/* $NetBSD: crypto.c,v 1.38 2011/02/24 19:35:46 drochner Exp $ */ /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */ /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */ /*- * Copyright (c) 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Coyote Point Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) * * This code was written by Angelos D. Keromytis in Athens, Greece, in * February 2000. Network Security Technologies Inc. (NSTI) kindly * supported the development of this code. * * Copyright (c) 2000, 2001 Angelos D. Keromytis * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all source code copies of any software which is or includes a copy or * modification of this software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.38 2011/02/24 19:35:46 drochner Exp $"); #include #include #include #include #include #include #include #include #include #include #include "opt_ocf.h" #include #include /* XXX for M_XDATA */ kcondvar_t cryptoret_cv; kmutex_t crypto_mtx; /* below are kludges for residual code wrtitten to FreeBSD interfaces */ #define SWI_CRYPTO 17 #define register_swi(lvl, fn) \ softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL) #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie) #define setsoftcrypto(x) softint_schedule(x) int crypto_ret_q_check(struct cryptop *); /* * Crypto drivers register themselves by allocating a slot in the * crypto_drivers table with crypto_get_driverid() and then registering * each algorithm they support with crypto_register() and crypto_kregister(). */ static struct cryptocap *crypto_drivers; static int crypto_drivers_num; static void *softintr_cookie; /* * There are two queues for crypto requests; one for symmetric (e.g. * cipher) operations and one for asymmetric (e.g. MOD) operations. * See below for how synchronization is handled. */ static TAILQ_HEAD(,cryptop) crp_q = /* request queues */ TAILQ_HEAD_INITIALIZER(crp_q); static TAILQ_HEAD(,cryptkop) crp_kq = TAILQ_HEAD_INITIALIZER(crp_kq); /* * There are two queues for processing completed crypto requests; one * for the symmetric and one for the asymmetric ops. We only need one * but have two to avoid type futzing (cryptop vs. cryptkop). See below * for how synchronization is handled. */ static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */ TAILQ_HEAD_INITIALIZER(crp_ret_q); static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq = TAILQ_HEAD_INITIALIZER(crp_ret_kq); /* * XXX these functions are ghastly hacks for when the submission * XXX routines discover a request that was not CBIMM is already * XXX done, and must be yanked from the retq (where _done) put it * XXX as cryptoret won't get the chance. The queue is walked backwards * XXX as the request is generally the last one queued. * * call with the lock held, or else. */ int crypto_ret_q_remove(struct cryptop *crp) { struct cryptop * acrp, *next; TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) { if (acrp == crp) { TAILQ_REMOVE(&crp_ret_q, crp, crp_next); crp->crp_flags &= (~CRYPTO_F_ONRETQ); return 1; } } return 0; } int crypto_ret_kq_remove(struct cryptkop *krp) { struct cryptkop * akrp, *next; TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) { if (akrp == krp) { TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); krp->krp_flags &= (~CRYPTO_F_ONRETQ); return 1; } } return 0; } /* * Crypto op and desciptor data structures are allocated * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) . */ struct pool cryptop_pool; struct pool cryptodesc_pool; struct pool cryptkop_pool; int crypto_usercrypto = 1; /* userland may open /dev/crypto */ int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */ /* * cryptodevallowsoft is (intended to be) sysctl'able, controlling * access to hardware versus software transforms as below: * * crypto_devallowsoft < 0: Force userlevel requests to use software * transforms, always * crypto_devallowsoft = 0: Use hardware if present, grant userlevel * requests for non-accelerated transforms * (handling the latter in software) * crypto_devallowsoft > 0: Allow user requests only for transforms which * are hardware-accelerated. */ int crypto_devallowsoft = 1; /* only use hardware crypto */ SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "kern", NULL, NULL, 0, NULL, 