/* $NetBSD: twe.c,v 1.106 2016/09/27 03:33:32 pgoyette Exp $ */ /*- * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2000 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp */ /* * Driver for the 3ware Escalade family of RAID controllers. */ #include __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.106 2016/09/27 03:33:32 pgoyette Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "locators.h" #include "ioconf.h" #define PCI_CBIO 0x10 static int twe_aen_get(struct twe_softc *, uint16_t *); static void twe_aen_handler(struct twe_ccb *, int); static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int); static uint16_t twe_aen_dequeue(struct twe_softc *); static void twe_attach(device_t, device_t, void *); static int twe_rescan(device_t, const char *, const int *); static int twe_init_connection(struct twe_softc *); static int twe_intr(void *); static int twe_match(device_t, cfdata_t, void *); static int twe_param_set(struct twe_softc *, int, int, size_t, void *); static void twe_poll(struct twe_softc *); static int twe_print(void *, const char *); static int twe_reset(struct twe_softc *); static int twe_status_check(struct twe_softc *, u_int); static int twe_status_wait(struct twe_softc *, u_int, int); static void twe_describe_controller(struct twe_softc *); static void twe_clear_pci_abort(struct twe_softc *sc); static void twe_clear_pci_parity_error(struct twe_softc *sc); static int twe_add_unit(struct twe_softc *, int); static int twe_del_unit(struct twe_softc *, int); static int twe_init_connection(struct twe_softc *); static inline u_int32_t twe_inl(struct twe_softc *, int); static inline void twe_outl(struct twe_softc *, int, u_int32_t); extern struct cfdriver twe_cd; CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc), twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0); /* FreeBSD driver revision for sysctl expected by the 3ware cli */ const char twever[] = "1.50.01.002"; /* * Tables to convert numeric codes to strings. */ const struct twe_code_table twe_table_status[] = { { 0x00, "successful completion" }, /* info */ { 0x42, "command in progress" }, { 0x6c, "retrying interface CRC error from UDMA command" }, /* warning */ { 0x81, "redundant/inconsequential request ignored" }, { 0x8e, "failed to write zeroes to LBA 0" }, { 0x8f, "failed to profile TwinStor zones" }, /* fatal */ { 0xc1, "aborted due to system command or reconfiguration" }, { 0xc4, "aborted" }, { 0xc5, "access error" }, { 0xc6, "access violation" }, { 0xc7, "device failure" }, /* high byte may be port # */ { 0xc8, "controller error" }, { 0xc9, "timed out" }, { 0xcb, "invalid unit number" }, { 0xcf, "unit not available" }, { 0xd2, "undefined opcode" }, { 0xdb, "request incompatible with unit" }, { 0xdc, "invalid request" }, { 0xff, "firmware error, reset requested" }, { 0, NULL } }; const struct twe_code_table twe_table_unitstate[] = { { TWE_PARAM_UNITSTATUS_Normal, "Normal" }, { TWE_PARAM_UNITSTATUS_Initialising, "Initializing" }, { TWE_PARAM_UNITSTATUS_Degraded, "Degraded" }, { TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" }, { TWE_PARAM_UNITSTATUS_Verifying, "Verifying" }, { TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" }, { TWE_PARAM_UNITSTATUS_Missing, "Missing" }, { 0, NULL } }; const struct twe_code_table twe_table_unittype[] = { /* array descriptor configuration */ { TWE_AD_CONFIG_RAID0, "RAID0" }, { TWE_AD_CONFIG_RAID1, "RAID1" }, { TWE_AD_CONFIG_TwinStor, "TwinStor" }, { TWE_AD_CONFIG_RAID5, "RAID5" }, { TWE_AD_CONFIG_RAID10, "RAID10" }, { TWE_UD_CONFIG_JBOD, "JBOD" }, { 0, NULL } }; const struct twe_code_table twe_table_stripedepth[] = { { TWE_AD_STRIPE_4k, "4K" }, { TWE_AD_STRIPE_8k, "8K" }, { TWE_AD_STRIPE_16k, "16K" }, { TWE_AD_STRIPE_32k, "32K" }, { TWE_AD_STRIPE_64k, "64K" }, { TWE_AD_STRIPE_128k, "128K" }, { TWE_AD_STRIPE_256k, "256K" }, { TWE_AD_STRIPE_512k, "512K" }, { TWE_AD_STRIPE_1024k, "1024K" }, { 0, NULL } }; /* * Asynchronous event notification messages are qualified: * a - not unit/port specific * u - unit specific * p - port specific * * They are further qualified with a severity: * E - LOG_EMERG * a - LOG_ALERT * c - LOG_CRIT * e - LOG_ERR * w - LOG_WARNING * n - LOG_NOTICE * i - LOG_INFO * d - LOG_DEBUG * blank - just use printf */ const struct twe_code_table twe_table_aen[] = { { 0x00, "a queue empty" }, { 0x01, "a soft reset" }, { 0x02, "uc degraded mode" }, { 0x03, "aa controller error" }, { 0x04, "uE rebuild fail" }, { 0x05, "un rebuild done" }, { 0x06, "ue incomplete unit" }, { 0x07, "un initialization done" }, { 0x08, "uw unclean shutdown detected" }, { 0x09, "pe drive timeout" }, { 0x0a, "pc drive error" }, { 0x0b, "un rebuild started" }, { 0x0c, "un initialization started" }, { 0x0d, "ui logical unit deleted" }, { 0x0f, "pc SMART threshold exceeded" }, { 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */ { 0x21, "pe ATA UDMA downgrade" }, { 0x22, "pi ATA UDMA upgrade" }, { 0x23, "pw sector repair occurred" }, { 0x24, "aa SBUF integrity check failure" }, { 0x25, "pa lost cached write" }, { 0x26, "pa drive ECC error detected" }, { 0x27, "pe DCB checksum error" }, { 0x28, "pn DCB unsupported version" }, { 0x29, "ui verify started" }, { 0x2a, "ua verify failed" }, { 0x2b, "ui verify complete" }, { 0x2c, "pw overwrote bad sector during rebuild" }, { 0x2d, "pa encountered bad sector during rebuild" }, { 0x2e, "pe replacement drive too small" }, { 0x2f, "ue array not previously initialized" }, { 0x30, "p drive not supported" }, { 0xff, "a aen queue full" }, { 0, NULL }, }; const