/* $NetBSD: adwlib.c,v 1.39 2009/03/14 15:36:17 dsl Exp $ */ /* * Low level routines for the Advanced Systems Inc. SCSI controllers chips * * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * Author: Baldassare Dante Profeta * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Ported from: */ /* * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters * * Copyright (c) 1995-2000 Advanced System Products, Inc. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that redistributions of source * code retain the above copyright notice and this comment without * modification. */ #include __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.39 2009/03/14 15:36:17 dsl Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Static Functions */ int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t); int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t); int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *); int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *); int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *); static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t, ADW_EEPROM *); static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t, ADW_EEPROM *); static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int); static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t); static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *); static void AdwSleepMilliSecond(u_int32_t); static void AdwDelayMicroSecond(u_int32_t); /* * EEPROM Configuration. * * All drivers should use this structure to set the default EEPROM * configuration. The BIOS now uses this structure when it is built. * Additional structure information can be found in adwlib.h where * the structure is defined. */ static const ADW_EEPROM adw_3550_Default_EEPROM = { ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 0x0000, /* 01 cfg_msw */ 0xFFFF, /* 02 disc_enable */ 0xFFFF, /* 03 wdtr_able */ { 0xFFFF }, /* 04 sdtr_able */ 0xFFFF, /* 05 start_motor */ 0xFFFF, /* 06 tagqng_able */ 0xFFFF, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 7, /* 09 adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* 10 scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* 11 termination */ 0, /* reserved1 */ 0xFFE7, /* 12 bios_ctrl */ { 0xFFFF }, /* 13 ultra_able */ { 0 }, /* 14 reserved2 */ ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ { 0 }, /* 17 bug_fix */ { 0,0,0 }, /* 18-20 serial_number[3] */ 0, /* 21 check_sum */ { /* 22-29 oem_name[16] */ 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0 }, 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ { /* 36-55 reserved1[16] */ 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0 }, 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ 0, /* 58 subsysvid */ 0, /* 59 subsysid */ { 0,0,0,0 } /* 60-63 reserved2[4] */ }; static const ADW_EEPROM adw_38C0800_Default_EEPROM = { ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 0x0000, /* 01 cfg_msw */ 0xFFFF, /* 02 disc_enable */ 0xFFFF, /* 03 wdtr_able */ { 0x4444 }, /* 04 sdtr_speed1 */ 0xFFFF, /* 05 start_motor */ 0xFFFF, /* 06 tagqng_able */ 0xFFFF, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 7, /* 09 adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* 10 scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* 11 termination_se */ 0, /* termination_lvd */ 0xFFE7, /* 12 bios_ctrl */ { 0x4444 }, /* 13 sdtr_speed2 */ { 0x4444 }, /* 14 sdtr_speed3 */ ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ { 0x4444 }, /* 17 sdtr_speed4 */ { 0,0,0 }, /* 18-20 serial_number[3] */ 0, /* 21 check_sum */ { /* 22-29 oem_name[16] */ 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0 }, 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ { /* 36-55 reserved1[16] */ 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0 }, 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ PCI_VENDOR_ADVSYS, /* 58 subsysvid */ PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */ { 0,0,0,0 } /* 60-63 reserved2[4] */ }; static const ADW_EEPROM adw_38C1600_Default_EEPROM = { ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 0x0000, /* 01 cfg_msw */ 0xFFFF, /* 02 disc_enable */ 0xFFFF, /* 03 wdtr_able */ { 0x5555 }, /* 04 sdtr_speed1 */ 0xFFFF, /* 05 start_motor */ 0xFFFF, /* 06 tagqng_able */ 0xFFFF, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 7, /* 09 adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* 10 scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* 11 termination_se */ 0, /* termination_lvd */ 0xFFE7, /* 12 bios_ctrl */ { 0x5555 }, /* 13 sdtr_speed2 */ { 0x5555 }, /* 14 sdtr_speed3 */ ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ { 0x5555 }, /* 17 sdtr_speed4 */ { 0,0,0 }, /* 18-20 serial_number[3] */ 0, /* 21 check_sum */ { /* 22-29 oem_name[16] */ 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0 }, 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ { /* 36-55 reserved1[16] */ 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0 }, 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ PCI_VENDOR_ADVSYS, /* 58 subsysvid */ PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */ { 0,0,0,0 } /* 60-63 reserved2[4] */ }; /* * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while * all of this is done. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Note: Chip is stopped on entry. */ int AdwInitFromEEPROM(ADW_SOFTC *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; ADW_EEPROM eep_config; u_int16_t warn_code; u_int16_t sdtr_speed = 0; u_int8_t tid, termination; int i, j; warn_code = 0; /* * Read the board's EEPROM configuration. * * Set default values if a bad checksum is found. * * XXX - Don't handle big-endian access to EEPROM yet. */ if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) { warn_code |= ADW_WARN_EEPROM_CHKSUM; /* * Set EEPROM default values. */ switch(sc->chip_type) { case ADW_CHIP_ASC3550: eep_config = adw_3550_Default_EEPROM; break; case ADW_CHIP_ASC38C0800: eep_config = adw_38C0800_Default_EEPROM; break; case ADW_CHIP_ASC38C1600: eep_config = adw_38C1600_Default_EEPROM; #if 0 XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) { #endif if (sc->cfg.pci_slot_info != 0) { u_int8_t lsw_msb; lsw_msb = eep_config.cfg_lsw >> 8; /* * Set Function 1 EEPROM Word 0 MSB * * Clear the BIOS_ENABLE (bit 14) and * INTAB (bit 11) EEPROM bits. * * Disable Bit 14 (BIOS_ENABLE) to fix * SPARC Ultra 60 and old Mac system booting * problem. The Expansion ROM must * be disabled in Function 1 for these systems. */ lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE | ADW_EEPROM_INTAB) >> 8) & 0xFF); /* * Set the INTAB (bit 11) if the GPIO 0 input * indicates the Function 1 interrupt line is * wired to INTA. * * Set/Clear Bit 11 (INTAB) from * the GPIO bit 0 input: * 1 - Function 1 intr line wired to INT A. * 0 - Function 1 intr line wired to INT B. * * Note: Adapter boards always have Function 0 * wired to INTA. * Put all 5 GPIO bits in input mode and then * read their input values. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_GPIO_CNTL, 0); if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_GPIO_DATA) & 0x01) { /* * Function 1 interrupt wired to INTA; * Set EEPROM bit. */ lsw_msb |= (ADW_EEPROM_INTAB >> 8) & 0xFF; } eep_config.cfg_lsw &= 0x00FF; eep_config.cfg_lsw |= lsw_msb << 8; } break; } /* * Assume the 6 byte board serial number that was read * from EEPROM is correct even if the EEPROM checksum * failed. */ for (i=2, j=1; i>=0; i--, j++) { eep_config.serial_number[i] = AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j); } AdwSetEEPROMConfig(iot, ioh, &eep_config); } /* * Set sc and sc->cfg variables from the EEPROM configuration * that was read. * * This is the mapping of EEPROM fields to Adw Library fields. */ sc->wdtr_able = eep_config.wdtr_able; if (sc->chip_type == ADW_CHIP_ASC3550) { sc->sdtr_able = eep_config.sdtr1.sdtr_able; sc->ultra_able = eep_config.sdtr2.ultra_able; } else { sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1; sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2; sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3; sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4; } sc->ppr_able = 0; sc->tagqng_able = eep_config.tagqng_able; sc->cfg.disc_enable = eep_config.disc_enable; sc->max_host_qng = eep_config.max_host_qng; sc->max_dvc_qng = eep_config.max_dvc_qng; sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID); sc->start_motor = eep_config.start_motor; sc->scsi_reset_wait = eep_config.scsi_reset_delay; sc->bios_ctrl = eep_config.bios_ctrl; sc->no_scam = eep_config.scam_tolerant; sc->cfg.serial1 = eep_config.serial_number[0]; sc->cfg.serial2 = eep_config.serial_number[1]; sc->cfg.serial3 = eep_config.serial_number[2]; if (sc->chip_type == ADW_CHIP_ASC38C0800 || sc->chip_type == ADW_CHIP_ASC38C1600) { sc->sdtr_able = 0; for (tid = 0; tid <= ADW_MAX_TID; tid++) { if (tid == 0) { sdtr_speed = sc->sdtr_speed1; } else if (tid == 4) { sdtr_speed = sc->sdtr_speed2; } else if (tid == 8) { sdtr_speed = sc->sdtr_speed3; } else if (tid == 12) { sdtr_speed = sc->sdtr_speed4; } if (sdtr_speed & ADW_MAX_TID) { sc->sdtr_able |= (1 << tid); } sdtr_speed >>= 4; } } /* * Set the host maximum queuing (max. 253, min. 16) and the per device * maximum queuing (max. 63, min. 4). */ if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) { eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG; } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_host_qng == 0) { eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG; } else { eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG; } } if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) { eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG; } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_dvc_qng == 0) { eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG; } else { eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG; } } /* * If 'max_dvc_qng' is greater than 'max_host_qng', then * set 'max_dvc_qng' to 'max_host_qng'. */ if (eep_config.max_dvc_qng > eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } /* * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' * values based on possibly adjusted EEPROM values. */ sc->max_host_qng = eep_config.max_host_qng; sc->max_dvc_qng = eep_config.max_dvc_qng; /* * If the EEPROM 'termination' field is set to automatic (0), then set * the ADV_DVC_CFG 'termination' field to automatic also. * * If the termination is specified with a non-zero 'termination' * value check that a legal value is set and set the ADV_DVC_CFG * 'termination' field appropriately. */ switch(sc->chip_type) { case ADW_CHIP_ASC3550: sc->cfg.termination = 0; /* auto termination */ switch(eep_config.termination_se) { case 3: /* Enable manual control with low on / high on. */ sc->cfg.termination |= ADW_TERM_CTL_L; case 2: /* Enable manual control with low off / high on. */ sc->cfg.termination |= ADW_TERM_CTL_H; case 1: /* Enable manual control with low off / high off. */ sc->cfg.termination |= ADW_TERM_CTL_SEL; case 0: break; default: warn_code |= ADW_WARN_EEPROM_TERMINATION; } break; case ADW_CHIP_ASC38C0800: case ADW_CHIP_ASC38C1600: switch(eep_config.termination_se) { case 0: /* auto termination for SE */ termination = 0; break; case 1: /* Enable manual control with low off / high off. */ termination = 0; break; case 2: /* Enable manual control with low off / high on. */ termination = ADW_TERM_SE_HI; break; case 3: /* Enable manual control with low on / high on. */ termination = ADW_TERM_SE; break; default: /* * The EEPROM 'termination_se' field contains a * bad value. Use automatic termination instead. */ termination = 0; warn_code |= ADW_WARN_EEPROM_TERMINATION; } switch(eep_config.termination_lvd) { case 0: /* auto termination for LVD */ sc->cfg.termination = termination; break; case 1: /* Enable manual control with low off / high off. */ sc->cfg.termination = termination; break; case 2: /* Enable manual control with low off / high on. */ sc->cfg.termination = termination | ADW_TERM_LVD_HI; break; case 3: /* Enable manual control with low on / high on. */ sc->cfg.termination = termination | ADW_TERM_LVD; break; default: /* * The EEPROM 'termination_lvd' field contains a * bad value. Use automatic termination instead. */ sc->cfg.termination = termination; warn_code |= ADW_WARN_EEPROM_TERMINATION; } break; } return warn_code; } /* * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600. * * On failure return the error code. */ int AdwInitDriver(ADW_SOFTC *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t error_code; int word; int i; u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory 0x40-0x8F. */ u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able; u_int8_t max_cmd[ADW_MAX_TID + 1]; u_int8_t tid; error_code = 0; /* * Save the RISC memory BIOS region before writing the microcode. * The BIOS may already be loaded and using its RISC LRAM region * so its region must be saved and restored. * * Note: This code makes the assumption, which is currently true, * that a chip reset does not clear RISC LRAM. */ for (i = 0; i < ADW_MC_BIOSLEN/2; i++) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]); } /* * Save current per TID negotiated values. */ switch (sc->chip_type) { case ADW_CHIP_ASC3550: if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){ u_int16_t bios_version, major, minor; bios_version = bios_mem[(ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM) / 2]; major = (bios_version >> 12) & 0xF; minor = (bios_version >> 8) & 0xF; if (major < 3 || (major == 3 && minor == 1)) { /* * BIOS 3.1 and earlier location of * 'wdtr_able' variable. */ ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able); } else { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able); } } break; case ADW_CHIP_ASC38C1600: ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); /* FALLTHROUGH */ case ADW_CHIP_ASC38C0800: ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able); break; } ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able); ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADW_MAX_TID; tid++) { ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } /* * Perform a RAM Built-In Self Test */ if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) { return error_code; } /* * Load the Microcode */ ; if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) { return error_code; } /* * Read microcode version and date. */ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date); ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version); /* * If the PCI Configuration Command Register "Parity Error Response * Control" Bit was clear (0), then set the microcode variable * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode * to ignore DMA parity errors. */ if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word | CONTROL_FLAG_IGNORE_PERR); } switch (sc->chip_type) { case ADW_CHIP_ASC3550: /* * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a * FIFO threshold of 128 bytes. * This register is only accessible to the host. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0, START_CTL_EMFU | READ_CMD_MRM); break; case ADW_CHIP_ASC38C0800: /* * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current * cable detection and then we are able to read C_DET[3:0]. * * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 * Microcode Default Value' section below. */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1, ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1) | ADW_DIS_TERM_DRV); /* * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and * START_CTL_TH [3:2] bits for the default FIFO threshold. * * Note: ASC-38C0800 FIFO threshold has been changed to * 256 bytes. * * For DMA Errata #4 set the BC_THRESH_ENB bit. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0, BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); break; case ADW_CHIP_ASC38C1600: /* * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current * cable detection and then we are able to read C_DET[3:0]. * * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 * Microcode Default Value' section below. */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1, ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1) | ADW_DIS_TERM_DRV); /* * If the BIOS control flag AIPP (Asynchronous Information * Phase Protection) disable bit is not set, then set the * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to * enable AIPP checking and encoding. */ if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word | CONTROL_FLAG_ENABLE_AIPP); } /* * For ASC-38C1600 use DMA_CFG0 default values: * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2]. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0, FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); break; } /* * Microcode operating variables for WDTR, SDTR, and command tag * queuing will be set in AdvInquiryHandling() based on what a * device reports it is capable of in Inquiry byte 7. * * If SCSI Bus Resets have been disabled, then directly set * SDTR and WDTR from the EEPROM configuration. This will allow * the BIOS and warm boot to work without a SCSI bus hang on * the Inquiry caused by host and target mismatched DTR values. * Without the SCSI Bus Reset, before an Inquiry a device can't * be assumed to be in Asynchronous, Narrow mode. */ if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able); } /* * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID * bitmask. These values determine the maximum SDTR speed negotiated * with a device. * * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them * without determining here whether the device supports SDTR. */ switch (sc->chip_type) { case ADW_CHIP_ASC3550: word = 0; for (tid = 0; tid <= ADW_MAX_TID; tid++) { if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) { /* Set Ultra speed for TID 'tid'. */ word |= (0x3 << (4 * (tid % 4))); } else { /* Set Fast speed for TID 'tid'. */ word |= (0x2 << (4 * (tid % 4))); } /* Check if done with sdtr_speed1. */ if (tid == 3) { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, word); word = 0; /* Check if done with sdtr_speed2. */ } else if (tid == 7) { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, word); word = 0; /* Check if done with sdtr_speed3. */ } else if (tid == 11) { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, word); word = 0; /* Check if done with sdtr_speed4. */ } else if (tid == 15) { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, word); /* End of loop. */ } } /* * Set microcode operating variable for the * disconnect per TID bitmask. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable); break; case ADW_CHIP_ASC38C0800: /* FALLTHROUGH */ case ADW_CHIP_ASC38C1600: ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, sc->sdtr_speed1); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, sc->sdtr_speed2); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, sc->sdtr_speed3); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, sc->sdtr_speed4); break; } /* * Set SCSI_CFG0 Microcode Default Value. * * The microcode will set the SCSI_CFG0 register using this value * after it is started below. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0, ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG | ADW_OUR_ID_EN | sc->chip_scsi_id); switch(sc->chip_type) { case ADW_CHIP_ASC3550: error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg); break; case ADW_CHIP_ASC38C0800: error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg); break; case ADW_CHIP_ASC38C1600: error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg); break; } if(error_code) { return error_code; } /* * Set SEL_MASK Microcode Default Value * * The microcode will set the SEL_MASK register using this value * after it is started below. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK, ADW_TID_TO_TIDMASK(sc->chip_scsi_id)); /* * Create and Initialize Host->RISC Carrier lists */ sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier, sc->sc_control->carriers); /* * Set-up the Host->RISC Initiator Command Queue (ICQ). */ if ((sc->icq_sp = sc->carr_freelist) == NULL) { return ADW_IERR_NO_CARRIER; } sc->carr_freelist = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(sc->icq_sp->next_ba)); /* * The first command issued will be placed in the stopper carrier. */ sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER); /* * Set RISC ICQ physical address start value. */ ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba)); /* * Initialize the COMMA register to the same value otherwise * the RISC will prematurely detect a command is available. */ if(sc->chip_type == ADW_CHIP_ASC38C1600) { ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, le32toh(sc->icq_sp->carr_ba)); } /* * Set-up the RISC->Host Initiator Response Queue (IRQ). */ if ((sc->irq_sp = sc->carr_freelist) == NULL) { return ADW_IERR_NO_CARRIER; } sc->carr_freelist = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(sc->irq_sp->next_ba)); /* * The first command completed by the RISC will be placed in * the stopper. * * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is * completed the RISC will set the ASC_RQ_DONE bit. */ sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER); /* * Set RISC IRQ physical address start value. */ ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba)); sc->carr_pending_cnt = 0; ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES, (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR)); ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word); /* finally, finally, gentlemen, start your engine */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN); /* * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus * Resets should be performed. The RISC has to be running * to issue a SCSI Bus Reset. */ if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { /* * If the BIOS Signature is present in memory, restore the * BIOS Handshake Configuration Table and do not perform * a SCSI Bus Reset. */ if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] == 0x55AA) { /* * Restore per TID negotiated values. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADW_MAX_TID; tid++) { ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } } else { if (AdwResetCCB(sc) != ADW_TRUE) { error_code = ADW_WARN_BUSRESET_ERROR; } } } return error_code; } int AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type) { int i; u_int8_t byte; if ((chip_type == ADW_CHIP_ASC38C0800) || (chip_type == ADW_CHIP_ASC38C1600)) { /* * RAM BIST (RAM Built-In Self Test) * * Address : I/O base + offset 0x38h register (byte). * Function: Bit 7-6(RW) : RAM mode * Normal Mode : 0x00 * Pre-test Mode : 0x40 * RAM Test Mode : 0x80 * Bit 5 : unused * Bit 4(RO) : Done bit * Bit 3-0(RO) : Status * Host Error : 0x08 * Int_RAM Error : 0x04 * RISC Error : 0x02 * SCSI Error : 0x01 * No Error : 0x00 * * Note: RAM BIST code should be put right here, before loading * the microcode and after saving the RISC memory BIOS region. */ /* * LRAM Pre-test * * Write PRE_TEST_MODE (0x40) to register and wait for * 10 milliseconds. * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), * return an error. Reset to NORMAL_MODE (0x00) and do again. * If cannot reset to NORMAL_MODE, return an error too. */ for (i = 0; i < 2; i++) { ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE); /* Wait for 10ms before reading back. */ AdwSleepMilliSecond(10); byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST); if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) != PRE_TEST_VALUE) { return ADW_IERR_BIST_PRE_TEST; } ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE); /* Wait for 10ms before reading back. */ AdwSleepMilliSecond(10); if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST) != NORMAL_VALUE) { return ADW_IERR_BIST_PRE_TEST; } } /* * LRAM Test - It takes about 1.5 ms to run through the test. * * Write RAM_TEST_MODE (0x80) to register and wait for * 10 milliseconds. * If Done bit not set or Status not 0, save register byte, * set the err_code, and return an error. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE); /* Wait for 10ms before checking status. */ AdwSleepMilliSecond(10); byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST); if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) { /* Get here if Done bit not set or Status not 0. */ return ADW_IERR_BIST_RAM_TEST; } /* We need to reset back to normal mode after LRAM test passes*/ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE); } return 0; } int AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type) { const u_int8_t *mcode_data; u_int32_t mcode_chksum; u_int16_t mcode_size; u_int32_t sum; u_int16_t code_sum; int begin_addr; int end_addr; int word; int adw_memsize; int adw_mcode_expanded_size; int i, j; switch(chip_type) { case ADW_CHIP_ASC3550: mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data; mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum; mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size; adw_memsize = ADW_3550_MEMSIZE; break; case ADW_CHIP_ASC38C0800: mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data; mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum; mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size; adw_memsize = ADW_38C0800_MEMSIZE; break; case ADW_CHIP_ASC38C1600: mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data; mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum; mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size; adw_memsize = ADW_38C1600_MEMSIZE; break; default: return (EINVAL); } /* * Write the microcode image to RISC memory starting at address 0. */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0); /* Assume the following compressed format of the microcode buffer: * * 254 word (508 byte) table indexed by byte code followed * by the following byte codes: * * 1-Byte Code: * 00: Emit word 0 in table. * 01: Emit word 1 in table. * . * FD: Emit word 253 in table. * * Multi-Byte Code: * FE WW WW: (3 byte code) Word to emit is the next word WW WW. * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. */ word = 0; for (i = 253 * 2; i < mcode_size; i++) { if (mcode_data[i] == 0xff) { for (j = 0; j < mcode_data[i + 1]; j++) { ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)mcode_data[i + 3] << 8) | mcode_data[i + 2])); word++; } i += 3; } else if (mcode_data[i] == 0xfe) { ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)mcode_data[i + 2] << 8) | mcode_data[i + 1])); i += 2; word++; } else { ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t) mcode_data[(mcode_data[i] * 2) + 1] <<8) | mcode_data[mcode_data[i] * 2])); word++; } } /* * Set 'word' for later use to clear the rest of memory and save * the expanded mcode size. */ word *= 2; adw_mcode_expanded_size = word; /* * Clear the rest of the Internal RAM. */ for (; word < adw_memsize; word += 2) { ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0); } /* * Verify the microcode checksum. */ sum = 0; ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0); for (word = 0; word < adw_mcode_expanded_size; word += 2) { sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh); } if (sum != mcode_chksum) { return ADW_IERR_MCODE_CHKSUM; } /* * Restore the RISC memory BIOS region. */ for (i = 0; i < ADW_MC_BIOSLEN/2; i++) { if(chip_type == ADW_CHIP_ASC3550) { ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i), bios_mem[i]); } else { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i), bios_mem[i]); } } /* * Calculate and write the microcode code checksum to the microcode * code checksum location ADW_MC_CODE_CHK_SUM (0x2C). */ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr); ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr); code_sum = 0; ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr); for (word = begin_addr; word < end_addr; word += 2) { code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh); } ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum); /* * Set the chip type. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type); return 0; } int AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg) { u_int16_t scsi_cfg1; /* * Determine SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ /* Read current SCSI_CFG1 Register value. */ scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1); /* * If all three connectors are in use in ASC3550, return an error. */ if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { return ADW_IERR_ILLEGAL_CONNECTION; } /* * If the cable is reversed all of the SCSI_CTRL register signals * will be set. Check for and return an error if this condition is * found. */ if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){ return ADW_IERR_REVERSED_CABLE; } /* * If this is a differential board and a single-ended device * is attached to one of the connectors, return an error. */ if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) { return ADW_IERR_SINGLE_END_DEVICE; } /* * If automatic termination control is enabled, then set the * termination value based on a table listed in a_condor.h. * * If manual termination was specified with an EEPROM setting * then 'termination' was set-up in AdwInitFromEEPROM() and * is ready to be 'ored' into SCSI_CFG1. */ if (cfg->termination == 0) { /* * The software always controls termination by setting * TERM_CTL_SEL. * If TERM_CTL_SEL were set to 0, the hardware would set * termination. */ cfg->termination |= ADW_TERM_CTL_SEL; switch(scsi_cfg1 & ADW_CABLE_DETECT) { /* TERM_CTL_H: on, TERM_CTL_L: on */ case 0x3: case 0x7: case 0xB: case 0xD: case 0xE: case 0xF: cfg->termination |= (ADW_TERM_CTL_H | ADW_TERM_CTL_L); break; /* TERM_CTL_H: on, TERM_CTL_L: off */ case 0x1: case 0x5: case 0x9: case 0xA: case 0xC: cfg->termination |= ADW_TERM_CTL_H; break; /* TERM_CTL_H: off, TERM_CTL_L: off */ case 0x2: case 0x6: break; } } /* * Clear any set TERM_CTL_H and TERM_CTL_L bits. */ scsi_cfg1 &= ~ADW_TERM_CTL; /* * Invert the TERM_CTL_H and TERM_CTL_L bits and then * set 'scsi_cfg1'. The TERM_POL bit does not need to be * referenced, because the hardware internally inverts * the Termination High and Low bits if TERM_POL is set. */ scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL)); /* * Set SCSI_CFG1 Microcode Default Value * * Set filter value and possibly modified termination control * bits in the Microcode SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, ADW_FLTR_DISABLE | scsi_cfg1); /* * Set MEM_CFG Microcode Default Value * * The microcode will set the MEM_CFG register using this value * after it is started below. * * MEM_CFG may be accessed as a word or byte, but only bits 0-7 * are defined. * * ASC-3550 has 8KB internal memory. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG, ADW_BIOS_EN | ADW_RAM_SZ_8KB); return 0; } int AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg) { u_int16_t scsi_cfg1; /* * Determine SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ /* Read current SCSI_CFG1 Register value. */ scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1); /* * If the cable is reversed all of the SCSI_CTRL register signals * will be set. Check for and return an error if this condition is * found. */ if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){ return ADW_IERR_REVERSED_CABLE; } /* * All kind of combinations of devices attached to one of four * connectors are acceptable except HVD device attached. * For example, LVD device can be attached to SE connector while * SE device attached to LVD connector. * If LVD device attached to SE connector, it only runs up to * Ultra speed. * * If an HVD device is attached to one of LVD connectors, return * an error. * However, there is no way to detect HVD device attached to * SE connectors. */ if (scsi_cfg1 & ADW_HVD) { return ADW_IERR_HVD_DEVICE; } /* * If either SE or LVD automatic termination control is enabled, then * set the termination value based on a table listed in a_condor.h. * * If manual termination was specified with an EEPROM setting then * 'termination' was set-up in AdwInitFromEEPROM() and is ready * to be 'ored' into SCSI_CFG1. */ if ((cfg->termination & ADW_TERM_SE) == 0) { /* SE automatic termination control is enabled. */ switch(scsi_cfg1 & ADW_C_DET_SE) { /* TERM_SE_HI: on, TERM_SE_LO: on */ case 0x1: case 0x2: case 0x3: cfg->termination |= ADW_TERM_SE; break; /* TERM_SE_HI: on, TERM_SE_LO: off */ case 0x0: cfg->termination |= ADW_TERM_SE_HI; break; } } if ((cfg->termination & ADW_TERM_LVD) == 0) { /* LVD automatic termination control is enabled. */ switch(scsi_cfg1 & ADW_C_DET_LVD) { /* TERM_LVD_HI: on, TERM_LVD_LO: on */ case 0x4: case 0x8: case 0xC: cfg->termination |= ADW_TERM_LVD; break; /* TERM_LVD_HI: off, TERM_LVD_LO: off */ case 0x0: break; } } /* * Clear any set TERM_SE and TERM_LVD bits. */ scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD); /* * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. */ scsi_cfg1 |= (~cfg->termination & 0xF0); /* * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and * HVD/LVD/SE bits and set possibly modified termination control bits * in the Microcode SCSI_CFG1 Register Value. */ scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL & ~ADW_HVD_LVD_SE); /* * Set SCSI_CFG1 Microcode Default Value * * Set possibly modified termination control and reset DIS_TERM_DRV * bits in the Microcode SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); /* * Set MEM_CFG Microcode Default Value * * The microcode will set the MEM_CFG register using this value * after it is started below. * * MEM_CFG may be accessed as a word or byte, but only bits 0-7 * are defined. * * ASC-38C0800 has 16KB internal memory. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG, ADW_BIOS_EN | ADW_RAM_SZ_16KB); return 0; } int AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg) { u_int16_t scsi_cfg1; /* * Determine SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. * Each ASC-38C1600 function has only two cable detect bits. * The bus mode override bits are in IOPB_SOFT_OVER_WR. */ /* Read current SCSI_CFG1 Register value. */ scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1); /* * If the cable is reversed all of the SCSI_CTRL register signals * will be set. Check for and return an error if this condition is * found. */ if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){ return ADW_IERR_REVERSED_CABLE; } /* * Each ASC-38C1600 function has two connectors. Only an HVD device * cannot be connected to either connector. An LVD device or SE device * may be connected to either connector. If an SE device is connected, * then at most Ultra speed (20 MHz) can be used on both connectors. * * If an HVD device is attached, return an error. */ if (scsi_cfg1 & ADW_HVD) { return ADW_IERR_HVD_DEVICE; } /* * Each function in the ASC-38C1600 uses only the SE cable detect and * termination because there are two connectors for each function. * Each function may use either LVD or SE mode. * Corresponding the SE automatic termination control EEPROM bits are * used for each function. * Each function has its own EEPROM. If SE automatic control is enabled * for the function, then set the termination value based on a table * listed in adwlib.h. * * If manual termination is specified in