0, CTL_KERN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "usercrypto", SYSCTL_DESCR("Enable/disable user-mode access to " "crypto support"), NULL, 0, &crypto_usercrypto, 0, CTL_KERN, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "userasymcrypto", SYSCTL_DESCR("Enable/disable user-mode access to " "asymmetric crypto support"), NULL, 0, &crypto_userasymcrypto, 0, CTL_KERN, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "cryptodevallowsoft", SYSCTL_DESCR("Enable/disable use of software " "asymmetric crypto support"), NULL, 0, &crypto_devallowsoft, 0, CTL_KERN, CTL_CREATE, CTL_EOL); } MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); /* * Synchronization: read carefully, this is non-trivial. * * Crypto requests are submitted via crypto_dispatch. Typically * these come in from network protocols at spl0 (output path) or * spl[,soft]net (input path). * * Requests are typically passed on the driver directly, but they * may also be queued for processing by a software interrupt thread, * cryptointr, that runs at splsoftcrypto. This thread dispatches * the requests to crypto drivers (h/w or s/w) who call crypto_done * when a request is complete. Hardware crypto drivers are assumed * to register their IRQ's as network devices so their interrupt handlers * and subsequent "done callbacks" happen at spl[imp,net]. * * Completed crypto ops are queued for a separate kernel thread that * handles the callbacks at spl0. This decoupling insures the crypto * driver interrupt service routine is not delayed while the callback * takes place and that callbacks are delivered after a context switch * (as opposed to a software interrupt that clients must block). * * This scheme is not intended for SMP machines. */ static void cryptointr(void); /* swi thread to dispatch ops */ static void cryptoret(void); /* kernel thread for callbacks*/ static struct lwp *cryptothread; static void crypto_destroy(void); static int crypto_invoke(struct cryptop *crp, int hint); static int crypto_kinvoke(struct cryptkop *krp, int hint); static struct cryptostats cryptostats; #ifdef CRYPTO_TIMING static int crypto_timing = 0; #endif static int crypto_init0(void) { int error; mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET); cv_init(&cryptoret_cv, "crypto_w"); pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0, 0, "cryptop", NULL, IPL_NET); pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0, 0, "cryptodesc", NULL, IPL_NET); pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0, 0, "cryptkop", NULL, IPL_NET); crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL * sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); if (crypto_drivers == NULL) { printf("crypto_init: cannot malloc driver table\n"); return 0; } crypto_drivers_num = CRYPTO_DRIVERS_INITIAL; softintr_cookie = register_swi(SWI_CRYPTO, cryptointr); error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret"); if (error) { printf("crypto_init: cannot start cryptoret thread; error %d", error); crypto_destroy(); } return 0; } void crypto_init(void) { static ONCE_DECL(crypto_init_once); RUN_ONCE(&crypto_init_once, crypto_init0); } static void crypto_destroy(void) { /* XXX no wait to reclaim zones */ if (crypto_drivers != NULL) free(crypto_drivers, M_CRYPTO_DATA); unregister_swi(SWI_CRYPTO, cryptointr); } /* * Create a new session. Must be called with crypto_mtx held. */ int crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard) { struct cryptoini *cr; u_int32_t hid, lid; int err = EINVAL; KASSERT(mutex_owned(&crypto_mtx)); if (crypto_drivers == NULL) goto done; /* * The algorithm we use here is pretty stupid; just use the * first driver that supports all the algorithms we need. * * XXX We need more smarts here (in real life too, but that's * XXX another story altogether). */ for (hid = 0; hid < crypto_drivers_num; hid++) { /* * If it's not initialized or has remaining sessions * referencing it, skip. */ if (crypto_drivers[hid].cc_newsession == NULL || (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)) continue; /* Hardware required -- ignore software drivers. */ if (hard > 0 && (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE)) continue; /* Software required -- ignore hardware drivers. */ if (hard < 0 && (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) continue; /* See