char * twe_describe_code(const struct twe_code_table *table, uint32_t code) { for (; table->string != NULL; table++) { if (table->code == code) return (table->string); } return (NULL); } static inline u_int32_t twe_inl(struct twe_softc *sc, int off) { bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ); return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off)); } static inline void twe_outl(struct twe_softc *sc, int off, u_int32_t val) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val); bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4, BUS_SPACE_BARRIER_WRITE); } /* * Match a supported board. */ static int twe_match(device_t parent, cfdata_t cfdata, void *aux) { struct pci_attach_args *pa; pa = aux; return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC)); } /* * Attach a supported board. * * XXX This doesn't fail gracefully. */ static void twe_attach(device_t parent, device_t self, void *aux) { struct pci_attach_args *pa; struct twe_softc *sc; pci_chipset_tag_t pc; pci_intr_handle_t ih; pcireg_t csr; const char *intrstr; int s, size, i, rv, rseg; size_t max_segs, max_xfer; bus_dma_segment_t seg; const struct sysctlnode *node; struct twe_cmd *tc; struct twe_ccb *ccb; char intrbuf[PCI_INTRSTR_LEN]; sc = device_private(self); sc->sc_dev = self; pa = aux; pc = pa->pa_pc; sc->sc_dmat = pa->pa_dmat; SIMPLEQ_INIT(&sc->sc_ccb_queue); SLIST_INIT(&sc->sc_ccb_freelist); aprint_naive(": RAID controller\n"); aprint_normal(": 3ware Escalade\n"); if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) { aprint_error_dev(self, "can't map i/o space\n"); return; } /* Enable the device. */ csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "can't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "can't establish interrupt%s%s\n", (intrstr) ? " at " : "", (intrstr) ? intrstr : ""); return; } if (intrstr != NULL) aprint_normal_dev(self, "interrupting at %s\n", intrstr); /* * Allocate and initialise the command blocks and CCBs. */ size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT; if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(self, "unable to allocate commands, rv = %d\n", rv); return; } if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size, (void **)&sc->sc_cmds, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { aprint_error_dev(self, "unable to map commands, rv = %d\n", rv); return; } if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) { aprint_error_dev(self, "unable to create command DMA map, rv = %d\n", rv); return; } if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds, size, NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(self, "unable to load command DMA map, rv = %d\n", rv); return; } ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT); if (ccb == NULL) { aprint_error_dev(self, "unable to allocate memory for ccbs\n"); return; } sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr; memset(sc->sc_cmds, 0, size); sc->sc_ccbs = ccb; tc = (struct twe_cmd *)sc->sc_cmds; max_segs = twe_get_maxsegs(); max_xfer = twe_get_maxxfer(max_segs); for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) { ccb->ccb_cmd = tc; ccb->ccb_cmdid = i; ccb->ccb_flags = 0; rv = bus_dmamap_create(sc->sc_dmat, max_xfer, max_segs, PAGE_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap_xfer); if (rv != 0) { aprint_error_dev(self, "can't create dmamap, rv = %d\n", rv); return; } /* Save the first CCB for AEN retrieval. */ if (i != 0) SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); } /* Wait for the controller to become ready. */ if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) { aprint_error_dev(self, "microcontroller not ready\n"); return; } twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS); /* Reset the controller. */ s = splbio(); rv = twe_reset(sc); splx(s); if (rv) { aprint_error_dev(self, "reset failed\n"); return; } /* Initialise connection with controller. */ twe_init_connection(sc); twe_describe_controller(sc); /* Find and attach RAID array units. */ twe_rescan(self, "twe", 0); /* ...and finally, enable interrupts. */ twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR | TWE_CTL_UNMASK_RESP_INTR | TWE_CTL_ENABLE_INTRS); /* sysctl set-up for 3ware cli */ if (sysctl_createv(NULL, 0, NULL, &node, 0, CTLTYPE_NODE, device_xname(self), SYSCTL_DESCR("twe driver information"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL) != 0) { aprint_error_dev(self, "could not create %s.%s sysctl node\n", "hw", device_xname(self)); return; } if ((i = sysctl_createv(NULL, 0, NULL, NULL, 0, CTLTYPE_STRING, "driver_version", SYSCTL_DESCR("twe0 driver version"), NULL, 0, __UNCONST(&twever), 0, CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL)) != 0) { aprint_error_dev(self, "could not create %s.