/* $NetBSD: if_vge.c,v 1.60 2016/12/15 09:28:05 ozaki-r Exp $ */ /*- * Copyright (c) 2004 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp */ #include __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.60 2016/12/15 09:28:05 ozaki-r Exp $"); /* * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * The VIA Networking VT6122 is a 32bit, 33/66 MHz PCI device that * combines a tri-speed ethernet MAC and PHY, with the following * features: * * o Jumbo frame support up to 16K * o Transmit and receive flow control * o IPv4 checksum offload * o VLAN tag insertion and stripping * o TCP large send * o 64-bit multicast hash table filter * o 64 entry CAM filter * o 16K RX FIFO and 48K TX FIFO memory * o Interrupt moderation * * The VT6122 supports up to four transmit DMA queues. The descriptors * in the transmit ring can address up to 7 data fragments; frames which * span more than 7 data buffers must be coalesced, but in general the * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments * long. The receive descriptors address only a single buffer. * * There are two peculiar design issues with the VT6122. One is that * receive data buffers must be aligned on a 32-bit boundary. This is * not a problem where the VT6122 is used as a LOM device in x86-based * systems, but on architectures that generate unaligned access traps, we * have to do some copying. * * The other issue has to do with the way 64-bit addresses are handled. * The DMA descriptors only allow you to specify 48 bits of addressing * information. The remaining 16 bits are specified using one of the * I/O registers. If you only have a 32-bit system, then this isn't * an issue, but if you have a 64-bit system and more than 4GB of * memory, you must have to make sure your network data buffers reside * in the same 48-bit 'segment.' * * Special thanks to Ryan Fu at VIA Networking for providing documentation * and sample NICs for testing. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define VGE_IFQ_MAXLEN 64 #define VGE_RING_ALIGN 256 #define VGE_NTXDESC 256 #define VGE_NTXDESC_MASK (VGE_NTXDESC - 1) #define VGE_NEXT_TXDESC(x) ((x + 1) & VGE_NTXDESC_MASK) #define VGE_PREV_TXDESC(x) ((x - 1) & VGE_NTXDESC_MASK) #define VGE_NRXDESC 256 /* Must be a multiple of 4!! */ #define VGE_NRXDESC_MASK (VGE_NRXDESC - 1) #define VGE_NEXT_RXDESC(x) ((x + 1) & VGE_NRXDESC_MASK) #define VGE_PREV_RXDESC(x) ((x - 1) & VGE_NRXDESC_MASK) #define VGE_ADDR_LO(y) ((uint64_t)(y) & 0xFFFFFFFF) #define VGE_ADDR_HI(y) ((uint64_t)(y) >> 32) #define VGE_BUFLEN(y) ((y) & 0x7FFF) #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN) #define VGE_POWER_MANAGEMENT 0 /* disabled for now */ /* * Mbuf adjust factor to force 32-bit alignment of IP header. * Drivers should pad ETHER_ALIGN bytes when setting up a * RX mbuf so the upper layers get the IP header properly aligned * past the 14-byte Ethernet header. * * See also comment in vge_encap(). */ #define ETHER_ALIGN 2 #ifdef __NO_STRICT_ALIGNMENT #define VGE_RX_BUFSIZE MCLBYTES #else #define VGE_RX_PAD sizeof(uint32_t) #define VGE_RX_BUFSIZE (MCLBYTES - VGE_RX_PAD) #endif /* * Control structures are DMA'd to the vge chip. We allocate them in * a single clump that maps to a single DMA segment to make several things * easier. */ struct vge_control_data { /* TX descriptors */ struct vge_txdesc vcd_txdescs[VGE_NTXDESC]; /* RX descriptors */ struct vge_rxdesc vcd_rxdescs[VGE_NRXDESC]; /* dummy data for TX padding */ uint8_t vcd_pad[ETHER_PAD_LEN]; }; #define VGE_CDOFF(x) offsetof(struct vge_control_data, x) #define VGE_CDTXOFF(x) VGE_CDOFF(vcd_txdescs[(x)]) #define VGE_CDRXOFF(x) VGE_CDOFF(vcd_rxdescs[(x)]) #define VGE_CDPADOFF() VGE_CDOFF(vcd_pad[0]) /* * Software state for TX jobs. */ struct vge_txsoft { struct mbuf *txs_mbuf; /* head of our mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ }; /* * Software state for RX jobs. */ struct vge_rxsoft { struct mbuf *rxs_mbuf; /* head of our mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; struct vge_softc { device_t sc_dev; bus_space_tag_t sc_bst; /* bus space tag */ bus_space_handle_t sc_bsh; /* bus space handle */ bus_dma_tag_t sc_dmat; struct ethercom sc_ethercom; /* interface info */ uint8_t