/* $NetBSD: nd6.c,v 1.188 2016/04/04 07:37:07 ozaki-r Exp $ */ /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.188 2016/04/04 07:37:07 ozaki-r Exp $"); #ifdef _KERNEL_OPT #include "opt_net_mpsafe.h" #endif #include "bridge.h" #include "carp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ /* timer values */ int nd6_prune = 1; /* walk list every 1 seconds */ int nd6_delay = 5; /* delay first probe time 5 second */ int nd6_umaxtries = 3; /* maximum unicast query */ int nd6_mmaxtries = 3; /* maximum multicast query */ int nd6_useloopback = 1; /* use loopback interface for local traffic */ int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ /* preventing too many loops in ND option parsing */ int nd6_maxndopt = 10; /* max # of ND options allowed */ int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ #ifdef ND6_DEBUG int nd6_debug = 1; #else int nd6_debug = 0; #endif struct nd_drhead nd_defrouter; struct nd_prhead nd_prefix = { 0 }; int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; static const struct sockaddr_in6 all1_sa = { .sin6_family = AF_INET6 , .sin6_len = sizeof(struct sockaddr_in6) , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}} }; static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); static void nd6_slowtimo(void *); static int regen_tmpaddr(struct in6_ifaddr *); static void nd6_free(struct llentry *, int); static void nd6_llinfo_timer(void *); static void nd6_timer(void *); static void clear_llinfo_pqueue(struct llentry *); static callout_t nd6_slowtimo_ch; static callout_t nd6_timer_ch; static int fill_drlist(void *, size_t *, size_t); static int fill_prlist(void *, size_t *, size_t); MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); void nd6_init(void) { /* initialization of the default router list */ TAILQ_INIT(&nd_defrouter); callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); /* start timer */ callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, NULL); callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL); } struct nd_ifinfo * nd6_ifattach(struct ifnet *ifp) { struct nd_ifinfo *nd; nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); nd->initialized = 1; nd->chlim = IPV6_DEFHLIM; nd->basereachable = REACHABLE_TIME; nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); nd->retrans = RETRANS_TIMER; nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL * because one of its members should. */ if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || (ifp->if_flags & IFF_LOOPBACK)) nd->flags |= ND6_IFF_AUTO_LINKLOCAL; /* A loopback interface does not need to accept RTADV. * A bridge interface should not accept RTADV * because one of its members should. */ if (ip6_accept_rtadv && !(ifp->if_flags & IFF_LOOPBACK) && !(ifp->if_type != IFT_BRIDGE)) nd->flags |= ND6_IFF_ACCEPT_RTADV; /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ nd6_setmtu0(ifp, nd); return nd; } void nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext) { nd6_purge(ifp, ext); free(ext->nd_ifinfo, M_IP6NDP); } void nd6_setmtu(struct ifnet *ifp) { nd6_setmtu0(ifp, ND_IFINFO(ifp)); } void nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) { u_int32_t omaxmtu; omaxmtu = ndi->maxmtu; switch (ifp->if_type) { case IFT_ARCNET: ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ break; case IFT_FDDI: ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); break; default: ndi->maxmtu = ifp->if_mtu; break; } /* * Decreasing the interface MTU under IPV6 minimum MTU may cause * undesirable situation. We thus notify the operator of the change * explicitly. The check for omaxmtu is necessary to restrict the * log to the case of changing the MTU, not initializing it. */ if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" " small for IPv6 which needs %lu\n", if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) IPV6_MMTU); } if (ndi->maxmtu > in6_maxmtu) in6_setmaxmtu(); /* check all interfaces just in case */ } void nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) { memset(ndopts, 0, sizeof(*ndopts)); ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; ndopts->nd_opts_last = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); if (icmp6len == 0) { ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } } /* * Take one ND option. */ struct nd_opt_hdr * nd6_option(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int olen; KASSERT(ndopts != NULL); KASSERT(ndopts->nd_opts_last != NULL); if (ndopts->nd_opts_search == NULL) return NULL; if (ndopts->nd_opts_done) return NULL; nd_opt = ndopts->nd_opts_search; /* make sure nd_opt_len is inside the buffer */ if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { memset(ndopts, 0, sizeof(*ndopts)); return NULL; } olen = nd_opt->nd_opt_len << 3; if (olen == 0) { /* * Message validation requires that all included * options have a length that is greater than zero. */ memset(ndopts, 0, sizeof(*ndopts)); return NULL; } ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); if (ndopts->nd_opts_search > ndopts->nd_opts_last) { /* option overruns the end of buffer, invalid */ memset(ndopts, 0, sizeof(*ndopts)); return NULL; } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { /* reached the end of options chain */ ndopts->nd_opts_done = 1; ndopts->nd_opts_search = NULL; } return nd_opt; } /* * Parse multiple ND options. * This function is much easier to use, for ND routines that do not need * multiple options of the same type. */ int nd6_options(union nd_opts *ndopts) { struct nd_opt_hdr *nd_opt; int i = 0; KASSERT(ndopts != NULL); KASSERT(ndopts->nd_opts_last != NULL); if (ndopts->nd_opts_search == NULL) return 0; while (1) { nd_opt = nd6_option(ndopts); if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { /* * Message validation requires that all included * options have a length that is greater than zero. */ ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); memset(ndopts, 0, sizeof(*ndopts)); return -1; } if (nd_opt == NULL) goto skip1; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LINKADDR: case ND_OPT_TARGET_LINKADDR: case ND_OPT_MTU: case ND_OPT_REDIRECTED_HEADER: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { nd6log(LOG_INFO, "duplicated ND6 option found (type=%d)\n", nd_opt->nd_opt_type); /* XXX bark? */ } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFORMATION: if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } ndopts->nd_opts_pi_end = (struct nd_opt_prefix_info *)nd_opt; break; default: /* * Unknown options must be silently ignored, * to accommodate future extension to the protocol. */ nd6log(LOG_DEBUG, "nd6_options: unsupported option %d - " "option ignored\n", nd_opt->nd_opt_type); } skip1: i++; if (i > nd6_maxndopt) { ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); nd6log(LOG_INFO, "too many loop in nd opt\n"); break; } if (ndopts->nd_opts_done) break; } return 0; } /* * ND6 timer routine to handle ND6 entries */ void nd6_llinfo_settimer(struct llentry *ln, time_t xtick) { CTASSERT(sizeof(time_t) > sizeof(int)); LLE_WLOCK_ASSERT(ln); if (xtick < 0) { ln->ln_expire = 0; ln->ln_ntick = 0; callout_halt(&ln->ln_timer_ch, &ln->lle_lock); } else { ln->ln_expire = time_uptime + xtick / hz; LLE_ADDREF(ln); if (xtick > INT_MAX) { ln->ln_ntick = xtick - INT_MAX; callout_reset(&ln->ln_timer_ch, INT_MAX, nd6_llinfo_timer, ln); } else { ln->ln_ntick = 0; callout_reset(&ln->ln_timer_ch, xtick, nd6_llinfo_timer, ln); } } } /* * Gets source address of the first packet in hold queue * and stores it in @src. * Returns pointer to @src (if hold queue is not empty) or NULL. */ static struct in6_addr * nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) { struct ip6_hdr *hip6; if (ln == NULL || ln->ln_hold == NULL) return NULL; /* * assuming every packet in ln_hold has the same IP header */ hip6 = mtod(ln->ln_hold, struct ip6_hdr *); /* XXX pullup? */ if (sizeof(*hip6) < ln->ln_hold->m_len) *src = hip6->ip6_src; else src = NULL; return src; } static void nd6_llinfo_timer(void *arg) { struct llentry *ln = arg; struct ifnet *ifp; struct nd_ifinfo *ndi = NULL; bool send_ns = false; const struct in6_addr *daddr6 = NULL; mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); LLE_WLOCK(ln); if (ln->ln_ntick > 0) { nd6_llinfo_settimer(ln, ln->ln_ntick); goto out; } if (callout_pending(&ln->la_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by nd6_llinfo_settimer above since canceled * would have been 1. */ goto out; } ifp = ln->lle_tbl->llt_ifp; KASSERT(ifp != NULL); ndi = ND_IFINFO(ifp); switch (ln->ln_state) { case ND6_LLINFO_INCOMPLETE: if (ln->ln_asked < nd6_mmaxtries) { ln->ln_asked++; send_ns = true; } else { struct mbuf *m = ln->ln_hold; if (m) { struct mbuf *m0; /* * assuming every packet in ln_hold has * the same IP header */ m0 = m->m_nextpkt; m->m_nextpkt = NULL; ln->ln_hold = m0; clear_llinfo_pqueue(ln); } nd6_free(ln, 0); ln = NULL; if (m != NULL) icmp6_error2(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR, 0, ifp); } break; case ND6_LLINFO_REACHABLE: if (!ND6_LLINFO_PERMANENT(ln)) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer(ln, nd6_gctimer * hz); } break; case ND6_LLINFO_PURGE: case ND6_LLINFO_STALE: /* Garbage Collection(RFC 2461 5.3) */ if (!ND6_LLINFO_PERMANENT(ln)) { nd6_free(ln, 1); ln = NULL; } break; case ND6_LLINFO_DELAY: if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { /* We need NUD */ ln->ln_asked = 1; ln->ln_state = ND6_LLINFO_PROBE; daddr6 = &ln->r_l3addr.addr6; send_ns = true; } else { ln->ln_state = ND6_LLINFO_STALE; /* XXX */ nd6_llinfo_settimer(ln, nd6_gctimer * hz); } break; case ND6_LLINFO_PROBE: if (ln->ln_asked < nd6_umaxtries) { ln->ln_asked++; daddr6 = &ln->r_l3addr.addr6; send_ns = true; } else { nd6_free(ln, 0); ln = NULL; } break; } if (send_ns) { struct in6_addr src, *psrc; const struct in6_addr *taddr6 = &ln->r_l3addr.addr6; nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); psrc = nd6_llinfo_get_holdsrc(ln, &src); LLE_FREE_LOCKED(ln); ln = NULL; nd6_ns_output(ifp, daddr6, taddr6, psrc, 0); } out: if (ln != NULL) LLE_FREE_LOCKED(ln); KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } /* * ND6 timer routine to expire default route list and prefix list */ static void nd6_timer(void *ignored_arg) { struct nd_defrouter *next_dr, *dr; struct nd_prefix *next_pr, *pr; struct in6_ifaddr *ia6, *nia6; callout_reset(&nd6_timer_ch, nd6_prune * hz, nd6_timer, NULL); mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); /* expire default router list */ TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) { if (dr->expire && dr->expire < time_uptime) { defrtrlist_del(dr, NULL); } } /* * expire interface addresses. * in the past the loop was inside prefix expiry processing. * However, from a stricter speci-confrmance standpoint, we should * rather separate address lifetimes and prefix lifetimes. */ addrloop: for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { nia6 = ia6->ia_next; /* check address lifetime */ if (IFA6_IS_INVALID(ia6)) { int regen = 0; /* * If the expiring address is temporary, try * regenerating a new one. This would be useful when * we suspended a laptop PC, then turned it on after a * period that could invalidate all temporary * addresses. Although we may have to restart the * loop (see below), it must be after purging the * address. Otherwise, we'd see an infinite loop of * regeneration. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { if (regen_tmpaddr(ia6) == 0) regen = 1; } in6_purgeaddr(&ia6->ia_ifa); if (regen) goto addrloop; /* XXX: see below */ } else if (IFA6_IS_DEPRECATED(ia6)) { int oldflags = ia6->ia6_flags; if ((oldflags & IN6_IFF_DEPRECATED) == 0) { ia6->ia6_flags |= IN6_IFF_DEPRECATED; rt_newaddrmsg(RTM_NEWADDR, (struct ifaddr *)ia6, 0, NULL); } /* * If a temporary address has just become deprecated, * regenerate a new one if possible. */ if (ip6_use_tempaddr && (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && (oldflags & IN6_IFF_DEPRECATED) == 0) { if (regen_tmpaddr(ia6) == 0) { /* * A new temporary address is * generated. * XXX: this means the address chain * has changed while we are still in * the loop. Although the change * would not cause disaster (because * it's not a deletion, but an * addition,) we'd rather restart the * loop just for safety. Or does this * significantly reduce performance?? */ goto addrloop; } } } else { /* * A new RA might have made a deprecated address * preferred. */ if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; rt_newaddrmsg(RTM_NEWADDR, (struct ifaddr *)ia6, 0, NULL); } } } /* expire prefix list */ LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) { /* * check prefix lifetime. * since pltime is just for autoconf, pltime processing for * prefix is not necessary. */ if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { /* * address expiration and prefix expiration are * separate. NEVER perform in6_purgeaddr here. */ prelist_remove(pr); } } KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } /* ia6: deprecated/invalidated temporary address */ static int regen_tmpaddr(struct in6_ifaddr *ia6) { struct ifaddr *ifa; struct ifnet *ifp; struct in6_ifaddr *public_ifa6 = NULL; ifp = ia6->ia_ifa.ifa_ifp; IFADDR_FOREACH(ifa, ifp) { struct in6_ifaddr *it6; if (ifa->ifa_addr->sa_family != AF_INET6) continue; it6 = (struct in6_ifaddr *)ifa; /* ignore no autoconf addresses. */ if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; /* ignore autoconf addresses with different prefixes. */ if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) continue; /* * Now we are looking at an autoconf address with the same * prefix as ours. If the address is temporary and is still * preferred, do not create another one. It would be rare, but * could happen, for example, when we resume a laptop PC after * a long period. */ if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && !IFA6_IS_DEPRECATED(it6)) { public_ifa6 = NULL; break; } /* * This is a public autoconf address that has the same prefix * as ours. If it is preferred, keep it. We can't break the * loop here, because there may be a still-preferred temporary * address with the prefix. */ if (!IFA6_IS_DEPRECATED(it6)) public_ifa6 = it6; } if (public_ifa6 != NULL) { int e; /* * Random factor is introduced in the preferred lifetime, so * we do not need additional delay (3rd arg to in6_tmpifadd). */ if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" " tmp addr, errno=%d\n", e); return -1; } return 0; } return -1; } bool nd6_accepts_rtadv(const struct nd_ifinfo *ndi) { switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: return true; case ND6_IFF_ACCEPT_RTADV: return ip6_accept_rtadv != 0; case ND6_IFF_OVERRIDE_RTADV: case 0: default: return false; } } /* * Nuke neighbor cache/prefix/default router management table, right before * ifp goes away. */ void nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext) { struct nd_defrouter *dr, *ndr; struct nd_prefix *pr, *npr; /* * During detach, the ND info might be already removed, but * then is explitly passed as argument. * Otherwise get it from ifp->if_afdata. */ if (ext == NULL) ext = ifp->if_afdata[AF_INET6]; if (ext == NULL) return; /* * Nuke default router list entries toward ifp. * We defer removal of default router list entries that is installed * in the routing table, in order to keep additional side effects as * small as possible. */ TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { if (dr->installed) continue; if (dr->ifp == ifp) { KASSERT(ext != NULL); defrtrlist_del(dr, ext); } } TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { if (!dr->installed) continue; if (dr->ifp == ifp) { KASSERT(ext != NULL); defrtrlist_del(dr, ext); } } /* Nuke prefix list entries toward ifp */ LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) { if (pr->ndpr_ifp == ifp) { /* * Because if_detach() does *not* release prefixes * while purging addresses the reference count will * still be above zero. We therefore reset it to * make sure that the prefix really gets purged. */ pr->ndpr_refcnt = 0; /* * Previously, pr->ndpr_addr is removed as well, * but I strongly believe we don't have to do it. * nd6_purge() is only called from in6_ifdetach(), * which removes all the associated interface addresses * by itself. * (jinmei@kame.net 20010129) */ prelist_remove(pr); } } /* cancel default outgoing interface setting */ if (nd6_defifindex == ifp->if_index) nd6_setdefaultiface(0); /* XXX: too restrictive? */ if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { struct nd_ifinfo *ndi = ND_IFINFO(ifp); if (ndi && nd6_accepts_rtadv(ndi)) { /* refresh default router list */ defrouter_select(); } } /* * We may not need to nuke the neighbor cache entries here * because the neighbor cache is kept in if_afdata[AF_INET6]. * nd6_purge() is invoked by in6_ifdetach() which is called * from if_detach() where everything gets purged. However * in6_ifdetach is directly called from vlan(4), so we still * need to purge entries here. */ if (ext->lltable != NULL) lltable_purge_entries(ext->lltable); } struct llentry * nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock) { struct sockaddr_in6 sin6; struct llentry *ln; sockaddr_in6_init(&sin6, addr6, 0, 0, 0); IF_AFDATA_RLOCK(ifp); ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0, sin6tosa(&sin6)); IF_AFDATA_RUNLOCK(ifp); return ln; } struct llentry * nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp) { struct sockaddr_in6 sin6; struct llentry *ln; sockaddr_in6_init(&sin6, addr6, 0, 0, 0); IF_AFDATA_WLOCK(ifp); ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6)); IF_AFDATA_WUNLOCK(ifp); if (ln != NULL) ln->ln_state = ND6_LLINFO_NOSTATE; return ln; } /* * Test whether a given IPv6 address is a neighbor or not, ignoring * the actual neighbor cache. The neighbor cache is ignored in order * to not reenter the routing code from within itself. */ static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct ifaddr *dstaddr; /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return 0; /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return 0; if (sin6_copy.sin6_scope_id == zone) return 1; else return 0; } /* * If the address matches one of our addresses, * it should be a neighbor. * If the address matches one of our on-link prefixes, it should be a * neighbor. */ LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { if (pr->ndpr_ifp != ifp) continue; if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { struct rtentry *rt; rt = rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0); if (rt == NULL) continue; /* * This is the case where multiple interfaces * have the same prefix, but only one is installed * into the routing table and that prefix entry * is not the one being examined here. In the case * where RADIX_MPATH is enabled, multiple route * entries (of the same rt_key value) will be * installed because the interface addresses all * differ. */ if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &satocsin6(rt_getkey(rt))->sin6_addr)) { continue; } } if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) return 1; } /* * If the address is assigned on the node of the other side of * a p2p interface, the address should be a neighbor. */ dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr); if (dstaddr != NULL) { if (dstaddr->ifa_ifp == ifp) { #ifdef __FreeBSD__ /* XXX we need to ifaref in ifa_ifwithdstaddr as well */ ifafree(dstaddr); #endif return 1; } #ifdef __FreeBSD__ /* XXX we need to ifaref in ifa_ifwithdstaddr as well */ ifafree(dstaddr); #endif } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && TAILQ_EMPTY(&nd_defrouter) && nd6_defifindex == ifp->if_index) { return 1; } return 0; } /* * Detect if a given IPv6 address identifies a neighbor on a given link. * XXX: should take care of the destination of a p2p link? */ int nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) { struct nd_prefix *pr; struct llentry *ln; struct rtentry *rt; /* * A link-local address is always a neighbor. * XXX: a link does not necessarily specify a single interface. */ if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { struct sockaddr_in6 sin6_copy; u_int32_t zone; /* * We need sin6_copy since sa6_recoverscope() may modify the * content (XXX). */ sin6_copy = *addr; if (sa6_recoverscope(&sin6_copy)) return 0; /* XXX: should be impossible */ if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) return 0; if (sin6_copy.sin6_scope_id == zone) return 1; else return 0; } /* * If the address matches one of our on-link prefixes, it should be a * neighbor. */ LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { if (pr->ndpr_ifp != ifp) continue; if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) continue; if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, &addr->sin6_addr, &pr->ndpr_mask)) return 