if all the algorithms are supported. */ for (cr = cri; cr; cr = cr->cri_next) if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) { DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg)); break; } if (cr == NULL) { /* Ok, all algorithms are supported. */ /* * Can't do everything in one session. * * XXX Fix this. We need to inject a "virtual" session layer right * XXX about here. */ /* Call the driver initialization routine. */ lid = hid; /* Pass the driver ID. */ err = crypto_drivers[hid].cc_newsession( crypto_drivers[hid].cc_arg, &lid, cri); if (err == 0) { (*sid) = hid; (*sid) <<= 32; (*sid) |= (lid & 0xffffffff); crypto_drivers[hid].cc_sessions++; } goto done; /*break;*/ } } done: return err; } /* * Delete an existing session (or a reserved session on an unregistered * driver). Must be called with crypto_mtx mutex held. */ int crypto_freesession(u_int64_t sid) { u_int32_t hid; int err = 0; KASSERT(mutex_owned(&crypto_mtx)); if (crypto_drivers == NULL) { err = EINVAL; goto done; } /* Determine two IDs. */ hid = CRYPTO_SESID2HID(sid); if (hid >= crypto_drivers_num) { err = ENOENT; goto done; } if (crypto_drivers[hid].cc_sessions) crypto_drivers[hid].cc_sessions--; /* Call the driver cleanup routine, if available. */ if (crypto_drivers[hid].cc_freesession) { err = crypto_drivers[hid].cc_freesession( crypto_drivers[hid].cc_arg, sid); } else err = 0; /* * If this was the last session of a driver marked as invalid, * make the entry available for reuse. */ if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) && crypto_drivers[hid].cc_sessions == 0) memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap)); done: return err; } /* * Return an unused driver id. Used by drivers prior to registering * support for the algorithms they handle. */ int32_t crypto_get_driverid(u_int32_t flags) { struct cryptocap *newdrv; int i; crypto_init(); /* XXX oh, this is foul! */ mutex_spin_enter(&crypto_mtx); for (i = 0; i < crypto_drivers_num; i++) if (crypto_drivers[i].cc_process == NULL && (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 && crypto_drivers[i].cc_sessions == 0) break; /* Out of entries, allocate some more. */ if (i == crypto_drivers_num) { /* Be careful about wrap-around. */ if (2 * crypto_drivers_num <= crypto_drivers_num) { mutex_spin_exit(&crypto_mtx); printf("crypto: driver count wraparound!\n"); return -1; } newdrv = malloc(2 * crypto_drivers_num * sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO); if (newdrv == NULL) { mutex_spin_exit(&crypto_mtx); printf("crypto: no space to expand driver table!\n"); return -1; } memcpy(newdrv, crypto_drivers, crypto_drivers_num * sizeof(struct cryptocap)); crypto_drivers_num *= 2; free(crypto_drivers, M_CRYPTO_DATA); crypto_drivers = newdrv; } /* NB: state is zero'd on free */ crypto_drivers[i].cc_sessions = 1; /* Mark */ crypto_drivers[i].cc_flags = flags; if (bootverbose) printf("crypto: assign driver %u, flags %u\n", i, flags); mutex_spin_exit(&crypto_mtx); return i; } static struct cryptocap * crypto_checkdriver(u_int32_t hid) { if (crypto_drivers == NULL) return NULL; return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]); } /* * Register support for a key-related algorithm. This routine * is called once for each algorithm supported a driver. */ int crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags, int (*kprocess)(void *, struct cryptkop *, int), void *karg) { struct cryptocap *cap; int err; mutex_spin_enter(&crypto_mtx); cap = crypto_checkdriver(driverid); if (cap != NULL && (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { /* * XXX Do some performance testing to determine placing. * XXX We probably need an auxiliary data structure that * XXX describes relative performances. */ cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; if (bootverbose) { printf("crypto: driver %u registers key alg %u " " flags %u\n", driverid, kalg, flags ); } if (cap->cc_kprocess == NULL) { cap->cc_karg = karg; cap->cc_kprocess = kprocess; } err = 0; } else err = EINVAL; mutex_spin_exit(&crypto_mtx); return err; } /* * Register support for a non-key-related algorithm. This routine * is called once for each such algorithm supported by a driver. */ int crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen, u_int32_t