the EEPROM for the function, * then 'termination' was set-up in AdwInitFromEEPROM() and is * ready to be 'ored' into SCSI_CFG1. */ if ((cfg->termination & ADW_TERM_SE) == 0) { /* SE automatic termination control is enabled. */ switch(scsi_cfg1 & ADW_C_DET_SE) { /* TERM_SE_HI: on, TERM_SE_LO: on */ case 0x1: case 0x2: case 0x3: cfg->termination |= ADW_TERM_SE; break; case 0x0: #if 0 /* !!!!TODO!!!! */ if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) { /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ } else #endif { /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ cfg->termination |= ADW_TERM_SE_HI; } break; } } /* * Clear any set TERM_SE bits. */ scsi_cfg1 &= ~ADW_TERM_SE; /* * Invert the TERM_SE bits and then set 'scsi_cfg1'. */ scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE); /* * Clear Big Endian and Terminator Polarity bits and set possibly * modified termination control bits in the Microcode SCSI_CFG1 * Register Value. */ scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL); /* * Set SCSI_CFG1 Microcode Default Value * * Set possibly modified termination control bits in the Microcode * SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); /* * Set MEM_CFG Microcode Default Value * * The microcode will set the MEM_CFG register using this value * after it is started below. * * MEM_CFG may be accessed as a word or byte, but only bits 0-7 * are defined. * * ASC-38C1600 has 32KB internal memory. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG, ADW_BIOS_EN | ADW_RAM_SZ_32KB); return 0; } /* * Read EEPROM configuration into the specified buffer. * * Return a checksum based on the EEPROM configuration read. */ static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf) { u_int16_t wval, chksum; u_int16_t *wbuf; int eep_addr; wbuf = (u_int16_t *) cfg_buf; chksum = 0; for (eep_addr = ASC_EEP_DVC_CFG_BEGIN; eep_addr < ASC_EEP_DVC_CFG_END; eep_addr++, wbuf++) { wval = AdwReadEEPWord(iot, ioh, eep_addr); chksum += wval; *wbuf = wval; } *wbuf = AdwReadEEPWord(iot, ioh, eep_addr); wbuf++; for (eep_addr = ASC_EEP_DVC_CTL_BEGIN; eep_addr < ASC_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { *wbuf = AdwReadEEPWord(iot, ioh, eep_addr); } return chksum; } /* * Read the EEPROM from specified location */ static u_int16_t AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr) { ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_READ | eep_word_addr); AdwWaitEEPCmd(iot, ioh); return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA); } /* * Wait for EEPROM command to complete */ static void AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh) { int eep_delay_ms; for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){ if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) { break; } AdwSleepMilliSecond(1); } (void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD); } /* * Write the EEPROM from 'cfg_buf'. */ static void AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf) { u_int16_t *wbuf; u_int16_t addr, chksum; wbuf = (u_int16_t *) cfg_buf; chksum = 0; ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); AdwWaitEEPCmd(iot, ioh); /* * Write EEPROM from word 0 to word 20 */ for (addr = ASC_EEP_DVC_CFG_BEGIN; addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) { chksum += *wbuf; ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdwWaitEEPCmd(iot, ioh); AdwSleepMilliSecond(ASC_EEP_DELAY_MS); } /* * Write EEPROM checksum at word 21 */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdwWaitEEPCmd(iot, ioh); wbuf++; /* skip over check_sum */ /* * Write EEPROM OEM name at words 22 to 29 */ for (addr = ASC_EEP_DVC_CTL_BEGIN; addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) { ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdwWaitEEPCmd(iot, ioh); } ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); AdwWaitEEPCmd(iot, ioh); return; } /* * AdwExeScsiQueue() - Send a request to the RISC microcode program. * * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q, * add the carrier to the ICQ (Initiator Command Queue), and tickle the * RISC to notify it a new command is ready to be executed. * * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be * set to SCSI_MAX_RETRY. * * Return: * ADW_SUCCESS(1) - The request was successfully queued. * ADW_BUSY(0) - Resource unavailable; Retry again after pending * request completes. * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure * host IC error. */ int AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; ADW_CCB *ccb; u_int32_t req_paddr; ADW_CARRIER *new_carrp; /* * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID. */ if (scsiq->target_id > ADW_MAX_TID) { scsiq->host_status = QHSTA_M_INVALID_DEVICE; scsiq->done_status = QD_WITH_ERROR; return ADW_ERROR; } /* * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair */ ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr); /* * Allocate a carrier and initialize fields. */ if ((new_carrp = sc->carr_freelist) == NULL) { return ADW_BUSY; } sc->carr_freelist = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(new_carrp->next_ba)); sc->carr_pending_cnt++; /* * Set the carrier to be a stopper by setting 'next_ba' * to the stopper value. The current stopper will be changed * below to point to the new stopper. */ new_carrp->next_ba = htole32(ASC_CQ_STOPPER); req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr + ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq); /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */ scsiq->scsiq_rptr = htole32(req_paddr); /* * Every ADV_CARR_T.carr_ba is byte swapped to little-endian * order during initialization. */ scsiq->carr_ba = sc->icq_sp->carr_ba; scsiq->carr_va = sc->icq_sp->carr_ba; /* * Use the current stopper to send the ADW_SCSI_REQ_Q command to * the microcode. The newly allocated stopper will become the new * stopper. */ sc->icq_sp->areq_ba = htole32(req_paddr); /* * Set the 'next_ba' pointer for the old stopper to be the * physical address of the new stopper. The RISC can only * follow physical addresses. */ sc->icq_sp->next_ba = new_carrp->carr_ba; #if ADW_DEBUG printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n", sc->icq_sp->carr_id, sc->icq_sp->carr_ba, sc->icq_sp->areq_ba, sc->icq_sp->next_ba); #endif /* * Set the host adapter stopper pointer to point to the new carrier. */ sc->icq_sp = new_carrp; if (sc->chip_type == ADW_CHIP_ASC3550 || sc->chip_type == ADW_CHIP_ASC38C0800) { /* * Tickle the RISC to tell it to read its Command Queue Head * pointer. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A); if (sc->chip_type == ADW_CHIP_ASC3550) { /* * Clear the tickle value. In the ASC-3550 the RISC flag * command 'clr_tickle_a' does not work unless the host * value is cleared. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP); } } else if (sc->chip_type == ADW_CHIP_ASC38C1600) { /* * Notify the RISC a carrier is ready by writing the physical * address of the new carrier stopper to the COMMA register. */ ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, le32toh(new_carrp->carr_ba)); } /* * End of CRITICAL SECTION: Must be protected within splbio/splx pair */ return ADW_SUCCESS; } void AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh) { /* * Reset Chip. */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG, ADW_CTRL_REG_CMD_RESET); AdwSleepMilliSecond(100); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG); } /* * Reset SCSI Bus and purge all outstanding requests. * * Return Value: * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset. * ADW_FALSE(0) - Microcode command failed. * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC * may be hung which requires driver recovery. */ int AdwResetCCB(ADW_SOFTC *sc) { int status; /* * Send the SCSI Bus Reset idle start idle command which asserts * the SCSI Bus Reset signal. */ status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L); if (status != ADW_TRUE) { return status; } /* * Delay for the specified SCSI Bus Reset hold time. * * The hold time delay is done on the host because the RISC has no * microsecond accurate timer. */ AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US); /* * Send the SCSI Bus Reset end idle command which de-asserts * the SCSI Bus Reset signal and purges any pending requests. */ status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L); if (status != ADW_TRUE) { return status; } AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000); return status; } /* * Reset chip and SCSI Bus. * * Return Value: * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. */ int AdwResetSCSIBus(ADW_SOFTC *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int status; u_int16_t wdtr_able, sdtr_able, tagqng_able; u_int16_t ppr_able = 0; /* XXX: gcc */ u_int8_t tid, max_cmd[ADW_MAX_TID + 1]; u_int16_t bios_sig; /* * Save current per TID negotiated values. */ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able); ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able); if (sc->chip_type == ADW_CHIP_ASC38C1600) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); } ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADW_MAX_TID; tid++) { ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } /* * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset * by clearing the BIOS signature word. * The initialization functions assumes a SCSI Bus Reset is not * needed if the BIOS signature word is present. */ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0); /* * Stop chip and reset it. */ ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG, ADW_CTRL_REG_CMD_RESET); AdwSleepMilliSecond(100); ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG); /* * Reset Adv Library error code, if any, and try * re-initializing the chip. * Then translate initialization return value to status value. */ status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE; /* * Restore the BIOS signature word. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig); /* * Restore per TID negotiated values. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able); if (sc->chip_type == ADW_CHIP_ASC38C1600) { ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); } ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADW_MAX_TID; tid++) { ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } return status; } /* * Adv Library Interrupt Service Routine * * This function is called by a driver's interrupt service routine. * The function disables and re-enables interrupts. * * When a microcode idle command is completed, the ADV_DVC_VAR * 'idle_cmd_done' field is set to ADW_TRUE. * * Note: AdwISR() can be called when interrupts are disabled or even * when there is no hardware interrupt condition present. It will * always check for completed idle commands and microcode requests. * This is an important feature that shouldn't be changed because it * allows commands to be completed from polling mode loops. * * Return: * ADW_TRUE(1) - interrupt was pending * ADW_FALSE(0) - no interrupt was pending */ int AdwISR(ADW_SOFTC *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int8_t int_stat; ADW_CARRIER *free_carrp/*, *ccb_carr*/; u_int32_t irq_next_pa; ADW_SCSI_REQ_Q *scsiq; ADW_CCB *ccb; int s; s = splbio(); /* Reading the register clears the interrupt. */ int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG); if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB | ADW_INTR_STATUS_INTRC)) == 0) { splx(s); return ADW_FALSE; } /* * Notify the driver of an asynchronous microcode condition by * calling the ADV_DVC_VAR.async_callback function. The function * is passed the microcode ADW_MC_INTRB_CODE byte value. */ if (int_stat & ADW_INTR_STATUS_INTRB) { u_int8_t intrb_code; ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code); if (sc->chip_type == ADW_CHIP_ASC3550 || sc->chip_type == ADW_CHIP_ASC38C0800) { if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && sc->carr_pending_cnt != 0) { ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A); if (sc->chip_type == ADW_CHIP_ASC3550) { ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP); } } } if (sc->async_callback != 0) { (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code); } } /* * Check if the IRQ stopper carrier contains a completed request. */ while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0) { #if ADW_DEBUG printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n", sc->irq_sp->carr_id, sc->irq_sp->carr_ba, sc->irq_sp->areq_ba, sc->irq_sp->next_ba); #endif /* * Get a pointer to the newly completed ADW_SCSI_REQ_Q * structure. * The RISC will have set 'areq_ba' to a virtual address. * * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr * field to the carrier ADV_CARR_T.areq_ba field. * The conversion below complements the conversion of * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue(). */ ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba); scsiq = &ccb->scsiq; scsiq->ccb_ptr = sc->irq_sp->areq_ba; /* * Request finished with good status and the queue was not * DMAed to host memory by the firmware. Set all status fields * to indicate good status. */ if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) { scsiq->done_status = QD_NO_ERROR; scsiq->host_status = scsiq->scsi_status = 0; scsiq->data_cnt = 0L; } /* * Advance the stopper pointer to the next carrier * ignoring the lower four bits. Free the previous * stopper carrier. */ free_carrp = sc->irq_sp; sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa)); free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0 : sc->carr_freelist->carr_ba; sc->carr_freelist = free_carrp; sc->carr_pending_cnt--; /* * Clear request microcode control flag. */ scsiq->cntl = 0; /* * Check Condition handling */ /* * If the command that completed was a SCSI INQUIRY and * LUN 0 was sent the command, then process the INQUIRY * command information for the device. */ if (scsiq->done_status == QD_NO_ERROR && scsiq->cdb[0] == INQUIRY && scsiq->target_lun == 0) { AdwInquiryHandling(sc, scsiq); } /* * Notify the driver of the completed request by passing * the ADW_SCSI_REQ_Q pointer