1; } /* * If the default router list is empty, all addresses are regarded * as on-link, and thus, as a neighbor. * XXX: we restrict the condition to hosts, because routers usually do * not have the "default router list". */ if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && nd6_defifindex == ifp->if_index) { return 1; } IF_AFDATA_UNLOCK_ASSERT(ifp); if (nd6_is_new_addr_neighbor(addr, ifp)) return 1; /* * Even if the address matches none of our addresses, it might be * in the neighbor cache or a connected route. */ ln = nd6_lookup(&addr->sin6_addr, ifp, false); if (ln != NULL) { LLE_RUNLOCK(ln); return 1; } rt = rtalloc1(sin6tocsa(addr), 0); if (rt == NULL) return 0; if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp #if NBRIDGE > 0 || rt->rt_ifp->if_bridge == ifp->if_bridge #endif #if NCARP > 0 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) || (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)|| (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp->if_carpdev) #endif )) { rtfree(rt); return 1; } rtfree(rt); return 0; } /* * Free an nd6 llinfo entry. * Since the function would cause significant changes in the kernel, DO NOT * make it global, unless you have a strong reason for the change, and are sure * that the change is safe. */ static void nd6_free(struct llentry *ln, int gc) { struct nd_defrouter *dr; struct ifnet *ifp; struct in6_addr *in6; KASSERT(ln != NULL); LLE_WLOCK_ASSERT(ln); ifp = ln->lle_tbl->llt_ifp; in6 = &ln->r_l3addr.addr6; /* * we used to have pfctlinput(PRC_HOSTDEAD) here. * even though it is not harmful, it was not really necessary. */ /* cancel timer */ nd6_llinfo_settimer(ln, -1); if (!ip6_forwarding) { int s; s = splsoftnet(); dr = defrouter_lookup(in6, ifp); if (dr != NULL && dr->expire && ln->ln_state == ND6_LLINFO_STALE && gc) { /* * If the reason for the deletion is just garbage * collection, and the neighbor is an active default * router, do not delete it. Instead, reset the GC * timer using the router's lifetime. * Simply deleting the entry would affect default * router selection, which is not necessarily a good * thing, especially when we're using router preference * values. * XXX: the check for ln_state would be redundant, * but we intentionally keep it just in case. */ if (dr->expire > time_uptime) nd6_llinfo_settimer(ln, (dr->expire - time_uptime) * hz); else nd6_llinfo_settimer(ln, nd6_gctimer * hz); splx(s); LLE_WUNLOCK(ln); return; } if (ln->ln_router || dr) { /* * rt6_flush must be called whether or not the neighbor * is in the Default Router List. * See a corresponding comment in nd6_na_input(). */ rt6_flush(in6, ifp); } if (dr) { /* * Unreachablity of a router might affect the default * router selection and on-link detection of advertised * prefixes. */ /* * Temporarily fake the state to choose a new default * router and to perform on-link determination of * prefixes correctly. * Below the state will be set correctly, * or the entry itself will be deleted. */ ln->ln_state = ND6_LLINFO_INCOMPLETE; /* * Since defrouter_select() does not affect the * on-link determination and MIP6 needs the check * before the default router selection, we perform * the check now. */ pfxlist_onlink_check(); /* * refresh default router list */ defrouter_select(); } splx(s); } /* * Save to unlock. We still hold an extra reference and will not * free(9) in llentry_free() if someone else holds one as well. */ LLE_WUNLOCK(ln); IF_AFDATA_LOCK(ifp); LLE_WLOCK(ln); /* Guard against race with other llentry_free(). */ if (ln->la_flags & LLE_LINKED) { LLE_REMREF(ln); llentry_free(ln); } else LLE_FREE_LOCKED(ln); IF_AFDATA_UNLOCK(ifp); } /* * Upper-layer reachability hint for Neighbor Unreachability Detection. * * XXX cost-effective methods? */ void nd6_nud_hint(struct rtentry *rt) { struct llentry *ln; struct ifnet *ifp; if (rt == NULL) return; ifp = rt->rt_ifp; ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true); if (ln == NULL) return; if (ln->ln_state < ND6_LLINFO_REACHABLE) goto done; /* * if we get upper-layer reachability confirmation many times, * it is possible we have false information. */ ln->ln_byhint++; if (ln->ln_byhint > nd6_maxnudhint) goto done; ln->ln_state = ND6_LLINFO_REACHABLE; if (!ND6_LLINFO_PERMANENT(ln)) nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz); done: LLE_WUNLOCK(ln); return; } static int nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg) { int *n = farg; if (*n <= 0) return 0; if (ND6_LLINFO_PERMANENT(ln)) return 0; LLE_WLOCK(ln); if (ln->ln_state > ND6_LLINFO_INCOMPLETE) ln->ln_state = ND6_LLINFO_STALE; else ln->ln_state = ND6_LLINFO_PURGE; nd6_llinfo_settimer(ln, 0); LLE_WUNLOCK(ln); (*n)--; return 0; } static void nd6_gc_neighbors(struct lltable *llt) { int max_gc_entries = 10; if (ip6_neighborgcthresh >= 0 && lltable_get_entry_count(llt) >= ip6_neighborgcthresh) { /* * XXX entries that are "less recently used" should be * freed first. */ lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries); } } void nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) { struct sockaddr *gate = rt->rt_gateway; struct ifnet *ifp = rt->rt_ifp; uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; struct ifaddr *ifa; RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); if (req == RTM_LLINFO_UPD) { int rc; struct in6_addr *in6; struct in6_addr in6_all; int anycast; if ((ifa = info->rti_ifa) == NULL) return; in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; in6_all = in6addr_linklocal_allnodes; if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { log(LOG_ERR, "%s: failed to set scope %s " "(errno=%d)\n", __func__, if_name(ifp), rc); return; } /* XXX don't set Override for proxy addresses */ nd6_na_output(ifa->ifa_ifp, &in6_all, in6, (anycast ? 0 : ND_NA_FLAG_OVERRIDE) #if 0 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) #endif , 1, NULL); return; } if ((rt->rt_flags & RTF_GATEWAY) != 0) return; if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); /* * This is probably an interface direct route for a link * which does not need neighbor caches (e.g. fe80::%lo0/64). * We do not need special treatment below for such a route. * Moreover, the RTF_LLINFO flag which would be set below * would annoy the ndp(8) command. */ return; } switch (req) { case RTM_ADD: RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); /* * There is no backward compatibility :) * * if ((rt->rt_flags & RTF_HOST) == 0 && * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) * rt->rt_flags |= RTF_CLONING; */ /* XXX should move to route.c? */ if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) { union { struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_storage ss; } u; /* * Case 1: This route should come from a route to * interface (RTF_CLONING case) or the route should be * treated as on-link but is currently not * (RTF_LLINFO && ln == NULL case). */ if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen) == NULL) { printf("%s.