%s.driver_version sysctl\n", "hw", device_xname(self)); return; } } static int twe_rescan(device_t self, const char *attr, const int *flags) { struct twe_softc *sc; int i; sc = device_private(self); sc->sc_nunits = 0; for (i = 0; i < TWE_MAX_UNITS; i++) (void) twe_add_unit(sc, i); return 0; } void twe_register_callbacks(struct twe_softc *sc, int unit, const struct twe_callbacks *tcb) { sc->sc_units[unit].td_callbacks = tcb; } static void twe_recompute_openings(struct twe_softc *sc) { struct twe_drive *td; int unit, openings; if (sc->sc_nunits != 0) openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits; else openings = 0; if (openings == sc->sc_openings) return; sc->sc_openings = openings; #ifdef TWE_DEBUG printf("%s: %d array%s, %d openings per array\n", device_xname(sc->sc_dev), sc->sc_nunits, sc->sc_nunits == 1 ? "" : "s", sc->sc_openings); #endif for (unit = 0; unit < TWE_MAX_UNITS; unit++) { td = &sc->sc_units[unit]; if (td->td_dev != NULL) (*td->td_callbacks->tcb_openings)(td->td_dev, sc->sc_openings); } } static int twe_add_unit(struct twe_softc *sc, int unit) { struct twe_param *dtp, *atp; struct twe_array_descriptor *ad; struct twe_drive *td; struct twe_attach_args twea; uint32_t newsize; int rv; uint16_t dsize; uint8_t newtype, newstripe; int locs[TWECF_NLOCS]; if (unit < 0 || unit >= TWE_MAX_UNITS) return (EINVAL); /* Find attached units. */ rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY, TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp); if (rv != 0) { aprint_error_dev(sc->sc_dev, "error %d fetching unit summary\n", rv); return (rv); } /* For each detected unit, collect size and store in an array. */ td = &sc->sc_units[unit]; /* Unit present? */ if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) { /* * XXX Should we check to see if a device has been * XXX attached at this index and detach it if it * XXX has? ("rescan" semantics) */ rv = 0; goto out; } rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit, TWE_PARAM_UNITINFO_DescriptorSize, &dsize); if (rv != 0) { aprint_error_dev(sc->sc_dev, "error %d fetching descriptor size for unit %d\n", rv, unit); goto out; } rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit, TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp); if (rv != 0) { aprint_error_dev(sc->sc_dev, "error %d fetching array descriptor for unit %d\n", rv, unit); goto out; } ad = (struct twe_array_descriptor *)atp->tp_data; newtype = ad->configuration; newstripe = ad->stripe_size; free(atp, M_DEVBUF); rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit, TWE_PARAM_UNITINFO_Capacity, &newsize); if (rv != 0) { aprint_error_dev(sc->sc_dev, "error %d fetching capacity for unit %d\n", rv, unit); goto out; } /* * Have a device, so we need to attach it. If there is currently * something sitting at the slot, and the parameters are different, * then we detach the old device before attaching the new one. */ if (td->td_dev != NULL && td->td_size == newsize && td->td_type == newtype && td->td_stripe == newstripe) { /* Same as the old device; just keep using it. */ rv = 0; goto out; } else if (td->td_dev != NULL) { /* Detach the old device first. */ (void) config_detach(td->td_dev, DETACH_FORCE); td->td_dev = NULL; } else if (td->td_size == 0) sc->sc_nunits++; /* * Committed to the new array unit; assign its parameters and * recompute the number of available command openings. */ td->td_size = newsize; td->td_type = newtype; td->td_stripe = newstripe; twe_recompute_openings(sc); twea.twea_unit = unit; locs[TWECF_UNIT] = unit; td->td_dev = config_found_sm_loc(sc->sc_dev, "twe", locs, &twea, twe_print, config_stdsubmatch); rv = 0; out: free(dtp, M_DEVBUF); return (rv); } static int twe_del_unit(struct twe_softc *sc, int unit) { struct twe_drive *td; if (unit < 0 || unit >= TWE_MAX_UNITS) return (EINVAL); td = &sc->sc_units[unit]; if (td->td_size != 0) sc->sc_nunits--; td->td_size = 0; td->td_type = 0; td->td_stripe = 0; if (td->td_dev != NULL) { (void) config_detach(td->td_dev, DETACH_FORCE); td->td_dev = NULL; } twe_recompute_openings(sc); return (0); } /* * Reset the controller. * MUST BE CALLED AT splbio()! */ static int twe_reset(struct twe_softc *sc) { uint16_t aen; u_int status; int got, rv; /* Issue a soft reset. */ twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET | TWE_CTL_CLEAR_HOST_INTR | TWE_CTL_CLEAR_ATTN_INTR | TWE_CTL_MASK_CMD_INTR | TWE_CTL_MASK_RESP_INTR | TWE_CTL_CLEAR_ERROR_STS | TWE_CTL_DISABLE_INTRS); /* Wait for attention... */ if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) { aprint_error_dev(sc->sc_dev, "timeout waiting for attention interrupt\n"); return (-1); } /* ...and ACK it. */ twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); /* * Pull AENs out of the controller; look for a soft reset AEN. * Open code this, since we want to detect reset even if the * queue for management tools is full. * * Note that since: * - interrupts are blocked * - we have reset the controller * - acknowledged the pending ATTENTION * that there is no way a pending asynchronous AEN fetch would * finish, so clear the flag. */ sc->sc_flags &= ~TWEF_AEN; for (got = 0;;) { rv = twe_aen_get(sc, &aen); if (rv != 0) printf("%s: error %d while draining event queue\n", device_xname(sc->sc_dev), rv); if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) break; if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET) got = 1; twe_aen_enqueue(sc, aen, 1); } if (!got) { printf("%s: reset not reported\n", device_xname(sc->sc_dev)); return (-1); } /* Check controller status. */ status = twe_inl(sc, TWE_REG_STS); if (twe_status_check(sc, status)) { printf("%s: controller errors detected\n", device_xname(sc->sc_dev)); return (-1); } /* Drain the response queue. */ for (;;) { status = twe_inl(sc, TWE_REG_STS); if (twe_status_check(sc, status) != 0) { aprint_error_dev(sc->sc_dev, "can't drain response queue\n"); return (-1); } if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0) break; (void)twe_inl(sc, TWE_REG_RESP_QUEUE); } return (0); } /* * Print autoconfiguration message for a sub-device. */ static int twe_print(void *aux, const char *pnp) { struct twe_attach_args *twea; twea = aux; if (pnp != NULL) aprint_normal("block device at %s", pnp); aprint_normal(" unit %d", twea->twea_unit); return (UNCONF); } /* * Interrupt service