/* $NetBSD: ms.c,v 1.6 1996/05/17 19:32:09 gwr Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ms.c 8.1 (Berkeley) 6/11/93 */ /* * Mouse driver (/dev/mouse) */ /* * Zilog Z8530 Dual UART driver (mouse interface) * * This is the "slave" driver that will be attached to * the "zsc" driver for a Sun mouse. */ #include #include #include #include #include #include #include #include #include #include #include #include "event_var.h" /* * How many input characters we can buffer. * The port-specific var.h may override this. * Note: must be a power of two! */ #define MS_RX_RING_SIZE 256 #define MS_RX_RING_MASK (MS_RX_RING_SIZE-1) /* * Output buffer. Only need a few chars. */ #define MS_TX_RING_SIZE 16 #define MS_TX_RING_MASK (MS_TX_RING_SIZE-1) /* * Keyboard serial line speed is fixed at 1200 bps. */ #define MS_BPS 1200 /* * Mouse state. A Mouse Systems mouse is a fairly simple device, * producing five-byte blobs of the form: * * b dx dy dx dy * * where b is the button state, encoded as 0x80|(~buttons)---there are * three buttons (4=left, 2=middle, 1=right)---and dx,dy are X and Y * delta values, none of which have are in [0x80..0x87]. (This lets * us sync up with the mouse after an error.) */ struct ms_softc { struct device ms_dev; /* required first: base device */ struct zs_chanstate *ms_cs; /* Flags to communicate with ms_softintr() */ volatile int ms_intr_flags; #define INTR_RX_OVERRUN 1 #define INTR_TX_EMPTY 2 #define INTR_ST_CHECK 4 /* * The receive ring buffer. */ u_int ms_rbget; /* ring buffer `get' index */ volatile u_int ms_rbput; /* ring buffer `put' index */ u_short ms_rbuf[MS_RX_RING_SIZE]; /* rr1, data pairs */ /* * State of input translator */ short ms_byteno; /* input byte number, for decode */ char ms_mb; /* mouse button state */ char ms_ub; /* user button state */ int ms_dx; /* delta-x */ int ms_dy; /* delta-y */ /* * State of upper interface. */ volatile int ms_ready; /* event queue is ready */ struct evvar ms_events; /* event queue state */ } ms_softc; cdev_decl(ms); /* open, close, read, write, ioctl, stop, ... */ struct zsops zsops_ms; /**************************************************************** * Definition of the driver for autoconfig. ****************************************************************/ static int ms_match(struct device *, void *, void *); static void ms_attach(struct device *, struct device *, void *); struct cfattach ms_ca = { sizeof(struct ms_softc), ms_match, ms_attach }; struct cfdriver ms_cd = { NULL, "ms", DV_DULL }; /* * ms_match: how is this zs channel configured? */ int ms_match(parent, match, aux) struct device *parent; void *match, *aux; { struct cfdata *cf = match; struct zsc_attach_args *args = aux; /* Exact match required for keyboard. */ if (cf->cf_loc[0] == args->channel) return 2; return 0; } void ms_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct zsc_softc *zsc = (void *) parent; struct ms_softc *ms = (void *) self; struct zsc_attach_args *args = aux; struct zs_chanstate *cs; struct cfdata *cf; int channel, ms_unit; int reset, s, tconst; cf = ms->ms_dev.dv_cfdata; ms_unit = ms->ms_dev.dv_unit; channel = args->channel; cs = &zsc->zsc_cs[channel]; cs->cs_private = ms; cs->cs_ops = &zsops_ms; ms->ms_cs = cs; printf("\n"); /* Initialize the speed, etc. */ tconst = BPS_TO_TCONST(cs->cs_brg_clk, MS_BPS); s = splzs(); /* May need reset... */ reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; zs_write_reg(cs, 9, reset); /* These are OK as set by zscc: WR3, WR4, WR5 */ cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS; cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; zs_loadchannelregs(cs); splx(s); /* Initialize translator. */ ms->ms_byteno = -1; } /**************************************************************** * Entry points for /dev/mouse * (open,close,read,write,...) ****************************************************************/ int msopen(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { struct ms_softc *ms; int error, s, unit; unit = minor(dev); if (unit >= ms_cd.cd_ndevs) return (ENXIO); ms = ms_cd.cd_devs[unit]; if (ms == NULL) return (ENXIO); /* This is an exclusive open device. */ if (ms->ms_events.ev_io) return (EBUSY); ms->ms_events.ev_io = p; ev_init(&ms->ms_events); /* may cause sleep */ ms->ms_ready = 1; /* start accepting events */ return (0); } int msclose(dev, flags, mode, p) dev_t dev; int flags, mode; struct proc *p; { struct ms_softc *ms; ms = ms_cd.cd_devs[minor(dev)]; ms->ms_ready = 0; /* stop accepting events */ ev_fini(&ms->ms_events); ms->ms_events.ev_io = NULL; return (0); } int msread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { struct ms_softc *ms; ms = ms_cd.cd_devs[minor(dev)]; return (ev_read(&ms->ms_events, uio, flags)); } /* this routine should not exist, but is convenient to write here for now */ int mswrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { return (EOPNOTSUPP); } int msioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; register caddr_t data; int flag; struct proc *p; { struct ms_softc *ms; ms = ms_cd.cd_devs[minor(dev)]; switch (cmd) { case FIONBIO: /* we will remove this someday (soon???) */ return (0); case FIOASYNC: ms->ms_events.ev_async = *(int *)data != 0; return (0); case TIOCSPGRP: if (*(int *)data != ms->ms_events.ev_io->p_pgid) return (EPERM); return (0); case VUIDGFORMAT: /* we only do firm_events */ *(int *)data = VUID_FIRM_EVENT; return (0); case VUIDSFORMAT: if (*(int *)data != VUID_FIRM_EVENT) return (EINVAL); return (0); } return (ENOTTY); } int msselect(dev, rw, p) dev_t dev; int rw; struct proc *p; { struct ms_softc *ms; ms = ms_cd.cd_devs[minor(dev)]; return (ev_select(&ms->ms_events, rw, p)); } /**************************************************************** * Middle layer (translator) ****************************************************************/ /* * Called by our ms_softint() routine on input. */ void ms_input(ms, c) register struct ms_softc *ms; register int c; { register struct firm_event *fe; register int mb, ub, d, get, put, any; static const char to_one[] = { 1, 2, 2, 4, 4, 4, 4 }; static const int to_id[] = { MS_RIGHT, MS_MIDDLE, 0, MS_LEFT }; /* * Discard input if not ready. Drop sync on parity or framing * error; gain sync on button byte. */ if (ms->ms_ready == 0) return; if (c == -1) { ms->ms_byteno = -1; return; } if ((c & ~7) == 0x80) /* if in 0x80..0x87 */ ms->ms_byteno = 0; /* * Run the decode loop, adding to the current information. * We add, rather than replace, deltas, so that if the event queue * fills, we accumulate data for when it opens up again. */ switch (ms->ms_byteno) { case -1: return; case 0: /* buttons */ ms->ms_byteno = 1; ms->ms_mb = (~c) & 0x7; return; case 1: /* first delta-x */ ms->ms_byteno = 2; ms->ms_dx += (char)c; return; case 2: /* first delta-y */ ms->ms_byteno = 3; ms->ms_dy += (char)c; return; case 3: /* second delta-x */ ms->ms_byteno = 4; ms->ms_dx += (char)c; return; case 4: /* second delta-x */ ms->ms_byteno = -1; /* wait for button-byte again */ ms->ms_dy += (char)c; break; default: panic("ms_rint"); /* NOTREACHED */ } /* * We have at least one event (mouse button, delta-X, or * delta-Y; possibly all three, and possibly three separate * button events). Deliver these events until we are out * of changes or out of room. As events get delivered, * mark them `unchanged'. */ any = 0; get = ms->ms_events.ev_get; put = ms->ms_events.ev_put; fe = &ms->ms_events.ev_q[put]; /* NEXT prepares to put the next event, backing off if necessary */ #define NEXT \ if ((++put) % EV_QSIZE == get) { \ put--; \ goto out; \ } /* ADVANCE completes