/* $NetBSD: zs.c,v 1.19 2006/03/28 17:38:25 thorpej Exp $ */ /*- * Copyright (c) 1996, 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross and Wayne Knowles * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. */ #include __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.19 2006/03/28 17:38:25 thorpej Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zsc.h" /* NZSC */ #define NZS NZSC /* Make life easier for the initialized arrays here. */ #if NZS < 2 #undef NZS #define NZS 2 #endif /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); #define PCLK 10000000 /* PCLK pin input clock rate */ #ifndef ZS_DEFSPEED #define ZS_DEFSPEED 9600 #endif /* * Define interrupt levels. */ #define ZSHARD_PRI 64 /* Register recovery time is 3.5 to 4 PCLK Cycles */ #define ZS_RECOVERY 1 /* 1us = 10 PCLK Cycles */ #define ZS_DELAY() delay(ZS_RECOVERY) /* The layout of this is hardware-dependent (padding, order). */ struct zschan { u_char pad1[3]; volatile u_char zc_csr; /* ctrl,status, and indirect access */ u_char pad2[3]; volatile u_char zc_data; /* data */ }; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* Return the byte offset of element within a structure */ #define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el) #define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a) #define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b) #define ZS_REG_CSR OFFSET(struct zschan, zc_csr) #define ZS_REG_DATA OFFSET(struct zschan, zc_data) static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B}; /* Flags from cninit() */ static int zs_hwflags[NZS][2]; /* Default speed for all channels */ static int zs_defspeed = ZS_DEFSPEED; static volatile int zssoftpending; static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ ZSHARD_PRI, /* 2: IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA, BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE, }; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zs_match __P((struct device *, struct cfdata *, void *)); static void zs_attach __P((struct device *, struct device *, void *)); static int zs_print __P((void *, const char *name)); CFATTACH_DECL(zsc, sizeof(struct zsc_softc), zs_match, zs_attach, NULL, NULL); extern struct cfdriver zsc_cd; static int zshard __P((void *)); void zssoft __P((void *)); static int zs_get_speed __P((struct zs_chanstate *)); struct zschan *zs_get_chan_addr (int zs_unit, int channel); int zs_getc __P((void *)); void zs_putc __P((void *, int)); /* * Is the zs chip present? */ static int zs_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct confargs *ca = aux; void *va; if (strcmp(ca->ca_name, "zsc")) return 0; va = (void *)cf->cf_addr; /* This returns -1 on a fault (bus error). */ if (badaddr(va, 1)) return 0; return 1; } /* * Attach a found zs. * * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static void zs_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *) self; struct confargs *ca = aux; struct zsc_attach_args zsc_args; struct zs_chanstate *cs; struct zs_channel *ch; int zs_unit, channel, s; zsc->zsc_bustag = ca->ca_bustag; if (bus_space_map(ca->ca_bustag, ca->ca_addr, sizeof(struct zsdevice), BUS_SPACE_MAP_LINEAR, &zsc->zsc_base) != 0) { printf(": cannot map registers\n"); return; } zs_unit = device_unit(&zsc->zsc_dev); printf("\n"); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zs_unit][channel]; ch = &zsc->zsc_cs_store[channel]; cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch; simple_lock_init(&cs->cs_lock); cs->cs_reg_csr = NULL; cs->cs_reg_data = NULL; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; if (bus_space_subregion(ca->ca_bustag, zsc->zsc_base, zs_chan_offset[channel], sizeof(struct zschan), &ch->cs_regs) != 0) { printf(": cannot map regs\n"); return; } ch->cs_bustag = ca->ca_bustag; memcpy(cs->cs_creg, zs_init_reg, 16); memcpy(cs->cs_preg, zs_init_reg, 16); if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) cs->cs_defspeed = zs_get_speed(cs); else cs->cs_defspeed = zs_defspeed; cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zs_print)) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splhigh(); zs_write_reg(cs, 9, reset); splx(s); } } zsc->sc_si = softintr_establish(IPL_SOFTSERIAL, zssoft, zsc); bus_intr_establish(zsc->zsc_bustag, SYS_INTR_SCC0, 0, 0, zshard, NULL); evcnt_attach_dynamic(&zsc->zs_intrcnt, EVCNT_TYPE_INTR, NULL, self->dv_xname, "intr"); /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splhigh(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } static int zs_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) aprint_normal("%s: ", name); if (args->channel != -1) aprint_normal(" channel %d", args->channel); return