%d: sockaddr_dl_init(, %zu, ) " "failed on %s\n", __func__, __LINE__, sizeof(u.ss), if_name(ifp)); } rt_setgate(rt, &u.sa); gate = rt->rt_gateway; RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); if ((rt->rt_flags & RTF_CONNECTED) != 0) break; } RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); /* * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. * We don't do that here since llinfo is not ready yet. * * There are also couple of other things to be discussed: * - unsolicited NA code needs improvement beforehand * - RFC2461 says we MAY send multicast unsolicited NA * (7.2.6 paragraph 4), however, it also says that we * SHOULD provide a mechanism to prevent multicast NA storm. * we don't have anything like it right now. * note that the mechanism needs a mutual agreement * between proxies, which means that we need to implement * a new protocol, or a new kludge. * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. * we need to check ip6forwarding before sending it. * (or should we allow proxy ND configuration only for * routers? there's no mention about proxy ND from hosts) */ #if 0 /* XXX it does not work */ if (rt->rt_flags & RTF_ANNOUNCE) nd6_na_output(ifp, &satocsin6(rt_getkey(rt))->sin6_addr, &satocsin6(rt_getkey(rt))->sin6_addr, ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1, NULL); #endif if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); /* * Address resolution isn't necessary for a point to * point link, so we can skip this test for a p2p link. */ if (gate->sa_family != AF_LINK || gate->sa_len < sockaddr_dl_measure(namelen, addrlen)) { log(LOG_DEBUG, "nd6_rtrequest: bad gateway value: %s\n", if_name(ifp)); break; } satosdl(gate)->sdl_type = ifp->if_type; satosdl(gate)->sdl_index = ifp->if_index; RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); } RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); /* * check if rt_getkey(rt) is an address assigned * to the interface. */ ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &satocsin6(rt_getkey(rt))->sin6_addr); if (ifa != NULL) { if (nd6_useloopback) { ifp = rt->rt_ifp = lo0ifp; /* XXX */ /* * Make sure rt_ifa be equal to the ifaddr * corresponding to the address. * We need this because when we refer * rt_ifa->ia6_flags in ip6_input, we assume * that the rt_ifa points to the address instead * of the loopback address. */ if (ifa != rt->rt_ifa) rt_replace_ifa(rt, ifa); } } else if (rt->rt_flags & RTF_ANNOUNCE) { /* join solicited node multicast for proxy ND */ if (ifp->if_flags & IFF_MULTICAST) { struct in6_addr llsol; int error; llsol = satocsin6(rt_getkey(rt))->sin6_addr; llsol.s6_addr32[0] = htonl(0xff020000); llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL)) goto out; if (!in6_addmulti(&llsol, ifp, &error, 0)) { nd6log(LOG_ERR, "%s: failed to join " "%s (errno=%d)\n", if_name(ifp), ip6_sprintf(&llsol), error); } } } out: /* * If we have too many cache entries, initiate immediate * purging for some entries. */ if (rt->rt_ifp != NULL) nd6_gc_neighbors(LLTABLE6(rt->rt_ifp)); break; case RTM_DELETE: /* leave from solicited node multicast for proxy ND */ if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && (ifp->if_flags & IFF_MULTICAST) != 0) { struct in6_addr llsol; struct in6_multi *in6m; llsol = satocsin6(rt_getkey(rt))->sin6_addr; llsol.s6_addr32[0] = htonl(0xff020000); llsol.s6_addr32[1] = 0; llsol.s6_addr32[2] = htonl(1); llsol.s6_addr8[12] = 0xff; if (in6_setscope(&llsol, ifp, NULL) == 0) { IN6_LOOKUP_MULTI(llsol, ifp, in6m); if (in6m) in6_delmulti(in6m); } } break; } } int nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) { struct in6_drlist *drl = (struct in6_drlist *)data; struct in6_oprlist *oprl = (struct in6_oprlist *)data; struct in6_ndireq *ndi = (struct in6_ndireq *)data; struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; struct nd_defrouter *dr; struct nd_prefix *pr; int i = 0, error = 0; int s; switch (cmd) { case SIOCGDRLST_IN6: /* * obsolete API, use sysctl under net.inet6.icmp6 */ memset(drl, 0, sizeof(*drl)); s = splsoftnet(); TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { if (i >= DRLSTSIZ) break; drl->defrouter[i].rtaddr = dr->rtaddr; in6_clearscope(&drl->defrouter[i].rtaddr); drl->defrouter[i].flags = dr->flags; drl->defrouter[i].rtlifetime = dr->rtlifetime; drl->defrouter[i].expire = dr->expire ? time_mono_to_wall(dr->expire) : 0; drl->defrouter[i].if_index = dr->ifp->if_index; i++; } splx(s); break; case SIOCGPRLST_IN6: /* * obsolete API, use sysctl under net.inet6.icmp6 * * XXX the structure in6_prlist was changed in backward- * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, * in6_prlist is used for nd6_sysctl() - fill_prlist(). */ /* * XXX meaning of fields, especialy "raflags", is very * differnet between RA prefix list and RR/static prefix list. * how about separating ioctls into two? */ memset(oprl, 0, sizeof(*oprl)); s = splsoftnet(); LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { struct nd_pfxrouter *pfr; int j; if (i >= PRLSTSIZ) break; oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; oprl->prefix[i].raflags = pr->ndpr_raf; oprl->prefix[i].prefixlen = pr->ndpr_plen; oprl->prefix[i].vltime = pr->ndpr_vltime; oprl->prefix[i].pltime = pr->ndpr_pltime; oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) oprl->prefix[i].expire = 0; else { time_t maxexpire; /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) { time_t expire; expire = pr->ndpr_lastupdate + pr->ndpr_vltime; oprl->prefix[i].expire = expire ? time_mono_to_wall(expire) : 0; } else oprl->prefix[i].expire = maxexpire; } j = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { if (j < DRLSTSIZ) { #define RTRADDR oprl->prefix[i].advrtr[j] RTRADDR = pfr->router->rtaddr; in6_clearscope(&RTRADDR); #undef RTRADDR } j++; } oprl->prefix[i].advrtrs = j; oprl->prefix[i].origin = PR_ORIG_RA; i++; } splx(s); break; case OSIOCGIFINFO_IN6: #define ND ndi->ndi /* XXX: old ndp(8) assumes a positive value for linkmtu. */ memset(&ND, 0, sizeof(ND)); ND.linkmtu = IN6_LINKMTU(ifp); ND.maxmtu = ND_IFINFO(ifp)->maxmtu; ND.basereachable = ND_IFINFO(ifp)->basereachable; ND.reachable = ND_IFINFO(ifp)->reachable; ND.retrans = ND_IFINFO(ifp)->retrans; ND.flags = ND_IFINFO(ifp)->flags; ND.recalctm = ND_IFINFO(ifp)->recalctm; ND.chlim = ND_IFINFO(ifp)->chlim; break; case SIOCGIFINFO_IN6: ND = *ND_IFINFO(ifp); break; case SIOCSIFINFO_IN6: /* * used to change host variables from userland. * intented for a use on router to reflect RA configurations. */ /* 0 means 'unspecified' */ if (ND.linkmtu != 0) { if (ND.linkmtu < IPV6_MMTU || ND.linkmtu > IN6_LINKMTU(ifp)) { error = EINVAL; break; } ND_IFINFO(ifp)->linkmtu = ND.linkmtu; } if (ND.basereachable != 0) { int obasereachable = ND_IFINFO(ifp)->basereachable; ND_IFINFO(ifp)->basereachable = ND.basereachable; if (ND.basereachable != obasereachable) ND_IFINFO(ifp)->reachable = ND_COMPUTE_RTIME(ND.basereachable); } if (ND.retrans != 0) ND_IFINFO(ifp)->retrans = ND.retrans; if (ND.chlim != 0) ND_IFINFO(ifp)->chlim = ND.chlim; /* FALLTHROUGH */ case SIOCSIFINFO_FLAGS: { struct ifaddr *ifa; struct in6_ifaddr *ia; if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && !(ND.flags & ND6_IFF_IFDISABLED)) { /* * If the interface is marked as ND6_IFF_IFDISABLED and * has a link-local address with IN6_IFF_DUPLICATED, * do not clear ND6_IFF_IFDISABLED. * See RFC 4862, section 5.4.5. */ int duplicated_linklocal = 0; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) { duplicated_linklocal = 1; break; } } if (duplicated_linklocal) { ND.flags |= ND6_IFF_IFDISABLED; log(LOG_ERR, "Cannot enable an interface" " with a link-local address marked" " duplicate.\n"); } else { ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; if (ifp->if_flags & IFF_UP) in6_if_up(ifp); } } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && (ND.flags & ND6_IFF_IFDISABLED)) { /* Mark all IPv6 addresses as tentative. */ ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; nd6_dad_stop(ifa); ia = (struct in6_ifaddr *)ifa; ia->ia6_flags |= IN6_IFF_TENTATIVE; } } if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { /* auto_linklocal 0->1 transition */ ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; in6_ifattach(ifp, NULL); } else if (!(ND.flags & ND6_IFF_IFDISABLED) && ifp->if_flags & IFF_UP) { /* * When the IF already has * ND6_IFF_AUTO_LINKLOCAL, no link-local * address is assigned, and IFF_UP, try to * assign one. */ int haslinklocal = 0; IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family !=AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){ haslinklocal = 1; break; } } if (!haslinklocal) in6_ifattach(ifp, NULL); } } } ND_IFINFO(ifp)->flags = ND.flags; break; #undef ND case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ /* sync kernel routing table with the default router list */ defrouter_reset(); defrouter_select(); break; case SIOCSPFXFLUSH_IN6: { /* flush all the prefix advertised by routers */ struct nd_prefix *pfx, *next; s = splsoftnet(); LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) { struct in6_ifaddr *ia, *ia_next; if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) continue; /* XXX */ /* do we really have to remove addresses as well? */ for (ia = in6_ifaddr; ia; ia = ia_next) { /* ia might be removed. keep the next ptr. */ ia_next = ia->ia_next; if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) continue; if (ia->ia6_ndpr == pfx) in6_purgeaddr(&ia->ia_ifa); } prelist_remove(pfx); } splx(s); break; } case SIOCSRTRFLUSH_IN6: { /* flush all the default routers */ struct nd_defrouter *drtr, *next; s = splsoftnet(); defrouter_reset(); TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) { defrtrlist_del(drtr, NULL); } defrouter_select(); splx(s); break; } case SIOCGNBRINFO_IN6: { struct llentry *ln; struct in6_addr nb_addr = nbi->addr; /* make local for safety */ if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) return error; ln = nd6_lookup(&nb_addr, ifp, false); if (ln == NULL) { error = EINVAL; break; } nbi->state = ln->ln_state; nbi->asked = ln->ln_asked; nbi->isrouter = ln->ln_router; nbi->expire = ln->ln_expire ? time_mono_to_wall(ln->ln_expire) : 0; LLE_RUNLOCK(ln); break; } case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ ndif->ifindex = nd6_defifindex; break; case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ return nd6_setdefaultiface(ndif->ifindex); } return error; } void nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp) { struct mbuf *m_hold, *m_hold_next; struct sockaddr_in6 sin6; LLE_WLOCK_ASSERT(ln); sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0; LLE_WUNLOCK(ln); for (; m_hold != NULL; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; /* * we assume ifp is not a p2p here, so * just set the 2nd argument as the * 1st one. */ nd6_output(ifp, ifp, m_hold, &sin6, NULL); } LLE_WLOCK(ln); } /* * Create neighbor cache entry and cache link-layer address, * on reception of inbound ND6 packets. (RS/RA/NS/redirect) */ void nd6_cache_lladdr( struct ifnet *ifp, struct in6_addr *from, char *lladdr, int lladdrlen, int type, /* ICMP6 type */ int code /* type dependent information */ ) { struct nd_ifinfo *ndi = ND_IFINFO(ifp); struct llentry *ln = NULL; int is_newentry; int do_update; int olladdr; int llchange; int newstate = 0; uint16_t router = 0; KASSERT(ifp != NULL); KASSERT(from != NULL); /* nothing must be updated for unspecified address */ if (IN6_IS_ADDR_UNSPECIFIED(from)) return; /* * Validation about ifp->if_addrlen and lladdrlen must be done in * the caller. * * XXX If the link does not have link-layer adderss, what should * we do? (ifp->if_addrlen == 0) * Spec says nothing in sections for RA, RS and NA. There's small * description on it in NS section (RFC 2461 7.2.3). */ ln = nd6_lookup(from, ifp, true); if (ln == NULL) { #if 0 /* nothing must be done if there's no lladdr */ if (!lladdr || !lladdrlen) return NULL; #endif ln = nd6_create(from, ifp); is_newentry = 1; } else { /* do nothing if static ndp is set */ if (ln->la_flags & LLE_STATIC) { LLE_WUNLOCK(ln); return; } is_newentry = 0; } if (ln == NULL) return; olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; if (olladdr && lladdr) { llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); } else llchange = 0; /* * newentry olladdr lladdr llchange (*=record) * 0 n n -- (1) * 0 y n -- (2) * 0 n y -- (3) * STALE * 0 y y n (4) * * 0 y y y (5) * STALE * 1 -- n -- (6) NOSTATE(= PASSIVE) * 1 -- y -- (7) * STALE */ if (lladdr) { /* (3-5) and (7) */ /* * Record source link-layer address * XXX is it dependent to ifp->if_type? */ memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen); ln->la_flags |= LLE_VALID; } if (!is_newentry) { if ((!olladdr && lladdr) || /* (3) */ (olladdr && lladdr && llchange)) { /* (5) */ do_update = 1; newstate = ND6_LLINFO_STALE; } else /* (1-2,4) */ do_update = 0; } else { do_update = 1; if (lladdr == NULL) /* (6) */ newstate = ND6_LLINFO_NOSTATE; else /* (7) */ newstate = ND6_LLINFO_STALE; } if (do_update) { /* * Update the state of the neighbor cache. */ ln->ln_state = newstate; if (ln->ln_state == ND6_LLINFO_STALE) { /* * XXX: since nd6_output() below will cause * state tansition to DELAY and reset the timer, * we must set the timer now, although it is actually * meaningless. */ nd6_llinfo_settimer(ln, nd6_gctimer * hz); nd6_llinfo_release_pkts(ln, ifp); } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { /* probe right away */ nd6_llinfo_settimer((void *)ln, 0); } } /* * ICMP6 type dependent behavior. * * NS: clear IsRouter if new entry * RS: clear IsRouter * RA: set IsRouter if there's lladdr * redir: clear IsRouter if new entry * * RA case, (1): * The spec says that we must set