/* mpfr_cosh -- hyperbolic cosine Copyright 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of cosh is done by * * cosh= 1/2[e^(x)+e^(-x)] */ int mpfr_cosh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode) { mpfr_t x; int inexact; MPFR_SAVE_EXPO_DECL (expo); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode), ("y[%#R]=%R inexact=%d", y, y, inexact)); if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(xt))) { if (MPFR_IS_NAN(xt)) { MPFR_SET_NAN(y); MPFR_RET_NAN; } else if (MPFR_IS_INF(xt)) { MPFR_SET_INF(y); MPFR_SET_POS(y); MPFR_RET(0); } else { MPFR_ASSERTD(MPFR_IS_ZERO(xt)); return mpfr_set_ui (y, 1, rnd_mode); /* cosh(0) = 1 */ } } MPFR_SAVE_EXPO_MARK (expo); /* cosh(x) = 1+x^2/2 + ... <= 1+x^2 for x <= 2.9828..., thus the error < 2^(2*EXP(x)). If x >= 1, then EXP(x) >= 1, thus the following will always fail. */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, -2 * MPFR_GET_EXP (xt), 0, 1, rnd_mode, inexact = _inexact; goto end); MPFR_TMP_INIT_ABS(x, xt); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, te; /* Declaration of the size variable */ mpfr_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */ mpfr_prec_t Nt; /* Precision of the intermediary variable */ long int err; /* Precision of error */ MPFR_ZIV_DECL (loop); MPFR_GROUP_DECL (group); /* compute the precision of intermediary variable */ /* The optimal number of bits : see algorithms.tex */ Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny); /* initialise of intermediary variables */ MPFR_GROUP_INIT_2 (group, Nt, t, te); /* First computation of cosh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { MPFR_BLOCK_DECL (flags); /* Compute cosh */ MPFR_BLOCK (flags, mpfr_exp (te, x, MPFR_RNDD)); /* exp(x) */ /* exp can overflow (but not underflow since x>0) */ if (MPFR_OVERFLOW (flags)) /* cosh(x) > exp(x), cosh(x) underflows too */ { inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN_POS); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW); break; } mpfr_ui_div (t, 1, te, MPFR_RNDU); /* 1/exp(x) */ mpfr_add (t, te, t, MPFR_RNDU); /* exp(x) + 1/exp(x)*/ mpfr_div_2ui (t, t, 1, MPFR_RNDN); /* 1/2(exp(x) + 1/exp(x))*/ /* Estimation of the error */ err = Nt - 3; /* Check if we can round */ if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) { inexact = mpfr_set (y, t, rnd_mode); break; } /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); MPFR_GROUP_REPREC_2 (group, Nt, t, te); } MPFR_ZIV_FREE (loop); MPFR_GROUP_CLEAR (group); } end: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }