/* $NetBSD: ip_flow.c,v 1.58 2009/03/15 22:16:09 cegger Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by the 3am Software Foundry ("3am"). It was developed by Matt Thomas. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ip_flow.c,v 1.58 2009/03/15 22:16:09 cegger Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Similar code is very well commented in netinet6/ip6_flow.c */ struct ipflow { LIST_ENTRY(ipflow) ipf_list; /* next in active list */ LIST_ENTRY(ipflow) ipf_hash; /* next ipflow in bucket */ struct in_addr ipf_dst; /* destination address */ struct in_addr ipf_src; /* source address */ uint8_t ipf_tos; /* type-of-service */ struct route ipf_ro; /* associated route entry */ u_long ipf_uses; /* number of uses in this period */ u_long ipf_last_uses; /* number of uses in last period */ u_long ipf_dropped; /* ENOBUFS retured by if_output */ u_long ipf_errors; /* other errors returned by if_output */ u_int ipf_timer; /* lifetime timer */ time_t ipf_start; /* creation time */ }; #define IPFLOW_HASHBITS 6 /* should not be a multiple of 8 */ static struct pool ipflow_pool; LIST_HEAD(ipflowhead, ipflow); #define IPFLOW_TIMER (5 * PR_SLOWHZ) #define IPFLOW_DEFAULT_HASHSIZE (1 << IPFLOW_HASHBITS) static struct ipflowhead *ipflowtable = NULL; static struct ipflowhead ipflowlist; static int ipflow_inuse; #define IPFLOW_INSERT(bucket, ipf) \ do { \ LIST_INSERT_HEAD((bucket), (ipf), ipf_hash); \ LIST_INSERT_HEAD(&ipflowlist, (ipf), ipf_list); \ } while (/*CONSTCOND*/ 0) #define IPFLOW_REMOVE(ipf) \ do { \ LIST_REMOVE((ipf), ipf_hash); \ LIST_REMOVE((ipf), ipf_list); \ } while (/*CONSTCOND*/ 0) #ifndef IPFLOW_MAX #define IPFLOW_MAX 256 #endif int ip_maxflows = IPFLOW_MAX; int ip_hashsize = IPFLOW_DEFAULT_HASHSIZE; static size_t ipflow_hash(const struct ip *ip) { size_t hash = ip->ip_tos; size_t idx; for (idx = 0; idx < 32; idx += IPFLOW_HASHBITS) { hash += (ip->ip_dst.s_addr >> (32 - idx)) + (ip->ip_src.s_addr >> idx); } return hash & (ip_hashsize-1); } static struct ipflow * ipflow_lookup(const struct ip *ip) { size_t hash; struct ipflow *ipf; hash = ipflow_hash(ip); LIST_FOREACH(ipf, &ipflowtable[hash], ipf_hash) { if (ip->ip_dst.s_addr == ipf->ipf_dst.s_addr && ip->ip_src.s_addr == ipf->ipf_src.s_addr && ip->ip_tos == ipf->ipf_tos) break; } return ipf; } void ipflow_poolinit(void) { pool_init(&ipflow_pool, sizeof(struct ipflow), 0, 0, 0, "ipflowpl", NULL, IPL_NET); } int ipflow_init(int table_size) { struct ipflowhead *new_table; size_t i; new_table = (struct ipflowhead *)malloc(sizeof(struct ipflowhead) * table_size, M_RTABLE, M_NOWAIT); if (new_table == NULL) return 1; if (ipflowtable != NULL) free(ipflowtable, M_RTABLE); ipflowtable = new_table; ip_hashsize = table_size; LIST_INIT(&ipflowlist); for (i = 0; i < ip_hashsize; i++) LIST_INIT(&ipflowtable[i]); return 0; } int ipflow_fastforward(struct mbuf *m) { struct ip *ip; struct ip ip_store; struct ipflow *ipf; struct rtentry *rt; const struct sockaddr *dst; int error; int iplen; /* * Are we forwarding packets? Big enough for an IP packet? */ if (!ipforwarding || ipflow_inuse == 0 || m->m_len < sizeof(struct ip)) return 0; /* * Was packet received as a link-level multicast or broadcast? * If so, don't try to fast forward.. */ if ((m->m_flags & (M_BCAST|M_MCAST)) != 0) return 0; /* * IP header with no option and valid version and length */ if (IP_HDR_ALIGNED_P(mtod(m, const void *))) ip = mtod(m, struct ip *); else { memcpy(&ip_store, mtod(m, const void *), sizeof(ip_store)); ip = &ip_store; } iplen = ntohs(ip->ip_len); if (ip->ip_v != IPVERSION || ip->ip_hl != (sizeof(struct ip) >> 2) || iplen < sizeof(struct ip) || iplen > m->m_pkthdr.len) return 0; /* * Find a flow. */ if ((ipf = ipflow_lookup(ip)) == NULL) return 0; /* * Verify the IP header checksum. */ switch (m->m_pkthdr.csum_flags & ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) | M_CSUM_IPv4_BAD)) { case M_CSUM_IPv4|M_CSUM_IPv4_BAD: return (0); case M_CSUM_IPv4: /* Checksum was okay. */ break; default: /* Must compute it ourselves. */ if (in_cksum(m, sizeof(struct ip)) != 0) return (0); break; } /* * Route and interface still up? */ if ((rt = rtcache_validate(&ipf->ipf_ro)) == NULL || (rt->rt_ifp->if_flags & IFF_UP) == 0) return 0; /* * Packet size OK? TTL? */ if (m->m_pkthdr.len > rt->rt_ifp->if_mtu || ip->ip_ttl <= IPTTLDEC) return 0; /* * Clear any in-bound checksum flags for this packet. */ m->m_pkthdr.csum_flags = 0; /* * Everything checks out and so we can forward this packet. * Modify the TTL and incrementally change the checksum. * * This method of adding the checksum works on either endian CPU. * If htons() is inlined, all the arithmetic is folded; otherwise * the htons()s are combined by CSE due to the const attribute. * * Don't bother using HW checksumming here -- the incremental * update is pretty fast. */ ip->ip_ttl -= IPTTLDEC; if (ip->ip_sum >= (u_int16_t) ~htons(IPTTLDEC << 8)) ip->ip_sum -= ~htons(IPTTLDEC << 8); else ip->ip_sum += htons(IPTTLDEC << 8); /* * Done modifying the header; copy it back, if necessary. * * XXX Use m_copyback_cow(9) here? --dyoung */ if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) memcpy(mtod(m, void *), &ip_store, sizeof(ip_store)); /* * Trim the packet in case it's too long.. */ if (m->m_pkthdr.len > iplen) { if (m->m_len == m->m_pkthdr.len) { m->m_len = iplen; m->m_pkthdr.len = iplen; } else m_adj(m, iplen - m->m_pkthdr.len); } /* * Send the packet on it's way. All we can get back is ENOBUFS */ ipf->ipf_uses++; PRT_SLOW_ARM(ipf->ipf_timer, IPFLOW_TIMER); if (rt->rt_flags & RTF_GATEWAY) dst = rt->rt_gateway; else dst = rtcache_getdst(&ipf->ipf_ro); if ((error = (*rt->rt_ifp->if_output)(rt->rt_ifp, m, dst, rt)) != 0) { if (error == ENOBUFS) ipf->ipf_dropped++; else ipf->ipf_errors++; } return 1; } static void ipflow_addstats(struct ipflow *ipf) { struct rtentry *rt; uint64_t *ips; if ((rt = rtcache_validate(&ipf->ipf_ro)) != NULL) rt->rt_use += ipf->ipf_uses; ips = IP_STAT_GETREF(); ips[IP_STAT_CANTFORWARD] += ipf->ipf_errors + ipf->ipf_dropped; ips[IP_STAT_TOTAL] += ipf->ipf_uses; ips[IP_STAT_FORWARD] += ipf->ipf_uses; ips[IP_STAT_FASTFORWARD] += ipf->ipf_uses; IP_STAT_PUTREF(); } static void ipflow_free(struct ipflow *ipf) { int s; /* * Remove the flow from the hash table (at elevated IPL). * Once it's off the list, we can deal with it at normal * network IPL. */ s = splnet(); IPFLOW_REMOVE(ipf); splx(s); ipflow_addstats(ipf); rtcache_free(&ipf->ipf_ro); ipflow_inuse--; s = splnet(); pool_put(&ipflow_pool, ipf); splx(s); } static struct ipflow * ipflow_reap(bool just_one) { while (just_one || ipflow_inuse > ip_maxflows) { struct ipflow *ipf, *maybe_ipf = NULL; int s; ipf = LIST_FIRST(&ipflowlist); while (ipf != NULL) { /* * If this no longer points to a valid route * reclaim it. */ if (rtcache_validate(&ipf->ipf_ro) == NULL) goto done; /* * choose the one that's been least recently * used or has had the least uses in the * last 1.5 intervals. */ if (maybe_ipf == NULL || ipf->ipf_timer < maybe_ipf->ipf_timer || (ipf->ipf_timer == maybe_ipf->ipf_timer && ipf->ipf_last_uses + ipf->ipf_uses < maybe_ipf->ipf_last_uses + maybe_ipf->ipf_uses)) maybe_ipf = ipf; ipf = LIST_NEXT(ipf, ipf_list); } ipf = maybe_ipf; done: /* * Remove the entry from the flow table. */ s = splnet(); IPFLOW_REMOVE(ipf); splx(s); ipflow_addstats(ipf); rtcache_free(&ipf->ipf_ro); if (just_one) return ipf; pool_put(&ipflow_pool, ipf); ipflow_inuse--; } return NULL; } void ipflow_prune(void) { (void) ipflow_reap(false); } void ipflow_slowtimo(void) { struct rtentry *rt; struct ipflow *ipf, *next_ipf; uint64_t *ips; mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); for (ipf = LIST_FIRST(&ipflowlist); ipf != NULL; ipf = next_ipf) { next_ipf = LIST_NEXT(ipf, ipf_list); if (PRT_SLOW_ISEXPIRED(ipf->ipf_timer) || (rt = rtcache_validate(&ipf->ipf_ro)) == NULL) { ipflow_free(ipf); } else { ipf->ipf_last_uses = ipf->ipf_uses; rt->rt_use += ipf->ipf_uses; ips = IP_STAT_GETREF(); ips[IP_STAT_TOTAL] += ipf->ipf_uses; ips[IP_STAT_FORWARD] += ipf->ipf_uses; ips[IP_STAT_FASTFORWARD] += ipf->ipf_uses; IP_STAT_PUTREF(); ipf->ipf_uses = 0; } } KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } void ipflow_create(const struct route *ro, struct mbuf *m) { const struct ip *const ip = mtod(m, const struct ip *); struct ipflow *ipf; size_t hash; int s; /* * Don't create cache entries for ICMP messages. */ if (ip_maxflows == 0 || ip->ip_p == IPPROTO_ICMP) return; /* * See if an existing flow struct exists. If so remove it from it's * list and free the old route. If not, try to malloc a new one * (if we aren't at our limit). */ ipf = ipflow_lookup(ip); if (ipf == NULL) { if (ipflow_inuse >= ip_maxflows) { ipf = ipflow_reap(true); } else { s = splnet(); ipf = pool_get(&ipflow_pool, PR_NOWAIT); splx(s); if (ipf == NULL) return; ipflow_inuse++; } memset(ipf, 0, sizeof(*ipf)); } else { s = splnet(); IPFLOW_REMOVE(ipf); splx(s); ipflow_addstats(ipf); rtcache_free(&ipf->ipf_ro); ipf->ipf_uses = ipf->ipf_last_uses = 0; ipf->ipf_errors = ipf->ipf_dropped = 0; } /* * Fill in the updated information. */ rtcache_copy(&ipf->ipf_ro, ro); ipf->ipf_dst = ip->ip_dst; ipf->ipf_src = ip->ip_src; ipf->ipf_tos = ip->ip_tos; PRT_SLOW_ARM(ipf->ipf_timer, IPFLOW_TIMER); ipf->ipf_start = time_uptime; /* * Insert into the approriate bucket of the flow table. */ hash = ipflow_hash(ip); s = splnet(); IPFLOW_INSERT(&ipflowtable[hash], ipf); splx(s); } int ipflow_invalidate_all(int new_size) { struct ipflow *ipf, *next_ipf; int s, error; error = 0; s = splnet(); for (ipf = LIST_FIRST(&ipflowlist); ipf != NULL; ipf = next_ipf) { next_ipf = LIST_NEXT(ipf, ipf_list); ipflow_free(ipf); } if (new_size) error = ipflow_init(new_size); splx(s); return error; }