UNCONF; } /* * Our ZS chips all share a common, autovectored interrupt, * so we have to look at all of them on each interrupt. */ static int zshard(arg) void *arg; { register struct zsc_softc *zsc; register int unit, rval, softreq; rval = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; rval |= zsc_intr_hard(zsc); softreq = zsc->zsc_cs[0]->cs_softreq; softreq |= zsc->zsc_cs[1]->cs_softreq; if (softreq && (zssoftpending == 0)) { zssoftpending = 1; softintr_schedule(zsc->sc_si); } zsc->zs_intrcnt.ev_count++; } return rval; } /* * Similar scheme as for zshard (look at all of them) */ void zssoft(arg) void *arg; { register struct zsc_softc *zsc; register int s, unit; /* This is not the only ISR on this IPL. */ if (zssoftpending == 0) return; /* * The soft intr. bit will be set by zshard only if * the variable zssoftpending is zero. The order of * these next two statements prevents our clearing * the soft intr bit just after zshard has set it. */ /*isr_soft_clear(ZSSOFT_PRI);*/ zssoftpending = 0; /* Make sure we call the tty layer at spltty. */ s = spltty(); for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; (void) zsc_intr_soft(zsc); } splx(s); return; } /* * Compute the current baud rate given a ZS channel. */ static int zs_get_speed(cs) struct zs_chanstate *cs; { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(cs, bps) struct zs_chanstate *cs; int bps; /* bits per second */ { int tconst, real_bps; #if 0 while (!(zs_read_csr(cs) & ZSRR0_TX_READY)) {/*nop*/} #endif /* Wait for transmit buffer to empty */ if (bps == 0) { return (0); } #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); /* XXX - Allow some tolerance here? */ #if 0 if (real_bps != bps) return (EINVAL); #endif cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(cs, cflag) struct zs_chanstate *cs; int cflag; /* bits per second */ { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg); ZS_DELAY(); val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR); ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg); ZS_DELAY(); bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val); ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { struct zs_channel *zsc = (struct zs_channel *)cs; register u_char val; val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR); ZS_DELAY(); return val; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val); ZS_DELAY(); } u_char zs_read_data(cs) struct zs_chanstate *cs; { struct zs_channel *zsc = (struct zs_channel *)cs; register u_char val; val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA); ZS_DELAY(); return val; } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { struct zs_channel *zsc = (struct zs_channel *)cs; bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val); ZS_DELAY(); } void zs_abort(cs) struct zs_chanstate *cs; { #if defined(KGDB) zskgdb(cs); #elif defined(DDB) Debugger(); #endif } /*********************************************************/ /* Polled character I/O functions for console and KGDB */ /*********************************************************/ struct zschan * zs_get_chan_addr(zs_unit, channel) int zs_unit, channel; { struct zsdevice *addr; struct zschan *zc; if (zs_unit >= NZS) return NULL; addr = (struct zsdevice *) ZS0_ADDR; if (channel == 0) { zc = &addr->zs_chan_a; } else { zc = &addr->zs_chan_b; } return (zc); } int zs_getc(arg) void *arg; { register volatile struct zschan *zc = arg; register int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); return (c); } /* * Polled output char. */ void zs_putc(arg, c) void *arg; int c; { register volatile struct zschan *zc = arg; register int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); zc->zc_data = c; wbflush(); ZS_DELAY(); splx(s); } /***************************************************************/ static void zscnprobe __P((struct consdev *)); static void zscninit __P((struct consdev *)); static int zscngetc __P((dev_t)); static void zscnputc __P((dev_t, int)); static void zscnpollc __P((dev_t, int)); static int cons_port; struct consdev consdev_zs = { zscnprobe, zscninit, zscngetc, zscnputc, zscnpollc }; void zscnprobe(cn) struct consdev *cn; { } void zscninit(cn) struct consdev *cn; { extern const struct cdevsw zstty_cdevsw; cons_port = prom_getconsole(); cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), cons_port); cn->cn_pri = CN_REMOTE; zs_hwflags[0][cons_port] = ZS_HWFLAG_CONSOLE; } int zscngetc(dev) dev_t dev; { struct zschan *zs; zs = zs_get_chan_addr(0, cons_port); return zs_getc(zs); } void zscnputc(dev, c) dev_t dev; int c; { struct zschan *zs; zs = zs_get_chan_addr(0, cons_port); zs_putc(zs, c); } void zscnpollc(dev, on) dev_t dev; int on; { }