IsRouter in the following cases: * - If lladdr exist, set IsRouter. This means (1-5). * - If it is old entry (!newentry), set IsRouter. This means (7). * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. * A quetion arises for (1) case. (1) case has no lladdr in the * neighbor cache, this is similar to (6). * This case is rare but we figured that we MUST NOT set IsRouter. * * newentry olladdr lladdr llchange NS RS RA redir * D R * 0 n n -- (1) c ? s * 0 y n -- (2) c s s * 0 n y -- (3) c s s * 0 y y n (4) c s s * 0 y y y (5) c s s * 1 -- n -- (6) c c c s * 1 -- y -- (7) c c s c s * * (c=clear s=set) */ switch (type & 0xff) { case ND_NEIGHBOR_SOLICIT: /* * New entry must have is_router flag cleared. */ if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_REDIRECT: /* * If the icmp is a redirect to a better router, always set the * is_router flag. Otherwise, if the entry is newly created, * clear the flag. [RFC 2461, sec 8.3] */ if (code == ND_REDIRECT_ROUTER) ln->ln_router = 1; else if (is_newentry) /* (6-7) */ ln->ln_router = 0; break; case ND_ROUTER_SOLICIT: /* * is_router flag must always be cleared. */ ln->ln_router = 0; break; case ND_ROUTER_ADVERT: /* * Mark an entry with lladdr as a router. */ if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ (is_newentry && lladdr)) { /* (7) */ ln->ln_router = 1; } break; } #if 0 /* XXX should we send rtmsg as it used to be? */ if (do_update) rt_newmsg(RTM_CHANGE, rt); /* tell user process */ #endif if (ln != NULL) { router = ln->ln_router; LLE_WUNLOCK(ln); } /* * If we have too many cache entries, initiate immediate * purging for some entries. */ if (is_newentry) nd6_gc_neighbors(LLTABLE6(ifp)); /* * When the link-layer address of a router changes, select the * best router again. In particular, when the neighbor entry is newly * created, it might affect the selection policy. * Question: can we restrict the first condition to the "is_newentry" * case? * XXX: when we hear an RA from a new router with the link-layer * address option, defrouter_select() is called twice, since * defrtrlist_update called the function as well. However, I believe * we can compromise the overhead, since it only happens the first * time. * XXX: although defrouter_select() should not have a bad effect * for those are not autoconfigured hosts, we explicitly avoid such * cases for safety. */ if (do_update && router && !ip6_forwarding && nd6_accepts_rtadv(ndi)) defrouter_select(); } static void nd6_slowtimo(void *ignored_arg) { struct nd_ifinfo *nd6if; struct ifnet *ifp; mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, nd6_slowtimo, NULL); IFNET_FOREACH(ifp) { nd6if = ND_IFINFO(ifp); if (nd6if->basereachable && /* already initialized */ (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { /* * Since reachable time rarely changes by router * advertisements, we SHOULD insure that a new random * value gets recomputed at least once every few hours. * (RFC 2461, 6.3.4) */ nd6if->recalctm = nd6_recalc_reachtm_interval; nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); } } KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } int nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, const struct sockaddr_in6 *dst, struct rtentry *rt) { #define senderr(e) { error = (e); goto bad;} struct llentry *ln = NULL; int error = 0; bool created = false; if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) goto sendpkt; if (nd6_need_cache(ifp) == 0) goto sendpkt; /* * Address resolution or Neighbor Unreachability Detection * for the next hop. * At this point, the destination of the packet must be a unicast * or an anycast address(i.e. not a multicast). */ /* Look up the neighbor cache for the nexthop */ ln = nd6_lookup(&dst->sin6_addr, ifp, true); if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) { /* * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), * the condition below is not very efficient. But we believe * it is tolerable, because this should be a rare case. */ ln = nd6_create(&dst->sin6_addr, ifp); if (ln != NULL) created = true; } if (ln == NULL) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { log(LOG_DEBUG, "nd6_output: can't allocate llinfo for %s " "(ln=%p, rt=%p)\n", ip6_sprintf(&dst->sin6_addr), ln, rt); senderr(EIO); /* XXX: good error? */ } goto sendpkt; /* send anyway */ } LLE_WLOCK_ASSERT(ln); /* We don't have to do link-layer address resolution on a p2p link. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ln->ln_state < ND6_LLINFO_REACHABLE) { ln->ln_state = ND6_LLINFO_STALE; nd6_llinfo_settimer(ln, nd6_gctimer * hz); } /* * The first time we send a packet to a neighbor whose entry is * STALE, we have to change the state to DELAY and a sets a timer to * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do * neighbor unreachability detection on expiration. * (RFC 2461 7.3.3) */ if (ln->ln_state == ND6_LLINFO_STALE) { ln->ln_asked = 0; ln->ln_state = ND6_LLINFO_DELAY; nd6_llinfo_settimer(ln, nd6_delay * hz); } /* * If the neighbor cache entry has a state other than INCOMPLETE * (i.e. its link-layer address is already resolved), just * send the packet. */ if (ln->ln_state > ND6_LLINFO_INCOMPLETE) goto sendpkt; /* * There is a neighbor cache entry, but no ethernet address * response yet. Append this latest packet to the end of the * packet queue in the mbuf, unless the number of the packet * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, * the oldest packet in the queue will be removed. */ if (ln->ln_state == ND6_LLINFO_NOSTATE) ln->ln_state = ND6_LLINFO_INCOMPLETE; if (ln->ln_hold) { struct mbuf *m_hold; int i; i = 0; for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { i++; if (m_hold->m_nextpkt == NULL) { m_hold->m_nextpkt = m; break; } } while (i >= nd6_maxqueuelen) { m_hold = ln->ln_hold; ln->ln_hold = ln->ln_hold->m_nextpkt; m_freem(m_hold); i--; } } else { ln->ln_hold = m; } /* * If there has been no NS for the neighbor after entering the * INCOMPLETE state, send the first solicitation. */ if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { struct in6_addr src, *psrc; ln->ln_asked++; nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000); psrc = nd6_llinfo_get_holdsrc(ln, &src); LLE_WUNLOCK(ln); ln = NULL; nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0); } else { /* We did the lookup so we need to do the unlock here. */ LLE_WUNLOCK(ln); } error = 0; goto exit; sendpkt: /* discard the packet if IPv6 operation is disabled on the interface */ if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { error = ENETDOWN; /* better error? */ goto bad; } if (ln != NULL) LLE_WUNLOCK(ln); #ifndef NET_MPSAFE KERNEL_LOCK(1, NULL); #endif if ((ifp->if_flags & IFF_LOOPBACK) != 0) error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt); else error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt); #ifndef NET_MPSAFE KERNEL_UNLOCK_ONE(NULL); #endif goto exit; bad: if (m != NULL) m_freem(m); exit: if (created) nd6_gc_neighbors(LLTABLE6(ifp)); return error; #undef senderr } int nd6_need_cache(struct ifnet *ifp) { /* * XXX: we currently do not make neighbor cache on any interface * other than ARCnet, Ethernet, FDDI and GIF. * * RFC2893 says: * - unidirectional tunnels needs no ND */ switch (ifp->if_type) { case IFT_ARCNET: case IFT_ETHER: case IFT_FDDI: case IFT_IEEE1394: case IFT_CARP: case IFT_GIF: /* XXX need more cases? */ case IFT_PPP: case IFT_TUNNEL: return 1; default: return 0; } } /* * Add pernament ND6 link-layer record for given * interface address. * * Very similar to IPv4 arp_ifinit(), but: * 1) IPv6 DAD is performed in different place * 2) It is called by IPv6 protocol stack in contrast to * arp_ifinit() which is typically called in SIOCSIFADDR * driver ioctl handler. * */ int nd6_add_ifa_lle(struct in6_ifaddr *ia) { struct ifnet *ifp; struct llentry *ln; ifp = ia->ia_ifa.ifa_ifp; if (nd6_need_cache(ifp) == 0) return 0; ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; ia->ia_ifa.ifa_flags = RTF_CONNECTED; IF_AFDATA_WLOCK(ifp); ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE, (struct sockaddr *)&ia->ia_addr); IF_AFDATA_WUNLOCK(ifp); if (ln == NULL) return ENOBUFS; ln->la_expire = 0; /* for IPv6 this means permanent */ ln->ln_state = ND6_LLINFO_REACHABLE; LLE_WUNLOCK(ln); return 0; } /* * Removes ALL lle records for interface address prefix. * XXXME: That's probably not we really want to do, we need * to remove address record only and keep other records * until we determine if given prefix is really going * to be removed. */ void nd6_rem_ifa_lle(struct in6_ifaddr *ia) { struct sockaddr_in6 mask, addr; memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, (struct sockaddr *)&mask, LLE_STATIC); } int nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst, size_t dstsize) { struct llentry *ln; if (m->m_flags & M_MCAST) { switch (ifp->if_type) { case IFT_ETHER: case IFT_FDDI: ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, lldst); return 1; case IFT_IEEE1394: memcpy(lldst, ifp->if_broadcastaddr, MIN(dstsize, ifp->if_addrlen)); return 1; case IFT_ARCNET: *lldst = 0; return 1; default: m_freem(m); return 0; } } /* * the entry should have been created in nd6_store_lladdr */ ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false); if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { if (ln != NULL) LLE_RUNLOCK(ln); /* this could happen, if we could not allocate memory */ m_freem(m); return 0; } /* XXX llentry should have addrlen? */ #if 0 sdl = satocsdl(rt->rt_gateway); if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) { char sbuf[INET6_ADDRSTRLEN]; char dbuf[LINK_ADDRSTRLEN]; /* this should be impossible, but we bark here for debugging */ printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n", __func__, sdl->sdl_alen, if_name(ifp), IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr), DL_PRINT(dbuf, &sdl->sdl_addr)); m_freem(m); return 0; } #endif memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); LLE_RUNLOCK(ln); return 1; } static void clear_llinfo_pqueue(struct llentry *ln) { struct mbuf *m_hold, *m_hold_next; for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; m_freem(m_hold); } ln->ln_hold = NULL; return; } int nd6_sysctl( int name, void *oldp, /* syscall arg, need copyout */ size_t *oldlenp, void *newp, /* syscall arg, need copyin */ size_t newlen ) { void *p; size_t ol; int error; error = 0; if (newp) return EPERM; if (oldp && !oldlenp) return EINVAL; ol = oldlenp ? *oldlenp : 0; if (oldp) { p = malloc(*oldlenp, M_TEMP, M_WAITOK); if (p == NULL) return ENOMEM; } else p = NULL; switch (name) { case ICMPV6CTL_ND6_DRLIST: error = fill_drlist(p, oldlenp, ol); if (!error && p != NULL && oldp != NULL) error = copyout(p, oldp, *oldlenp); break; case ICMPV6CTL_ND6_PRLIST: error = fill_prlist(p, oldlenp, ol); if (!error && p != NULL && oldp != NULL) error = copyout(p, oldp, *oldlenp); break; case ICMPV6CTL_ND6_MAXQLEN: break; default: error = ENOPROTOOPT; break; } if (p) free(p, M_TEMP); return error; } static int fill_drlist(void *oldp, size_t *oldlenp, size_t ol) { int error = 0, s; struct in6_defrouter *d = NULL, *de = NULL; struct nd_defrouter *dr; size_t l; s = splsoftnet(); if (oldp) { d = (struct in6_defrouter *)oldp; de = (struct in6_defrouter *)((char *)oldp + *oldlenp); } l = 0; TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { if (oldp && d + 1 <= de) { memset(d, 0, sizeof(*d)); sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); if (sa6_recoverscope(&d->rtaddr)) { log(LOG_ERR, "scope error in router list (%s)\n", ip6_sprintf(&d->rtaddr.sin6_addr)); /* XXX: press on... */ } d->flags = dr->flags; d->rtlifetime = dr->rtlifetime; d->expire = dr->expire ? time_mono_to_wall(dr->expire) : 0; d->if_index = dr->ifp->if_index; } l += sizeof(*d); if (d) d++; } if (oldp) { if (l > ol) error = ENOMEM; } if (oldlenp) *oldlenp = l; /* (void *)d - (void *)oldp */ splx(s); return error; } static int fill_prlist(void *oldp, size_t *oldlenp, size_t ol) { int error = 0, s; struct nd_prefix *pr; uint8_t *p = NULL, *ps = NULL; uint8_t *pe = NULL; size_t l; s = splsoftnet(); if (oldp) { ps = p = (uint8_t*)oldp; pe = (uint8_t*)oldp + *oldlenp; } l = 0; LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { u_short advrtrs; struct sockaddr_in6 sin6; struct nd_pfxrouter *pfr; struct in6_prefix pfx; if (oldp && p + sizeof(struct in6_prefix) <= pe) { memset(&pfx, 0, sizeof(pfx)); ps = p; pfx.prefix = pr->ndpr_prefix; if (sa6_recoverscope(&pfx.prefix)) { log(LOG_ERR, "scope error in prefix list (%s)\n", ip6_sprintf(&pfx.prefix.sin6_addr)); /* XXX: press on... */ } pfx.raflags = pr->ndpr_raf; pfx.prefixlen = pr->ndpr_plen; pfx.vltime = pr->ndpr_vltime; pfx.pltime = pr->ndpr_pltime; pfx.if_index = pr->ndpr_ifp->if_index; if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) pfx.expire = 0; else { time_t maxexpire; /* XXX: we assume time_t is signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) { pfx.expire = pr->ndpr_lastupdate + pr->ndpr_vltime; } else pfx.expire = maxexpire; } pfx.refcnt = pr->ndpr_refcnt; pfx.flags = pr->ndpr_stateflags; pfx.origin = PR_ORIG_RA; p += sizeof(pfx); l += sizeof(pfx); advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { if (p + sizeof(sin6) > pe) { advrtrs++; continue; } sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 0, 0, 0); if (sa6_recoverscope(&sin6)) { log(LOG_ERR, "scope error in " "prefix list (%s)\n", ip6_sprintf(&pfr->router->rtaddr)); } advrtrs++; memcpy(p, &sin6, sizeof(sin6)); p += sizeof(sin6); l += sizeof(sin6); } pfx.advrtrs = advrtrs; memcpy(ps, &pfx, sizeof(pfx)); } else { l += sizeof(pfx); advrtrs = 0; LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { advrtrs++; l += sizeof(sin6); } } } if (oldp) { *oldlenp = l; /* (void *)d - (void *)oldp */ if (l > ol) error = ENOMEM; } else *oldlenp = l; splx(s); return error; }