routine. */ static int twe_intr(void *arg) { struct twe_softc *sc; u_int status; int caught, rv; sc = arg; caught = 0; status = twe_inl(sc, TWE_REG_STS); twe_status_check(sc, status); /* Host interrupts - purpose unknown. */ if ((status & TWE_STS_HOST_INTR) != 0) { #ifdef DEBUG printf("%s: host interrupt\n", device_xname(sc->sc_dev)); #endif twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR); caught = 1; } /* * Attention interrupts, signalled when a controller or child device * state change has occurred. */ if ((status & TWE_STS_ATTN_INTR) != 0) { rv = twe_aen_get(sc, NULL); if (rv != 0) aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv); else twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); caught = 1; } /* * Command interrupts, signalled when the controller can accept more * commands. We don't use this; instead, we try to submit commands * when we receive them, and when other commands have completed. * Mask it so we don't get another one. */ if ((status & TWE_STS_CMD_INTR) != 0) { #ifdef DEBUG printf("%s: command interrupt\n", device_xname(sc->sc_dev)); #endif twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR); caught = 1; } if ((status & TWE_STS_RESP_INTR) != 0) { twe_poll(sc); caught = 1; } return (caught); } /* * Fetch an AEN. Even though this is really like parameter * retrieval, we handle this specially, because we issue this * AEN retrieval command from interrupt context, and thus * reserve a CCB for it to avoid resource shortage. * * XXX There are still potential resource shortages we could * XXX encounter. Consider pre-allocating all AEN-related * XXX resources. * * MUST BE CALLED AT splbio()! */ static int twe_aen_get(struct twe_softc *sc, uint16_t *aenp) { struct twe_ccb *ccb; struct twe_cmd *tc; struct twe_param *tp; int rv; /* * If we're already retrieving an AEN, just wait; another * retrieval will be chained after the current one completes. */ if (sc->sc_flags & TWEF_AEN) { /* * It is a fatal software programming error to attempt * to fetch an AEN synchronously when an AEN fetch is * already pending. */ KASSERT(aenp == NULL); return (0); } tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); if (tp == NULL) return (ENOMEM); ccb = twe_ccb_alloc(sc, TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); KASSERT(ccb != NULL); ccb->ccb_data = tp; ccb->ccb_datasize = TWE_SECTOR_SIZE; ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL; ccb->ccb_tx.tx_context = tp; ccb->ccb_tx.tx_dv = sc->sc_dev; tc = ccb->ccb_cmd; tc->tc_size = 2; tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); tc->tc_unit = 0; tc->tc_count = htole16(1); /* Fill in the outbound parameter data. */ tp->tp_table_id = htole16(TWE_PARAM_AEN); tp->tp_param_id = TWE_PARAM_AEN_UnitCode; tp->tp_param_size = 2; /* Map the transfer. */ if ((rv = twe_ccb_map(sc, ccb)) != 0) { twe_ccb_free(sc, ccb); goto done; } /* Enqueue the command and wait. */ if (aenp != NULL) { rv = twe_ccb_poll(sc, ccb, 5); twe_ccb_unmap(sc, ccb); twe_ccb_free(sc, ccb); if (rv == 0) *aenp = le16toh(*(uint16_t *)tp->tp_data); free(tp, M_DEVBUF); } else { sc->sc_flags |= TWEF_AEN; twe_ccb_enqueue(sc, ccb); rv = 0; } done: return (rv); } /* * Handle an AEN returned by the controller. * MUST BE CALLED AT splbio()! */ static void twe_aen_handler(struct twe_ccb *ccb, int error) { struct twe_softc *sc; struct twe_param *tp; uint16_t aen; int rv; sc = device_private(ccb->ccb_tx.tx_dv); tp = ccb->ccb_tx.tx_context; twe_ccb_unmap(sc, ccb); sc->sc_flags &= ~TWEF_AEN; if (error) { aprint_error_dev(sc->sc_dev, "error retrieving AEN\n"); aen = TWE_AEN_QUEUE_EMPTY; } else aen = le16toh(*(u_int16_t *)tp->tp_data); free(tp, M_DEVBUF); twe_ccb_free(sc, ccb); if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) { twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR); return; } twe_aen_enqueue(sc, aen, 0); /* * Chain another retrieval in case interrupts have been * coalesced. */ rv = twe_aen_get(sc, NULL); if (rv != 0) aprint_error_dev(sc->sc_dev, "unable to retrieve AEN (%d)\n", rv); } static void twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet) { const char *str, *msg; int s, next, nextnext, level; /* * First report the AEN on the console. Maybe. */ if (! quiet) { str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen)); if (str == NULL) { aprint_error_dev(sc->sc_dev, "unknown AEN 0x%04x\n", aen); } else { msg = str + 3; switch (str[1]) { case 'E': level = LOG_EMERG; break; case 'a': level = LOG_ALERT; break; case 'c': level = LOG_CRIT; break; case 'e': level = LOG_ERR; break; case 'w': level = LOG_WARNING; break; case 'n': level = LOG_NOTICE; break; case 'i': level = LOG_INFO; break; case 'd': level = LOG_DEBUG; break; default: /* Don't use syslog. */ level = -1; } if (level < 0) { switch (str[0]) { case 'u': case 'p': printf("%s: %s %d: %s\n", device_xname(sc->sc_dev), str[0] == 'u' ? "unit" : "port", TWE_AEN_UNIT(aen), msg); break; default: printf("%s: %s\n", device_xname(sc->sc_dev), msg); } } else { switch (str[0]) { case 'u': case 'p': log(level, "%s: %s %d: %s\n", device_xname(sc->sc_dev), str[0] == 'u' ? "unit" : "port", TWE_AEN_UNIT(aen), msg); break; default: log(level, "%s: %s\n", device_xname(sc->sc_dev), msg); } } } } /* Now enqueue the AEN for mangement tools. */ s = splbio(); next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH; nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH; /* * If this is the last free slot, then queue up a "queue * full" message. */ if (nextnext == sc->sc_aen_tail) aen = TWE_AEN_QUEUE_FULL; if (next != sc->sc_aen_tail) { sc->sc_aen_queue[sc->sc_aen_head] = aen; sc->sc_aen_head = next; } if (sc->sc_flags & TWEF_AENQ_WAIT) { sc->sc_flags &= ~TWEF_AENQ_WAIT; wakeup(&sc->sc_aen_queue); } splx(s); } /* NOTE: Must be called at splbio(). */ static uint16_t twe_aen_dequeue(struct twe_softc *sc) { uint16_t aen; if (sc->sc_aen_tail == sc->sc_aen_head) aen = TWE_AEN_QUEUE_EMPTY; else { aen = sc->sc_aen_queue[sc->sc_aen_tail]; sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH; } return (aen); } /* * These are short-hand functions that execute TWE_OP_GET_PARAM to * fetch 1, 2, and 4 byte parameter values, respectively. */ int twe_param_get_1(struct twe_softc *sc, int table_id, int param_id, uint8_t *valp) { struct twe_param *tp; int rv; rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp); if (rv != 0) return (rv); *valp = *(uint8_t *)tp->tp_data; free(tp, M_DEVBUF); return (0); } int twe_param_get_2(struct twe_softc *sc, int table_id, int param_id, uint16_t *valp) { struct twe_param *tp; int rv; rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp); if (rv != 0) return (rv); *valp = le16toh(*(uint16_t *)tp->tp_data); free(tp, M_DEVBUF); return (0); } int twe_param_get_4(struct twe_softc *sc, int table_id, int param_id, uint32_t *valp) { struct twe_param *tp; int rv; rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp); if (rv != 0) return (rv); *valp = le32toh(*(uint32_t *)tp->tp_data); free(tp, M_DEVBUF); return (0); } /* * Execute a TWE_OP_GET_PARAM command. If a callback function is provided, * it will be called with generated context when the command has completed. * If no callback is provided, the command will be executed synchronously * and a pointer to a buffer containing the data returned. * * The caller or callback is responsible for freeing the buffer. * * NOTE: We assume we can sleep here to wait for a CCB to become available. */ int twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size, void (*func)(struct twe_ccb *, int), struct twe_param **pbuf) { struct twe_ccb *ccb; struct twe_cmd *tc; struct twe_param *tp; int rv, s; tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); if (tp == NULL) return ENOMEM; ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); KASSERT(ccb != NULL); ccb->ccb_data = tp; ccb->ccb_datasize = TWE_SECTOR_SIZE; ccb->ccb_tx.tx_handler = func; ccb->ccb_tx.tx_context = tp; ccb->ccb_tx.tx_dv = sc->sc_dev; tc = ccb->ccb_cmd; tc->tc_size = 2; tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5); tc->tc_unit = 0; tc->tc_count = htole16(1); /* Fill in the outbound parameter data. */ tp->tp_table_id = htole16(table_id); tp->tp_param_id = param_id; tp->tp_param_size = size; /* Map the transfer. */ if ((rv = twe_ccb_map(sc, ccb)) != 0) { twe_ccb_free(sc, ccb); goto done; } /* Submit the command and either wait or let the callback handle it. */ if (func == NULL) { s = splbio(); rv = twe_ccb_poll(sc, ccb, 5); twe_ccb_unmap(sc, ccb); twe_ccb_free(sc, ccb); splx(s); } else { #ifdef DEBUG if (pbuf != NULL) panic("both func and pbuf defined"); #endif twe_ccb_enqueue(sc, ccb); return 0; } done: if (pbuf == NULL || rv != 0) free(tp, M_DEVBUF); else if (pbuf != NULL && rv == 0) *pbuf = tp; return rv; } /* * Execute a TWE_OP_SET_PARAM command. * * NOTE: We assume we can sleep here to wait for a CCB to become available. */ static int twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size, void *sbuf) { struct twe_ccb *ccb; struct twe_cmd *tc; struct twe_param *tp; int rv, s; tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT); if (tp == NULL) return ENOMEM; ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); KASSERT(ccb != NULL); ccb->ccb_data = tp; ccb->ccb_datasize = TWE_SECTOR_SIZE; ccb->ccb_tx.tx_handler = 0; ccb->ccb_tx.tx_context = tp; ccb->ccb_tx.tx_dv = sc->sc_dev; tc = ccb->ccb_cmd; tc->tc_size = 2; tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5); tc->tc_unit = 0; tc->tc_count = htole16(1); /* Fill in the outbound parameter data. */ tp->tp_table_id = htole16(table_id); tp->tp_param_id = param_id; tp->tp_param_size = size; memcpy(tp->tp_data, sbuf, size); /* Map the transfer. */ if ((rv = twe_ccb_map(sc, ccb)) != 0) { twe_ccb_free(sc, ccb); goto done; } /* Submit the command and wait. */ s = splbio(); rv = twe_ccb_poll(sc, ccb, 5); twe_ccb_unmap(sc, ccb); twe_ccb_free(sc, ccb); splx(s); done: free(tp, M_DEVBUF); return (rv); } /* * Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error. * Must be called with interrupts blocked. */ static int twe_init_connection(struct twe_softc *sc) { struct twe_ccb *ccb; struct twe_cmd *tc; int rv; if ((ccb = twe_ccb_alloc(sc, 0)) == NULL) return (EAGAIN); /* Build the command. */ tc = ccb->ccb_cmd; tc->tc_size = 3; tc->tc_opcode = TWE_OP_INIT_CONNECTION; tc->tc_unit = 0; tc->tc_count = htole16(TWE_MAX_CMDS); tc->tc_args.init_connection.response_queue_pointer = 0; /* Submit the command for immediate execution. */ rv = twe_ccb_poll(sc, ccb, 5); twe_ccb_free(sc, ccb); return (rv); } /* * Poll the controller for completed commands. Must be called with * interrupts blocked. */ static void twe_poll(struct twe_softc *sc) { struct twe_ccb *ccb; int found; u_int status, cmdid; found = 0; for (;;) { status = twe_inl(sc, TWE_REG_STS); twe_status_check(sc, status); if ((status & TWE_STS_RESP_QUEUE_EMPTY)) break; found = 1; cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE); cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT; if (cmdid >= TWE_MAX_QUEUECNT) { aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid); continue; } ccb = sc->sc_ccbs + cmdid; if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) { printf("%s: CCB for cmdid %d not active\n", device_xname(sc->sc_dev), cmdid); continue; } ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, sizeof(struct twe_cmd), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* Pass notification to upper layers. */ if (ccb->ccb_tx.tx_handler != NULL) (*ccb->ccb_tx.tx_handler)(ccb, ccb->ccb_cmd->tc_status != 0 ? EIO : 0); } /* If any commands have completed, run the software queue. */ if (found) twe_ccb_enqueue(sc, NULL); } /* * Wait for `status' to be set in the controller status register. Return * zero if found, non-zero if the operation timed out. */ static int twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo) { for (timo *= 10; timo != 0; timo--) { if ((twe_inl(sc, TWE_REG_STS) & status) == status) break; delay(100000); } return (timo == 0); } /* * Clear a PCI parity error. */ static void twe_clear_pci_parity_error(struct twe_softc *sc) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR); //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2); } /* * Clear a PCI abort. */ static void twe_clear_pci_abort(struct twe_softc *sc) { bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT); //FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2); } /* * Complain if the status bits aren't what we expect. */ static int twe_status_check(struct twe_softc *sc, u_int status) { int rv; rv = 0; if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) { aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n", status & ~TWE_STS_EXPECTED_BITS); rv = -1; } if ((status & TWE_STS_UNEXPECTED_BITS) != 0) { aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n", status & TWE_STS_UNEXPECTED_BITS); rv = -1; if (status & TWE_STS_PCI_PARITY_ERROR) { aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat" " card, move card or buggy device present.\n"); twe_clear_pci_parity_error(sc); } if (status & TWE_STS_PCI_ABORT) { aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n"); twe_clear_pci_abort(sc); } } return (rv); } /* * Allocate and initialise a CCB. */ static inline void twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags) { struct twe_cmd *tc; ccb->ccb_tx.tx_handler = NULL; ccb->ccb_flags = flags; tc = ccb->ccb_cmd; tc->tc_status = 0; tc->tc_flags = 0; tc->tc_cmdid = ccb->ccb_cmdid; } struct twe_ccb * twe_ccb_alloc(struct twe_softc *sc, int flags) { struct twe_ccb *ccb; int s; s = splbio(); if (__predict_false((flags & TWE_CCB_AEN) != 0)) { /* Use the reserved CCB. */ ccb = sc->sc_ccbs; } else { /* Allocate a CCB and command block. */ if (__predict_false((ccb = SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { splx(s); return (NULL); } SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); } #ifdef DIAGNOSTIC if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0) panic("twe_ccb_alloc: got reserved CCB for non-AEN"); if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) panic("twe_ccb_alloc: CCB %ld already allocated", (long)(ccb - sc->sc_ccbs)); flags |= TWE_CCB_ALLOCED; #endif splx(s); twe_ccb_init(sc, ccb, flags); return (ccb); } struct twe_ccb * twe_ccb_alloc_wait(struct twe_softc *sc, int flags) { struct twe_ccb *ccb; int s; KASSERT((flags & TWE_CCB_AEN) == 0); s = splbio(); while (__predict_false((ccb = SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) { sc->sc_flags |= TWEF_WAIT_CCB; (void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0); } SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist); #ifdef DIAGNOSTIC if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0) panic("twe_ccb_alloc_wait: CCB %ld already allocated", (long)(ccb - sc->sc_ccbs)); flags |= TWE_CCB_ALLOCED; #endif splx(s); twe_ccb_init(sc, ccb, flags); return (ccb); } /* * Free a CCB. */ void twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb) { int s; s = splbio(); if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) { SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist); if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) { sc->sc_flags &= ~TWEF_WAIT_CCB; wakeup(&sc->sc_ccb_freelist); } } ccb->ccb_flags = 0; splx(s); } /* * Map the specified CCB's command block and data buffer (if any) into * controller visible space. Perform DMA synchronisation. */ int twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb) { struct twe_cmd *tc; int flags, nsegs, i, s, rv; void *data; /* * The data as a whole must be 512-byte aligned. */ if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) { s = splvm(); /* XXX */ rv = uvm_km_kmem_alloc(kmem_va_arena, ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT), (vmem_addr_t *)&ccb->ccb_abuf); splx(s); data = (void *)ccb->ccb_abuf; if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) memcpy(data, ccb->ccb_data, ccb->ccb_datasize); } else { ccb->ccb_abuf = (vaddr_t)0; data = ccb->ccb_data; } /* * Map the data buffer into bus space and build the S/G list. */ rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data, ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | ((ccb->ccb_flags & TWE_CCB_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE)); if (rv != 0) { if (ccb->ccb_abuf != (vaddr_t)0) { s = splvm(); /* XXX */ uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, ccb->ccb_datasize); splx(s); } return (rv); } nsegs = ccb->ccb_dmamap_xfer->dm_nsegs; tc = ccb->ccb_cmd; tc->tc_size += 2 * nsegs; /* The location of the S/G list is dependent upon command type. */ switch (tc->tc_opcode >> 5) { case 2: for (i = 0; i < nsegs; i++) { tc->tc_args.param.sgl[i].tsg_address = htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); tc->tc_args.param.sgl[i].tsg_length = htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); } /* XXX Needed? */ for (; i < TWE_SG_SIZE; i++) { tc->tc_args.param.sgl[i].tsg_address = 0; tc->tc_args.param.sgl[i].tsg_length = 0; } break; case 3: for (i = 0; i < nsegs; i++) { tc->tc_args.io.sgl[i].tsg_address = htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr); tc->tc_args.io.sgl[i].tsg_length = htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len); } /* XXX Needed? */ for (; i < TWE_SG_SIZE; i++) { tc->tc_args.io.sgl[i].tsg_address = 0; tc->tc_args.io.sgl[i].tsg_length = 0; } break; default: /* * In all likelihood, this is a command passed from * management tools in userspace where no S/G list is * necessary because no data is being passed. */ break; } if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) flags = BUS_DMASYNC_PREREAD; else flags = 0; if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) flags |= BUS_DMASYNC_PREWRITE; bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, ccb->ccb_datasize, flags); return (0); } /* * Unmap the specified CCB's command block and data buffer (if any) and * perform DMA synchronisation. */ void twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb) { int flags, s; if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) flags = BUS_DMASYNC_POSTREAD; else flags = 0; if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0) flags |= BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, ccb->ccb_datasize, flags); bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer); if (ccb->ccb_abuf != (vaddr_t)0) { if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0) memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf, ccb->ccb_datasize); s = splvm(); /* XXX */ uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf, ccb->ccb_datasize); splx(s); } } /* * Submit a command to the controller and poll on completion. Return * non-zero on timeout (but don't check status, as some command types don't * return status). Must be called with interrupts blocked. */ int twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo) { int rv; if ((rv = twe_ccb_submit(sc, ccb)) != 0) return (rv); for (timo *= 1000; timo != 0; timo--) { twe_poll(sc); if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0) break; DELAY(100); } return (timo == 0); } /* * If a CCB is specified, enqueue it. Pull CCBs off the software queue in * the order that they were enqueued and try to submit their command blocks * to the controller for execution. */ void twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb) { int s; s = splbio(); if (ccb != NULL) SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq); while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) { if (twe_ccb_submit(sc, ccb)) break; SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq); } splx(s); } /* * Submit the command block associated with the specified CCB to the * controller for execution. Must be called with interrupts blocked. */ int twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb) { bus_addr_t pa; int rv; u_int status; /* Check to see if we can post a command. */ status = twe_inl(sc, TWE_REG_STS); twe_status_check(sc, status); if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) { bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, (char *)ccb->ccb_cmd - (char *)sc->sc_cmds, sizeof(struct twe_cmd), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); #ifdef DIAGNOSTIC if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0) panic("%s: CCB %ld not ALLOCED\n", device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs)); #endif ccb->ccb_flags |= TWE_CCB_ACTIVE; pa = sc->sc_cmds_paddr + ccb->ccb_cmdid * sizeof(struct twe_cmd); twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa); rv = 0; } else rv = EBUSY; return (rv); } /* * Accept an open operation on the control device. */ static int tweopen(dev_t dev, int flag, int mode, struct lwp *l) { struct twe_softc *twe; if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL) return (ENXIO); if ((twe->sc_flags & TWEF_OPEN) != 0) return (EBUSY); twe->sc_flags |= TWEF_OPEN; return (0); } /* * Accept the last close on the control device. */ static int tweclose(dev_t dev, int flag, int mode, struct lwp *l) { struct twe_softc *twe; twe = device_lookup_private(&twe_cd, minor(dev)); twe->sc_flags &= ~TWEF_OPEN; return (0); } void twe_ccb_wait_handler(struct twe_ccb *ccb, int error) { /* Just wake up the sleeper. */ wakeup(ccb); } /* * Handle control operations. */ static int tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) { struct twe_softc *twe; struct twe_ccb *ccb; struct twe_param *param; struct twe_usercommand *tu; struct twe_paramcommand *tp; struct twe_drivecommand *td; void *pdata = NULL; int s, error = 0; u_int8_t cmdid; twe = device_lookup_private(&twe_cd, minor(dev)); tu = (struct twe_usercommand *)data; tp = (struct twe_paramcommand *)data; td = (struct twe_drivecommand *)data; /* This is intended to be compatible with the FreeBSD interface. */ switch (cmd) { case TWEIO_COMMAND: error = kauth_authorize_device_passthru(l->l_cred, dev, KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); if (error) return (error); /* XXX mutex */ if (tu->tu_size > 0) { /* * XXX Handle > TWE_SECTOR_SIZE? Let's see if * it's really necessary, first. */ if (tu->tu_size > TWE_SECTOR_SIZE) { #ifdef TWE_DEBUG printf("%s: TWEIO_COMMAND: tu_size = %zu\n", device_xname(twe->sc_dev), tu->tu_size); #endif return EINVAL; } pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK); error = copyin(tu->tu_data, pdata, tu->tu_size); if (error != 0) goto done; ccb = twe_ccb_alloc_wait(twe, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT); KASSERT(ccb != NULL); ccb->ccb_data = pdata; ccb->ccb_datasize = TWE_SECTOR_SIZE; } else { ccb = twe_ccb_alloc_wait(twe, 0); KASSERT(ccb != NULL); } ccb->ccb_tx.tx_handler = twe_ccb_wait_handler; ccb->ccb_tx.tx_context = NULL; ccb->ccb_tx.tx_dv = twe->sc_dev; cmdid = ccb->ccb_cmdid; memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd)); ccb->ccb_cmd->tc_cmdid = cmdid; /* Map the transfer. */ if ((error = twe_ccb_map(twe, ccb)) != 0) { twe_ccb_free(twe, ccb); goto done; } /* Submit the command and wait up to 1 minute. */ error = 0; twe_ccb_enqueue(twe, ccb); s = splbio(); while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0) if ((error = tsleep(ccb, PRIBIO, "tweioctl", 60 * hz)) != 0) break; splx(s); /* Copy the command back to the ioctl argument. */ memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd)); #ifdef TWE_DEBUG printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, " "tc_status = 0x%02x\n", device_xname(twe->sc_dev), tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status); #endif s = splbio(); twe_ccb_free(twe, ccb); splx(s); if (tu->tu_size > 0) error = copyout(pdata, tu->tu_data, tu->tu_size); goto done; case TWEIO_STATS: return (ENOENT); case TWEIO_AEN_POLL: s = splbio(); *(u_int *)data = twe_aen_dequeue(twe); splx(s); return (0); case TWEIO_AEN_WAIT: s = splbio(); while ((*(u_int *)data = twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) { twe->sc_flags |= TWEF_AENQ_WAIT; error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH, "tweaen", 0); if (error == EINTR) { splx(s); return (error); } } splx(s); return (0); case TWEIO_GET_PARAM: error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id, tp->tp_size, 0, ¶m); if (error != 0) return (error); if (param->tp_param_size > tp->tp_size) { error = EFAULT; goto done; } error = copyout(param->tp_data, tp->tp_data, param->tp_param_size); free(param, M_DEVBUF); goto done; case TWEIO_SET_PARAM: pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK); if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0) goto done; error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id, tp->tp_size, pdata); goto done; case TWEIO_RESET: s = splbio(); twe_reset(twe); splx(s); return (0); case TWEIO_ADD_UNIT: /* XXX mutex */ return (twe_add_unit(twe, td->td_unit)); case TWEIO_DEL_UNIT: /* XXX mutex */ return (twe_del_unit(twe, td->td_unit)); default: return EINVAL; } done: if (pdata) free(pdata, M_DEVBUF); return error; } const struct cdevsw twe_cdevsw = { .d_open = tweopen, .d_close = tweclose, .d_read = noread, .d_write = nowrite, .d_ioctl = tweioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; /* * Print some information about the controller */ static void twe_describe_controller(struct twe_softc *sc) { struct twe_param *p[6]; int i, rv = 0; uint32_t dsize; uint8_t ports; ports = 0; /* get the port count */ rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER, TWE_PARAM_CONTROLLER_PortCount, &ports); /* get version strings */ rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon, 16, NULL, &p[0]); rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW, 16, NULL, &p[1]); rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS, 16, NULL, &p[2]); rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB, 8, NULL, &p[3]); rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA, 8, NULL, &p[4]); rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI, 8, NULL, &p[5]); if (rv) { /* some error occurred */ aprint_error_dev(sc->sc_dev, "failed to fetch version information\n"); return; } aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n", ports, p[1]->tp_data, p[2]->tp_data); aprint_verbose_dev(sc->sc_dev, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n", p[0]->tp_data, p[3]->tp_data, p[4]->tp_data, p[5]->tp_data); free(p[0], M_DEVBUF); free(p[1], M_DEVBUF); free(p[2], M_DEVBUF); free(p[3], M_DEVBUF); free(p[4], M_DEVBUF); free(p[5], M_DEVBUF); rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY, TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]); if (rv) { aprint_error_dev(sc->sc_dev, "failed to get drive status summary\n"); return; } for (i = 0; i < ports; i++) { if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present) continue; rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i, TWE_PARAM_DRIVEINFO_Size, &dsize); if (rv) { aprint_error_dev(sc->sc_dev, "unable to get drive size for port %d\n", i); continue; } rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i, TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]); if (rv) { aprint_error_dev(sc->sc_dev, "unable to get drive model for port %d\n", i); continue; } aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n", i, p[1]->tp_data, dsize / 2048); free(p[1], M_DEVBUF); } free(p[0], M_DEVBUF); } MODULE(MODULE_CLASS_DRIVER, twe, "pci"); #ifdef _MODULE #include "ioconf.c" #endif static int twe_modcmd(modcmd_t cmd, void *opaque) { int error = 0; #ifdef _MODULE switch (cmd) { case MODULE_CMD_INIT: error = config_init_component(cfdriver_ioconf_twe, cfattach_ioconf_twe, cfdata_ioconf_twe); break; case MODULE_CMD_FINI: error = config_fini_component(cfdriver_ioconf_twe, cfattach_ioconf_twe, cfdata_ioconf_twe); break; default: error = ENOTTY; break; } #endif return error; }