the `put' of the event */ #define ADVANCE \ fe++; \ if (put >= EV_QSIZE) { \ put = 0; \ fe = &ms->ms_events.ev_q[0]; \ } \ any = 1 mb = ms->ms_mb; ub = ms->ms_ub; while ((d = mb ^ ub) != 0) { /* * Mouse button change. Convert up to three changes * to the `first' change, and drop it into the event queue. */ NEXT; d = to_one[d - 1]; /* from 1..7 to {1,2,4} */ fe->id = to_id[d - 1]; /* from {1,2,4} to ID */ fe->value = mb & d ? VKEY_DOWN : VKEY_UP; fe->time = time; ADVANCE; ub ^= d; } if (ms->ms_dx) { NEXT; fe->id = LOC_X_DELTA; fe->value = ms->ms_dx; fe->time = time; ADVANCE; ms->ms_dx = 0; } if (ms->ms_dy) { NEXT; fe->id = LOC_Y_DELTA; fe->value = ms->ms_dy; fe->time = time; ADVANCE; ms->ms_dy = 0; } out: if (any) { ms->ms_ub = ub; ms->ms_events.ev_put = put; EV_WAKEUP(&ms->ms_events); } } /**************************************************************** * Interface to the lower layer (zscc) ****************************************************************/ static void ms_rxint(cs) register struct zs_chanstate *cs; { register struct ms_softc *ms; register int put, put_next; register u_char c, rr1; ms = cs->cs_private; put = ms->ms_rbput; /* * First read the status, because reading the received char * destroys the status of this char. */ rr1 = zs_read_reg(cs, 1); c = zs_read_data(cs); if (rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { /* Clear the receive error. */ zs_write_csr(cs, ZSWR0_RESET_ERRORS); } ms->ms_rbuf[put] = (c << 8) | rr1; put_next = (put + 1) & MS_RX_RING_MASK; /* Would overrun if increment makes (put==get). */ if (put_next == ms->ms_rbget) { ms->ms_intr_flags |= INTR_RX_OVERRUN; } else { /* OK, really increment. */ put = put_next; } /* Done reading. */ ms->ms_rbput = put; /* Ask for softint() call. */ cs->cs_softreq = 1; } static void ms_txint(cs) register struct zs_chanstate *cs; { register struct ms_softc *ms; ms = cs->cs_private; zs_write_csr(cs, ZSWR0_RESET_TXINT); ms->ms_intr_flags |= INTR_TX_EMPTY; /* Ask for softint() call. */ cs->cs_softreq = 1; } static void ms_stint(cs) register struct zs_chanstate *cs; { register struct ms_softc *ms; register int rr0; ms = cs->cs_private; cs->cs_rr0_new = zs_read_csr(cs); zs_write_csr(cs, ZSWR0_RESET_STATUS); ms->ms_intr_flags |= INTR_ST_CHECK; /* Ask for softint() call. */ cs->cs_softreq = 1; } static void ms_softint(cs) struct zs_chanstate *cs; { register struct ms_softc *ms; register int get, c, s; int intr_flags; register u_short ring_data; register u_char rr0, rr1; ms = cs->cs_private; /* Atomically get and clear flags. */ s = splzs(); intr_flags = ms->ms_intr_flags; ms->ms_intr_flags = 0; /* Now lower to spltty for the rest. */ (void) spltty(); /* * Copy data from the receive ring to the event layer. */ get = ms->ms_rbget; while (get != ms->ms_rbput) { ring_data = ms->ms_rbuf[get]; get = (get + 1) & MS_RX_RING_MASK; /* low byte of ring_data is rr1 */ c = (ring_data >> 8) & 0xff; if (ring_data & ZSRR1_DO) intr_flags |= INTR_RX_OVERRUN; if (ring_data & (ZSRR1_FE | ZSRR1_PE)) { log(LOG_ERR, "%s: input error (0x%x)\n", ms->ms_dev.dv_xname, ring_data); c = -1; /* signal input error */ } /* Pass this up to the "middle" layer. */ ms_input(ms, c); } if (intr_flags & INTR_RX_OVERRUN) { log(LOG_ERR, "%s: input overrun\n", ms->ms_dev.dv_xname); } ms->ms_rbget = get; if (intr_flags & INTR_TX_EMPTY) { /* * Transmit done. (Not expected.) */ log(LOG_ERR, "%s: transmit interrupt?\n", ms->ms_dev.dv_xname); } if (intr_flags & INTR_ST_CHECK) { /* * Status line change. (Not expected.) */ log(LOG_ERR, "%s: status interrupt?\n", ms->ms_dev.dv_xname); cs->cs_rr0 = cs->cs_rr0_new; } splx(s); } struct zsops zsops_ms = { ms_rxint, /* receive char available */ ms_stint, /* external/status */ ms_txint, /* xmit buffer empty */ ms_softint, /* process software interrupt */ };