to its callback function. */ (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq); /* * Note: After the driver callback function is called, 'scsiq' * can no longer be referenced. * * Fall through and continue processing other completed * requests... */ } splx(s); return ADW_TRUE; } /* * Send an idle command to the chip and wait for completion. * * Command completion is polled for once per microsecond. * * The function can be called from anywhere including an interrupt handler. * But the function is not re-entrant, so it uses the splbio/splx() * functions to prevent reentrancy. * * Return Values: * ADW_TRUE - command completed successfully * ADW_FALSE - command failed * ADW_ERROR - command timed out */ int AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int16_t result; u_int32_t i, j, s; s = splbio(); /* * Clear the idle command status which is set by the microcode * to a non-zero value to indicate when the command is completed. */ ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0); /* * Write the idle command value after the idle command parameter * has been written to avoid a race condition. If the order is not * followed, the microcode may process the idle command before the * parameters have been written to LRAM. */ ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER, idle_cmd_parameter); ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd); /* * Tickle the RISC to tell it to process the idle command. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B); if (sc->chip_type == ADW_CHIP_ASC3550) { /* * Clear the tickle value. In the ASC-3550 the RISC flag * command 'clr_tickle_b' does not work unless the host * value is cleared. */ ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP); } /* Wait for up to 100 millisecond for the idle command to timeout. */ for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { /* Poll once each microsecond for command completion. */ for (j = 0; j < SCSI_US_PER_MSEC; j++) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, result); if (result != 0) { splx(s); return result; } AdwDelayMicroSecond(1); } } splx(s); return ADW_ERROR; } /* * Inquiry Information Byte 7 Handling * * Handle SCSI Inquiry Command information for a device by setting * microcode operating variables that affect WDTR, SDTR, and Tag * Queuing. */ static void AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq) { #ifndef FAILSAFE bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_int8_t tid; struct scsipi_inquiry_data *inq; u_int16_t tidmask; u_int16_t cfg_word; /* * AdwInquiryHandling() requires up to INQUIRY information Byte 7 * to be available. * * If less than 8 bytes of INQUIRY information were requested or less * than 8 bytes were transferred, then return. cdb[4] is the request * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the * microcode to the transfer residual count. */ if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) { return; } tid = scsiq->target_id; inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr; /* * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices. */ if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ && ((inq->version & SID_ANSII) < 2)) { return; } else { /* * INQUIRY Byte 7 Handling * * Use a device's INQUIRY byte 7 to determine whether it * supports WDTR, SDTR, and Tag Queuing. If the feature * is enabled in the EEPROM and the device supports the * feature, then enable it in the microcode. */ tidmask = ADW_TID_TO_TIDMASK(tid); /* * Wide Transfers * * If the EEPROM enabled WDTR for the device and the device * supports wide bus (16 bit) transfers, then turn on the * device's 'wdtr_able' bit and write the new value to the * microcode. */ #ifdef SCSI_ADW_WDTR_DISABLE if(!(tidmask & SCSI_ADW_WDTR_DISABLE)) #endif /* SCSI_ADW_WDTR_DISABLE */ if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, cfg_word); if ((cfg_word & tidmask) == 0) { cfg_word |= tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, cfg_word); /* * Clear the microcode "SDTR negotiation" and * "WDTR negotiation" done indicators for the * target to cause it to negotiate with the new * setting set above. * WDTR when accepted causes the target to enter * asynchronous mode, so SDTR must be negotiated */ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE, cfg_word); cfg_word &= ~tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE, cfg_word); ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE, cfg_word); cfg_word &= ~tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE, cfg_word); } } /* * Synchronous Transfers * * If the EEPROM enabled SDTR for the device and the device * supports synchronous transfers, then turn on the device's * 'sdtr_able' bit. Write the new value to the microcode. */ #ifdef SCSI_ADW_SDTR_DISABLE if(!(tidmask & SCSI_ADW_SDTR_DISABLE)) #endif /* SCSI_ADW_SDTR_DISABLE */ if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word); if ((cfg_word & tidmask) == 0) { cfg_word |= tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, cfg_word); /* * Clear the microcode "SDTR negotiation" * done indicator for the target to cause it * to negotiate with the new setting set above. */ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE, cfg_word); cfg_word &= ~tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE, cfg_word); } } /* * If the Inquiry data included enough space for the SPI-3 * Clocking field, then check if DT mode is supported. */ if (sc->chip_type == ADW_CHIP_ASC38C1600 && (scsiq->cdb[4] >= 57 || (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) { /* * PPR (Parallel Protocol Request) Capable * * If the device supports DT mode, then it must be * PPR capable. * The PPR message will be used in place of the SDTR * and WDTR messages to negotiate synchronous speed * and offset, transfer width, and protocol options. */ if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){ ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, sc->ppr_able); sc->ppr_able |= tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, sc->ppr_able); } } /* * If the EEPROM enabled Tag Queuing for the device and the * device supports Tag Queueing, then turn on the device's * 'tagqng_enable' bit in the microcode and set the microcode * maximum command count to the ADV_DVC_VAR 'max_dvc_qng' * value. * * Tag Queuing is disabled for the BIOS which runs in polled * mode and would see no benefit from Tag Queuing. Also by * disabling Tag Queuing in the BIOS devices with Tag Queuing * bugs will at least work with the BIOS. */ #ifdef SCSI_ADW_TAGQ_DISABLE if(!(tidmask & SCSI_ADW_TAGQ_DISABLE)) #endif /* SCSI_ADW_TAGQ_DISABLE */ if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) { ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, cfg_word); cfg_word |= tidmask; ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, cfg_word); ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid, sc->max_dvc_qng); } } #endif /* FAILSAFE */ } static void AdwSleepMilliSecond(u_int32_t n) { DELAY(n * 1000); } static void AdwDelayMicroSecond(u_int32_t n) { DELAY(n); }