flags, int (*newses)(void *, u_int32_t*, struct cryptoini*), int (*freeses)(void *, u_int64_t), int (*process)(void *, struct cryptop *, int), void *arg) { struct cryptocap *cap; int err; mutex_spin_enter(&crypto_mtx); cap = crypto_checkdriver(driverid); /* NB: algorithms are in the range [1..max] */ if (cap != NULL && (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) { /* * XXX Do some performance testing to determine placing. * XXX We probably need an auxiliary data structure that * XXX describes relative performances. */ cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; cap->cc_max_op_len[alg] = maxoplen; if (bootverbose) { printf("crypto: driver %u registers alg %u " "flags %u maxoplen %u\n", driverid, alg, flags, maxoplen ); } if (cap->cc_process == NULL) { cap->cc_arg = arg; cap->cc_newsession = newses; cap->cc_process = process; cap->cc_freesession = freeses; cap->cc_sessions = 0; /* Unmark */ } err = 0; } else err = EINVAL; mutex_spin_exit(&crypto_mtx); return err; } /* * Unregister a crypto driver. If there are pending sessions using it, * leave enough information around so that subsequent calls using those * sessions will correctly detect the driver has been unregistered and * reroute requests. */ int crypto_unregister(u_int32_t driverid, int alg) { int i, err; u_int32_t ses; struct cryptocap *cap; mutex_spin_enter(&crypto_mtx); cap = crypto_checkdriver(driverid); if (cap != NULL && (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) && cap->cc_alg[alg] != 0) { cap->cc_alg[alg] = 0; cap->cc_max_op_len[alg] = 0; /* Was this the last algorithm ? */ for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) if (cap->cc_alg[i] != 0) break; if (i == CRYPTO_ALGORITHM_MAX + 1) { ses = cap->cc_sessions; memset(cap, 0, sizeof(struct cryptocap)); if (ses != 0) { /* * If there are pending sessions, just mark as invalid. */ cap->cc_flags |= CRYPTOCAP_F_CLEANUP; cap->cc_sessions = ses; } } err = 0; } else err = EINVAL; mutex_spin_exit(&crypto_mtx); return err; } /* * Unregister all algorithms associated with a crypto driver. * If there are pending sessions using it, leave enough information * around so that subsequent calls using those sessions will * correctly detect the driver has been unregistered and reroute * requests. * * XXX careful. Don't change this to call crypto_unregister() for each * XXX registered algorithm unless you drop the mutex across the calls; * XXX you can't take it recursively. */ int crypto_unregister_all(u_int32_t driverid) { int i, err; u_int32_t ses; struct cryptocap *cap; mutex_spin_enter(&crypto_mtx); cap = crypto_checkdriver(driverid); if (cap != NULL) { for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) { cap->cc_alg[i] = 0; cap->cc_max_op_len[i] = 0; } ses = cap->cc_sessions; memset(cap, 0, sizeof(struct cryptocap)); if (ses != 0) { /* * If there are pending sessions, just mark as invalid. */ cap->cc_flags |= CRYPTOCAP_F_CLEANUP; cap->cc_sessions = ses; } err = 0; } else err = EINVAL; mutex_spin_exit(&crypto_mtx); return err; } /* * Clear blockage on a driver. The what parameter indicates whether * the driver is now ready for cryptop's and/or cryptokop's. */ int crypto_unblock(u_int32_t driverid, int what) { struct cryptocap *cap; int needwakeup, err; mutex_spin_enter(&crypto_mtx); cap = crypto_checkdriver(driverid); if (cap != NULL) { needwakeup = 0; if (what & CRYPTO_SYMQ) { needwakeup |= cap->cc_qblocked; cap->cc_qblocked = 0; } if (what & CRYPTO_ASYMQ) { needwakeup |= cap->cc_kqblocked; cap->cc_kqblocked = 0; } err = 0; mutex_spin_exit(&crypto_mtx); if (needwakeup) setsoftcrypto(softintr_cookie); } else { err = EINVAL; mutex_spin_exit(&crypto_mtx); } return err; } /* * Dispatch a crypto request to a driver or queue * it, to be processed by the kernel thread. */ int crypto_dispatch(struct cryptop *crp) { u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); int result; mutex_spin_enter(&crypto_mtx); DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n", crp, crp->crp_reqid, crp->crp_desc->crd_alg)); cryptostats.cs_ops++; #ifdef CRYPTO_TIMING if (crypto_timing) nanouptime(&crp->crp_tstamp); #endif if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { struct cryptocap *cap; /* * Caller marked the request to be processed * immediately; dispatch it directly to the * driver unless the driver is currently blocked. */ cap = crypto_checkdriver(hid); if (cap && !cap->cc_qblocked) { mutex_spin_exit(&crypto_mtx); result = crypto_invoke(crp, 0); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptop's and put * the op on the queue. */ mutex_spin_enter(&crypto_mtx); crypto_drivers[hid].cc_qblocked = 1; TAILQ_INSERT_HEAD(&crp_q, crp, crp_next); cryptostats.cs_blocks++; mutex_spin_exit(&crypto_mtx); } goto out_released; } else { /* * The driver is blocked, just queue the op until * it unblocks and the swi thread gets kicked. */ TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); result = 0; } } else { int wasempty = TAILQ_EMPTY(&crp_q); /* * Caller marked the request as ``ok to delay''; * queue it for the swi thread. This is desirable * when the operation is low priority and/or suitable * for batching. */ TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); if (wasempty) { mutex_spin_exit(&crypto_mtx); setsoftcrypto(softintr_cookie); result = 0; goto out_released; } result = 0; } mutex_spin_exit(&crypto_mtx); out_released: return result; } /* * Add an asymetric crypto request to a queue, * to be processed by the kernel thread. */ int crypto_kdispatch(struct cryptkop *krp) { struct cryptocap *cap; int result; mutex_spin_enter(&crypto_mtx); cryptostats.cs_kops++; cap = crypto_checkdriver(krp->krp_hid); if (cap && !cap->cc_kqblocked) { mutex_spin_exit(&crypto_mtx); result = crypto_kinvoke(krp, 0); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptop's and put * the op on the queue. */ mutex_spin_enter(&crypto_mtx); crypto_drivers[krp->krp_hid].cc_kqblocked = 1; TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); cryptostats.cs_kblocks++; mutex_spin_exit(&crypto_mtx); } } else { /* * The driver is blocked, just queue the op until * it unblocks and the swi thread gets kicked. */ TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); result = 0; mutex_spin_exit(&crypto_mtx); } return result; } /* * Dispatch an assymetric crypto request to the appropriate crypto devices. */ static int crypto_kinvoke(struct cryptkop *krp, int hint) { u_int32_t hid; int error; /* Sanity checks. */ if (krp == NULL) return EINVAL; if (krp->krp_callback == NULL) { cv_destroy(&krp->krp_cv); pool_put(&cryptkop_pool, krp); return EINVAL; } mutex_spin_enter(&crypto_mtx); for (hid = 0; hid < crypto_drivers_num; hid++) { if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && crypto_devallowsoft == 0) continue; if (crypto_drivers[hid].cc_kprocess == NULL) continue; if ((crypto_drivers[hid].cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) == 0) continue; break; } if (hid < crypto_drivers_num) { int (*process)(void *, struct cryptkop *, int); void *arg; process = crypto_drivers[hid].cc_kprocess; arg = crypto_drivers[hid].cc_karg; mutex_spin_exit(&crypto_mtx); krp->krp_hid = hid; error = (*process)(arg, krp, hint); } else { mutex_spin_exit(&crypto_mtx); error = ENODEV; } if (error) { krp->krp_status = error; crypto_kdone(krp); } return 0; } #ifdef CRYPTO_TIMING static void crypto_tstat(struct cryptotstat *ts, struct timespec *tv) { struct timespec now, t; nanouptime(&now); t.tv_sec = now.tv_sec - tv->tv_sec; t.tv_nsec = now.tv_nsec - tv->tv_nsec; if (t.tv_nsec < 0) { t.tv_sec--; t.tv_nsec += 1000000000; } timespecadd(&ts->acc, &t, &t); if (timespeccmp(&t, &ts->min, <)) ts->min = t; if (timespeccmp(&t, &ts->max, >)) ts->max = t; ts->count++; *tv = now; } #endif /* * Dispatch a crypto request to the appropriate crypto devices. */ static int crypto_invoke(struct cryptop *crp, int hint) { u_int32_t hid; #ifdef CRYPTO_TIMING if (crypto_timing) crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); #endif /* Sanity checks. */ if (crp == NULL) return EINVAL; if (crp->crp_callback == NULL) { return EINVAL; } if (crp->crp_desc == NULL) { crp->crp_etype = EINVAL; crypto_done(crp); return 0; } hid = CRYPTO_SESID2HID(crp->crp_sid); mutex_spin_enter(&crypto_mtx); if (hid < crypto_drivers_num) { int (*process)(void *, struct cryptop *, int); void *arg; if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) crypto_freesession(crp->crp_sid); process = crypto_drivers[hid].cc_process; arg = crypto_drivers[hid].cc_arg; mutex_spin_exit(&crypto_mtx); /* * Invoke the driver to process the request. */ DPRINTF(("calling process for %p\n", crp)); return (*process)(arg, crp, hint); } else { struct cryptodesc *crd; u_int64_t nid = 0; /* * Driver has unregistered; migrate the session and return * an error to the caller so they'll resubmit the op. */ for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next) crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI); if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0) crp->crp_sid = nid; crp->crp_etype = EAGAIN; mutex_spin_exit(&crypto_mtx); crypto_done(crp); return 0; } } /* * Release a set of crypto descriptors. */ void crypto_freereq(struct cryptop *crp) { struct cryptodesc *crd; if (crp == NULL) return; DPRINTF(("crypto_freereq[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp)); /* sanity check */ if (crp->crp_flags & CRYPTO_F_ONRETQ) { panic("crypto_freereq() freeing crp on RETQ\n"); } while ((crd = crp->crp_desc) != NULL) { crp->crp_desc = crd->crd_next; pool_put(&cryptodesc_pool, crd); } cv_destroy(&crp->crp_cv); pool_put(&cryptop_pool, crp); } /* * Acquire a set of crypto descriptors. */ struct cryptop * crypto_getreq(int num) { struct cryptodesc *crd; struct cryptop *crp; crp = pool_get(&cryptop_pool, 0); if (crp == NULL) { return NULL; } memset(crp, 0, sizeof(struct cryptop)); cv_init(&crp->crp_cv, "crydev"); while (num--) { crd = pool_get(&cryptodesc_pool, 0); if (crd == NULL) { crypto_freereq(crp); return NULL; } memset(crd, 0, sizeof(struct cryptodesc)); crd->crd_next = crp->crp_desc; crp->crp_desc = crd; } return crp; } /* * Invoke the callback on behalf of the driver. */ void crypto_done(struct cryptop *crp) { int wasempty; if (crp->crp_etype != 0) cryptostats.cs_errs++; #ifdef CRYPTO_TIMING if (crypto_timing) crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); #endif DPRINTF(("crypto_done[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp)); /* * Normal case; queue the callback for the thread. * * The return queue is manipulated by the swi thread * and, potentially, by crypto device drivers calling * back to mark operations completed. Thus we need * to mask both while manipulating the return queue. */ if (crp->crp_flags & CRYPTO_F_CBIMM) { /* * Do the callback directly. This is ok when the * callback routine does very little (e.g. the * /dev/crypto callback method just does a wakeup). */ mutex_spin_enter(&crypto_mtx); crp->crp_flags |= CRYPTO_F_DONE; mutex_spin_exit(&crypto_mtx); #ifdef CRYPTO_TIMING if (crypto_timing) { /* * NB: We must copy the timestamp before * doing the callback as the cryptop is * likely to be reclaimed. */ struct timespec t = crp->crp_tstamp; crypto_tstat(&cryptostats.cs_cb, &t); crp->crp_callback(crp); crypto_tstat(&cryptostats.cs_finis, &t); } else #endif crp->crp_callback(crp); } else { mutex_spin_enter(&crypto_mtx); crp->crp_flags |= CRYPTO_F_DONE; if (crp->crp_flags & CRYPTO_F_USER) { /* the request has completed while * running in the user context * so don't queue it - the user * thread won't sleep when it sees * the CRYPTO_F_DONE flag. * This is an optimization to avoid * unecessary context switches. */ DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n", CRYPTO_SESID2LID(crp->crp_sid), crp)); } else { wasempty = TAILQ_EMPTY(&crp_ret_q); DPRINTF(("crypto_done[%u]: queueing %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp)); crp->crp_flags |= CRYPTO_F_ONRETQ; TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next); if (wasempty) { DPRINTF(("crypto_done[%u]: waking cryptoret, " "crp %p hit empty queue\n.", CRYPTO_SESID2LID(crp->crp_sid), crp)); cv_signal(&cryptoret_cv); } } mutex_spin_exit(&crypto_mtx); } } /* * Invoke the callback on behalf of the driver. */ void crypto_kdone(struct cryptkop *krp) { int wasempty; if (krp->krp_status != 0) cryptostats.cs_kerrs++; krp->krp_flags |= CRYPTO_F_DONE; /* * The return queue is manipulated by the swi thread * and, potentially, by crypto device drivers calling * back to mark operations completed. Thus we need * to mask both while manipulating the return queue. */ if (krp->krp_flags & CRYPTO_F_CBIMM) { krp->krp_callback(krp); } else { mutex_spin_enter(&crypto_mtx); wasempty = TAILQ_EMPTY(&crp_ret_kq); krp->krp_flags |= CRYPTO_F_ONRETQ; TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next); if (wasempty) cv_signal(&cryptoret_cv); mutex_spin_exit(&crypto_mtx); } } int crypto_getfeat(int *featp) { int hid, kalg, feat = 0; mutex_spin_enter(&crypto_mtx); if (crypto_userasymcrypto == 0) goto out; for (hid = 0; hid < crypto_drivers_num; hid++) { if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) && crypto_devallowsoft == 0) { continue; } if (crypto_drivers[hid].cc_kprocess == NULL) continue; for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) if ((crypto_drivers[hid].cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) != 0) feat |= 1 << kalg; } out: mutex_spin_exit(&crypto_mtx); *featp = feat; return (0); } /* * Software interrupt thread to dispatch crypto requests. */ static void cryptointr(void) { struct cryptop *crp, *submit, *cnext; struct cryptkop *krp, *knext; struct cryptocap *cap; int result, hint; cryptostats.cs_intrs++; mutex_spin_enter(&crypto_mtx); do { /* * Find the first element in the queue that can be * processed and look-ahead to see if multiple ops * are ready for the same driver. */ submit = NULL; hint = 0; TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) { u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid); cap = crypto_checkdriver(hid); if (cap == NULL || cap->cc_process == NULL) { /* Op needs to be migrated, process it. */ if (submit == NULL) submit = crp; break; } if (!cap->cc_qblocked) { if (submit != NULL) { /* * We stop on finding another op, * regardless whether its for the same * driver or not. We could keep * searching the queue but it might be * better to just use a per-driver * queue instead. */ if (CRYPTO_SESID2HID(submit->crp_sid) == hid) hint = CRYPTO_HINT_MORE; break; } else { submit = crp; if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) break; /* keep scanning for more are q'd */ } } } if (submit != NULL) { TAILQ_REMOVE(&crp_q, submit, crp_next); mutex_spin_exit(&crypto_mtx); result = crypto_invoke(submit, hint); /* we must take here as the TAILQ op or kinvoke may need this mutex below. sigh. */ mutex_spin_enter(&crypto_mtx); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ /* XXX validate sid again? */ crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1; TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); cryptostats.cs_blocks++; } } /* As above, but for key ops */ TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) { cap = crypto_checkdriver(krp->krp_hid); if (cap == NULL || cap->cc_kprocess == NULL) { /* Op needs to be migrated, process it. */ break; } if (!cap->cc_kqblocked) break; } if (krp != NULL) { TAILQ_REMOVE(&crp_kq, krp, krp_next); mutex_spin_exit(&crypto_mtx); result = crypto_kinvoke(krp, 0); /* the next iteration will want the mutex. :-/ */ mutex_spin_enter(&crypto_mtx); if (result == ERESTART) { /* * The driver ran out of resources, mark the * driver ``blocked'' for cryptkop's and put * the request back in the queue. It would * best to put the request back where we got * it but that's hard so for now we put it * at the front. This should be ok; putting * it at the end does not work. */ /* XXX validate sid again? */ crypto_drivers[krp->krp_hid].cc_kqblocked = 1; TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); cryptostats.cs_kblocks++; } } } while (submit != NULL || krp != NULL); mutex_spin_exit(&crypto_mtx); } /* * Kernel thread to do callbacks. */ static void cryptoret(void) { struct cryptop *crp; struct cryptkop *krp; mutex_spin_enter(&crypto_mtx); for (;;) { crp = TAILQ_FIRST(&crp_ret_q); if (crp != NULL) { TAILQ_REMOVE(&crp_ret_q, crp, crp_next); crp->crp_flags &= ~CRYPTO_F_ONRETQ; } krp = TAILQ_FIRST(&crp_ret_kq); if (krp != NULL) { TAILQ_REMOVE(&crp_ret_kq, krp, krp_next); krp->krp_flags &= ~CRYPTO_F_ONRETQ; } /* drop before calling any callbacks. */ if (crp == NULL && krp == NULL) { cryptostats.cs_rets++; cv_wait(&cryptoret_cv, &crypto_mtx); continue; } mutex_spin_exit(&crypto_mtx); if (crp != NULL) { #ifdef CRYPTO_TIMING if (crypto_timing) { /* * NB: We must copy the timestamp before * doing the callback as the cryptop is * likely to be reclaimed. */ struct timespec t = crp->crp_tstamp; crypto_tstat(&cryptostats.cs_cb, &t); crp->crp_callback(crp); crypto_tstat(&cryptostats.cs_finis, &t); } else #endif { crp->crp_callback(crp); } } if (krp != NULL) krp->krp_callback(krp); mutex_spin_enter(&crypto_mtx); } }