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *); static void vlan_ether_purgemulti(struct ifvlan *); const struct vlan_multisw vlan_ether_multisw = { vlan_ether_addmulti, vlan_ether_delmulti, vlan_ether_purgemulti, }; static int vlan_clone_create(struct if_clone *, int); static int vlan_clone_destroy(struct ifnet *); static int vlan_config(struct ifvlan *, struct ifnet *); static int vlan_ioctl(struct ifnet *, u_long, void *); static void vlan_start(struct ifnet *); static void vlan_unconfig(struct ifnet *); void vlanattach(int); /* XXX This should be a hash table with the tag as the basis of the key. */ static LIST_HEAD(, ifvlan) ifv_list; struct if_clone vlan_cloner = IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy); /* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */ static char vlan_zero_pad_buff[ETHER_MIN_LEN]; void vlanattach(int n) { LIST_INIT(&ifv_list); if_clone_attach(&vlan_cloner); } static void vlan_reset_linkname(struct ifnet *ifp) { /* * We start out with a "802.1Q VLAN" type and zero-length * addresses. When we attach to a parent interface, we * inherit its type, address length, address, and data link * type. */ ifp->if_type = IFT_L2VLAN; ifp->if_addrlen = 0; ifp->if_dlt = DLT_NULL; if_alloc_sadl(ifp); } static int vlan_clone_create(struct if_clone *ifc, int unit) { struct ifvlan *ifv; struct ifnet *ifp; int s; ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO); ifp = &ifv->ifv_if; LIST_INIT(&ifv->ifv_mc_listhead); s = splnet(); LIST_INSERT_HEAD(&ifv_list, ifv, ifv_list); splx(s); if_initname(ifp, ifc->ifc_name, unit); ifp->if_softc = ifv; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = vlan_start; ifp->if_ioctl = vlan_ioctl; IFQ_SET_READY(&ifp->if_snd); if_attach(ifp); vlan_reset_linkname(ifp); return (0); } static int vlan_clone_destroy(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; int s; s = splnet(); LIST_REMOVE(ifv, ifv_list); vlan_unconfig(ifp); splx(s); if_detach(ifp); free(ifv, M_DEVBUF); return (0); } /* * Configure a VLAN interface. Must be called at splnet(). */ static int vlan_config(struct ifvlan *ifv, struct ifnet *p) { struct ifnet *ifp = &ifv->ifv_if; int error; if (ifv->ifv_p != NULL) return (EBUSY); switch (p->if_type) { case IFT_ETHER: { struct ethercom *ec = (void *) p; ifv->ifv_msw = &vlan_ether_multisw; ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN; ifv->ifv_mintu = ETHERMIN; /* * If the parent supports the VLAN_MTU capability, * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames, * enable it. */ if (ec->ec_nvlans++ == 0 && (ec->ec_capabilities & ETHERCAP_VLAN_MTU) != 0) { /* * Enable Tx/Rx of VLAN-sized frames. */ ec->ec_capenable |= ETHERCAP_VLAN_MTU; if (p->if_flags & IFF_UP) { struct ifreq ifr; ifr.ifr_flags = p->if_flags; error = (*p->if_ioctl)(p, SIOCSIFFLAGS, (void *) &ifr); if (error) { if (ec->ec_nvlans-- == 1) ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; return (error); } } ifv->ifv_mtufudge = 0; } else if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0) { /* * Fudge the MTU by the encapsulation size. This * makes us incompatible with strictly compliant * 802.1Q implementations, but allows us to use * the feature with other NetBSD implementations, * which might still be useful. */ ifv->ifv_mtufudge = ifv->ifv_encaplen; } /* * If the parent interface can do hardware-assisted * VLAN encapsulation, then propagate its hardware- * assisted checksumming flags and tcp segmentation * offload. */ if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING; ifp->if_capabilities = p->if_capabilities & (IFCAP_TSOv4 | IFCAP_TSOv6 | IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx| IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx| IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx); } /* * We inherit the parent's Ethernet address. */ ether_ifattach(ifp, CLLADDR(p->if_sadl)); ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */ break; } default: return (EPROTONOSUPPORT); } ifv->ifv_p = p; ifv->ifv_if.if_mtu = p->if_mtu - ifv->ifv_mtufudge; ifv->ifv_if.if_flags = p->if_flags & (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); /* * Inherit the if_type from the parent. This allows us * to participate in bridges of that type. */ ifv->ifv_if.if_type = p->if_type; return (0); } /* * Unconfigure a VLAN interface. Must be called at splnet(). */ static void vlan_unconfig(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; if (ifv->ifv_p == NULL) return; /* * Since the interface is being unconfigured, we need to empty the * list of multicast groups that we may have joined while we were * alive and remove them from the parent's list also. */ (*ifv->ifv_msw->vmsw_purgemulti)(ifv); /* Disconnect from parent. */ switch (ifv->ifv_p->if_type) { case IFT_ETHER: { struct ethercom *ec = (void *) ifv->ifv_p; if (ec->ec_nvlans-- == 1) { /* * Disable Tx/Rx of VLAN-sized frames. */ ec->ec_capenable &= ~ETHERCAP_VLAN_MTU; if (ifv->ifv_p->if_flags & IFF_UP) { struct ifreq ifr; ifr.ifr_flags = ifv->ifv_p->if_flags; (void) (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCSIFFLAGS, (void *) &ifr); } } ether_ifdetach(ifp); vlan_reset_linkname(ifp); break; } #ifdef DIAGNOSTIC default: panic("vlan_unconfig: impossible"); #endif } ifv->ifv_p = NULL; ifv->ifv_if.if_mtu = 0; ifv->ifv_flags = 0; if_down(ifp); ifp->if_flags &= ~(IFF_UP|IFF_RUNNING); ifp->if_capabilities = 0; } /* * Called when a parent interface is detaching; destroy any VLAN * configuration for the parent interface. */ void vlan_ifdetach(struct ifnet *p) { struct ifvlan *ifv; int s; s = splnet(); for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; ifv = LIST_NEXT(ifv, ifv_list)) { if (ifv->ifv_p == p) vlan_unconfig(&ifv->ifv_if); } splx(s); } static int vlan_set_promisc(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; int error = 0; if ((ifp->if_flags & IFF_PROMISC) != 0) { if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { error = ifpromisc(ifv->ifv_p, 1); if (error == 0) ifv->ifv_flags |= IFVF_PROMISC; } } else { if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { error = ifpromisc(ifv->ifv_p, 0); if (error == 0) ifv->ifv_flags &= ~IFVF_PROMISC; } } return (error); } static int vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct lwp *l = curlwp; /* XXX */ struct ifvlan *ifv = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; struct ifnet *pr; struct ifcapreq *ifcr; struct vlanreq vlr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCINITIFADDR: if (ifv->ifv_p != NULL) { ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(ifp, ifa); break; #endif default: break; } } else { error = EINVAL; } break; case SIOCSIFMTU: if (ifv->ifv_p == NULL) error = EINVAL; else if ( ifr->ifr_mtu > (ifv->ifv_p->if_mtu - ifv->ifv_mtufudge) || ifr->ifr_mtu < (ifv->ifv_mintu - ifv->ifv_mtufudge)) error = EINVAL; else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) error = 0; break; case SIOCSETVLAN: if ((error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL)) != 0) break; if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0) break; if (vlr.vlr_parent[0] == '\0') { vlan_unconfig(ifp); break; } if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) { error = EINVAL; /* check for valid tag */ break; } if ((pr = ifunit(vlr.vlr_parent)) == 0) { error = ENOENT; break; } if ((error = vlan_config(ifv, pr)) != 0) break; ifv->ifv_tag = vlr.vlr_tag; ifp->if_flags |= IFF_RUNNING; /* Update promiscuous mode, if necessary. */ vlan_set_promisc(ifp); break; case SIOCGETVLAN: memset(&vlr, 0, sizeof(vlr)); if (ifv->ifv_p != NULL) { snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s", ifv->ifv_p->if_xname); vlr.vlr_tag = ifv->ifv_tag; } error = copyout(&vlr, ifr->ifr_data, sizeof(vlr)); break; case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; /* * For promiscuous mode, we enable promiscuous mode on * the parent if we need promiscuous on the VLAN interface. */ if (ifv->ifv_p != NULL) error = vlan_set_promisc(ifp); break; case SIOCADDMULTI: error = (ifv->ifv_p != NULL) ? (*ifv->ifv_msw->vmsw_addmulti)(ifv, ifr) : EINVAL; break; case SIOCDELMULTI: error = (ifv->ifv_p != NULL) ? (*ifv->ifv_msw->vmsw_delmulti)(ifv, ifr) : EINVAL; break; case SIOCSIFCAP: ifcr = data; /* make sure caps are enabled on parent */ if ((ifv->ifv_p->if_capenable & ifcr->ifcr_capenable) != ifcr->ifcr_capenable) { error = EINVAL; break; } if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) error = 0; break; default: error = ether_ioctl(ifp, cmd, data); } splx(s); return (error); } static int vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr) { const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr); struct vlan_mc_entry *mc; uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; int error; if (sa->sa_len > sizeof(struct sockaddr_storage)) return (EINVAL); error = ether_addmulti(sa, &ifv->ifv_ec); if (error != ENETRESET) return (error); /* * This is new multicast address. We have to tell parent * about it. Also, remember this multicast address so that * we can delete them on unconfigure. */ mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT); if (mc == NULL) { error = ENOMEM; goto alloc_failed; } /* * As ether_addmulti() returns ENETRESET, following two * statement shouldn't fail. */ (void)ether_multiaddr(sa, addrlo, addrhi); ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm); memcpy(&mc->mc_addr, sa, sa->sa_len); LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries); error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCADDMULTI, (void *)ifr); if (error != 0) goto ioctl_failed; return (error); ioctl_failed: LIST_REMOVE(mc, mc_entries); free(mc, M_DEVBUF); alloc_failed: (void)ether_delmulti(sa, &ifv->ifv_ec); return (error); } static int vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr) { const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr); struct ether_multi *enm; struct vlan_mc_entry *mc; uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; int error; /* * Find a key to lookup vlan_mc_entry. We have to do this * before calling ether_delmulti for obvious reason. */ if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0) return (error); ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm); error = ether_delmulti(sa, &ifv->ifv_ec); if (error != ENETRESET) return (error); /* We no longer use this multicast address. Tell parent so. */ error = (*ifv->ifv_p->if_ioctl)(ifv->ifv_p, SIOCDELMULTI, (void *)ifr); if (error == 0) { /* And forget about this address. */ for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL; mc = LIST_NEXT(mc, mc_entries)) { if (mc->mc_enm == enm) { LIST_REMOVE(mc, mc_entries); free(mc, M_DEVBUF); break; } } KASSERT(mc != NULL); } else (void)ether_addmulti(sa, &ifv->ifv_ec); return (error); } /* * Delete any multicast address we have asked to add from parent * interface. Called when the vlan is being unconfigured. */ static void vlan_ether_purgemulti(struct ifvlan *ifv) { struct ifnet *ifp = ifv->ifv_p; /* Parent. */ struct vlan_mc_entry *mc; union { struct ifreq ifreq; struct { char ifr_name[IFNAMSIZ]; struct sockaddr_storage ifr_ss; } ifreq_storage; } ifreq; struct ifreq *ifr = &ifreq.ifreq; memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) { ifreq_setaddr(SIOCDELMULTI, ifr, (const struct sockaddr *)&mc->mc_addr); (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)ifr); LIST_REMOVE(mc, mc_entries); free(mc, M_DEVBUF); } } static void vlan_start(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; struct ifnet *p = ifv->ifv_p; struct ethercom *ec = (void *) ifv->ifv_p; struct mbuf *m; int error; ALTQ_DECL(struct altq_pktattr pktattr;) ifp->if_flags |= IFF_OACTIVE; for (;;) { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #ifdef ALTQ /* * If ALTQ is enabled on the parent interface, do * classification; the queueing discipline might * not require classification, but might require * the address family/header pointer in the pktattr. */ if (ALTQ_IS_ENABLED(&p->if_snd)) { switch (p->if_type) { case IFT_ETHER: altq_etherclassify(&p->if_snd, m, &pktattr); break; #ifdef DIAGNOSTIC default: panic("vlan_start: impossible (altq)"); #endif } } #endif /* ALTQ */ bpf_mtap(ifp, m); /* * If the parent can insert the tag itself, just mark * the tag in the mbuf header. */ if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) { struct m_tag *mtag; mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT); if (mtag == NULL) { ifp->if_oerrors++; m_freem(m); continue; } *(u_int *)(mtag + 1) = ifv->ifv_tag; m_tag_prepend(m, mtag); } else { /* * insert the tag ourselves */ M_PREPEND(m, ifv->ifv_encaplen, M_DONTWAIT); if (m == NULL) { printf("%s: unable to prepend encap header", ifv->ifv_p->if_xname); ifp->if_oerrors++; continue; } switch (p->if_type) { case IFT_ETHER: { struct ether_vlan_header *evl; if (m->m_len < sizeof(struct ether_vlan_header)) m = m_pullup(m, sizeof(struct ether_vlan_header)); if (m == NULL) { printf("%s: unable to pullup encap " "header", ifv->ifv_p->if_xname); ifp->if_oerrors++; continue; } /* * Transform the Ethernet header into an * Ethernet header with 802.1Q encapsulation. */ memmove(mtod(m, void *), mtod(m, char *) + ifv->ifv_encaplen, sizeof(struct ether_header)); evl = mtod(m, struct ether_vlan_header *); evl->evl_proto = evl->evl_encap_proto; evl->evl_encap_proto = htons(ETHERTYPE_VLAN); evl->evl_tag = htons(ifv->ifv_tag); /* * To cater for VLAN-aware layer 2 ethernet * switches which may need to strip the tag * before forwarding the packet, make sure * the packet+tag is at least 68 bytes long. * This is necessary because our parent will * only pad to 64 bytes (ETHER_MIN_LEN) and * some switches will not pad by themselves * after deleting a tag. */ if (m->m_pkthdr.len < (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN)) { m_copyback(m, m->m_pkthdr.len, (ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN) - m->m_pkthdr.len, vlan_zero_pad_buff); } break; } #ifdef DIAGNOSTIC default: panic("vlan_start: impossible"); #endif } } /* * Send it, precisely as the parent's output routine * would have. We are already running at splnet. */ IFQ_ENQUEUE(&p->if_snd, m, &pktattr, error); if (error) { /* mbuf is already freed */ ifp->if_oerrors++; continue; } ifp->if_opackets++; if ((p->if_flags & (IFF_RUNNING|IFF_OACTIVE)) == IFF_RUNNING) (*p->if_start)(p); } ifp->if_flags &= ~IFF_OACTIVE; } /* * Given an Ethernet frame, find a valid vlan interface corresponding to the * given source interface and tag, then run the real packet through the * parent's input routine. */ void vlan_input(struct ifnet *ifp, struct mbuf *m) { struct ifvlan *ifv; u_int tag; struct m_tag *mtag; mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); if (mtag != NULL) { /* m contains a normal ethernet frame, the tag is in mtag */ tag = EVL_VLANOFTAG(*(u_int *)(mtag + 1)); m_tag_delete(m, mtag); } else { switch (ifp->if_type) { case IFT_ETHER: { struct ether_vlan_header *evl; if (m->m_len < sizeof(struct ether_vlan_header) && (m = m_pullup(m, sizeof(struct ether_vlan_header))) == NULL) { printf("%s: no memory for VLAN header, " "dropping packet.\n", ifp->if_xname); return; } evl = mtod(m, struct ether_vlan_header *); KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN); tag = EVL_VLANOFTAG(ntohs(evl->evl_tag)); /* * Restore the original ethertype. We'll remove * the encapsulation after we've found the vlan * interface corresponding to the tag. */ evl->evl_encap_proto = evl->evl_proto; break; } default: tag = (u_int) -1; /* XXX GCC */ #ifdef DIAGNOSTIC panic("vlan_input: impossible"); #endif } } for (ifv = LIST_FIRST(&ifv_list); ifv != NULL; ifv = LIST_NEXT(ifv, ifv_list)) if (ifp == ifv->ifv_p && tag == ifv->ifv_tag) break; if (ifv == NULL || (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) { m_freem(m); ifp->if_noproto++; return; } /* * Now, remove the encapsulation header. The original * header has already been fixed up above. */ if (mtag == NULL) { memmove(mtod(m, char *) + ifv->ifv_encaplen, mtod(m, void *), sizeof(struct ether_header)); m_adj(m, ifv->ifv_encaplen); } m->m_pkthdr.rcvif = &ifv->ifv_if; ifv->ifv_if.if_ipackets++; bpf_mtap(&ifv->ifv_if, m); /* Pass it back through the parent's input routine. */ (*ifp->if_input)(&ifv->ifv_if, m); }