sc_eaddr[ETHER_ADDR_LEN]; void *sc_intrhand; struct mii_data sc_mii; uint8_t sc_type; int sc_if_flags; int sc_link; int sc_camidx; callout_t sc_timeout; bus_dmamap_t sc_cddmamap; #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr struct vge_txsoft sc_txsoft[VGE_NTXDESC]; struct vge_rxsoft sc_rxsoft[VGE_NRXDESC]; struct vge_control_data *sc_control_data; #define sc_txdescs sc_control_data->vcd_txdescs #define sc_rxdescs sc_control_data->vcd_rxdescs int sc_tx_prodidx; int sc_tx_considx; int sc_tx_free; struct mbuf *sc_rx_mhead; struct mbuf *sc_rx_mtail; int sc_rx_prodidx; int sc_rx_consumed; int sc_suspended; /* 0 = normal 1 = suspended */ uint32_t sc_saved_maps[5]; /* pci data */ uint32_t sc_saved_biosaddr; uint8_t sc_saved_intline; uint8_t sc_saved_cachelnsz; uint8_t sc_saved_lattimer; }; #define VGE_CDTXADDR(sc, x) ((sc)->sc_cddma + VGE_CDTXOFF(x)) #define VGE_CDRXADDR(sc, x) ((sc)->sc_cddma + VGE_CDRXOFF(x)) #define VGE_CDPADADDR(sc) ((sc)->sc_cddma + VGE_CDPADOFF()) #define VGE_TXDESCSYNC(sc, idx, ops) \ bus_dmamap_sync((sc)->sc_dmat,(sc)->sc_cddmamap, \ VGE_CDTXOFF(idx), \ offsetof(struct vge_txdesc, td_frag[0]), \ (ops)) #define VGE_TXFRAGSYNC(sc, idx, nsegs, ops) \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ VGE_CDTXOFF(idx) + \ offsetof(struct vge_txdesc, td_frag[0]), \ sizeof(struct vge_txfrag) * (nsegs), \ (ops)) #define VGE_RXDESCSYNC(sc, idx, ops) \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ VGE_CDRXOFF(idx), \ sizeof(struct vge_rxdesc), \ (ops)) /* * register space access macros */ #define CSR_WRITE_4(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) #define CSR_WRITE_2(sc, reg, val) \ bus_space_write_2((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) #define CSR_WRITE_1(sc, reg, val) \ bus_space_write_1((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) #define CSR_READ_4(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define CSR_READ_2(sc, reg) \ bus_space_read_2((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define CSR_READ_1(sc, reg) \ bus_space_read_1((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define CSR_SETBIT_1(sc, reg, x) \ CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) | (x)) #define CSR_SETBIT_2(sc, reg, x) \ CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) | (x)) #define CSR_SETBIT_4(sc, reg, x) \ CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) | (x)) #define CSR_CLRBIT_1(sc, reg, x) \ CSR_WRITE_1((sc), (reg), CSR_READ_1((sc), (reg)) & ~(x)) #define CSR_CLRBIT_2(sc, reg, x) \ CSR_WRITE_2((sc), (reg), CSR_READ_2((sc), (reg)) & ~(x)) #define CSR_CLRBIT_4(sc, reg, x) \ CSR_WRITE_4((sc), (reg), CSR_READ_4((sc), (reg)) & ~(x)) #define VGE_TIMEOUT 10000 #define VGE_PCI_LOIO 0x10 #define VGE_PCI_LOMEM 0x14 static inline void vge_set_txaddr(struct vge_txfrag *, bus_addr_t); static inline void vge_set_rxaddr(struct vge_rxdesc *, bus_addr_t); static int vge_ifflags_cb(struct ethercom *); static int vge_match(device_t, cfdata_t, void *); static void vge_attach(device_t, device_t, void *); static int vge_encap(struct vge_softc *, struct mbuf *, int); static int vge_allocmem(struct vge_softc *); static int vge_newbuf(struct vge_softc *, int, struct mbuf *); #ifndef __NO_STRICT_ALIGNMENT static inline void vge_fixup_rx(struct mbuf *); #endif static void vge_rxeof(struct vge_softc *); static void vge_txeof(struct vge_softc *); static int vge_intr(void *); static void vge_tick(void *); static void vge_start(struct ifnet *); static int vge_ioctl(struct ifnet *, u_long, void *); static int vge_init(struct ifnet *); static void vge_stop(struct ifnet *, int); static void vge_watchdog(struct ifnet *); #if VGE_POWER_MANAGEMENT static int vge_suspend(device_t); static int vge_resume(device_t); #endif static bool vge_shutdown(device_t, int); static uint16_t vge_read_eeprom(struct vge_softc *, int); static void vge_miipoll_start(struct vge_softc *); static void vge_miipoll_stop(struct vge_softc *); static int vge_miibus_readreg(device_t, int, int); static void vge_miibus_writereg(device_t, int, int, int); static void vge_miibus_statchg(struct ifnet *); static void vge_cam_clear(struct vge_softc *); static int vge_cam_set(struct vge_softc *, uint8_t *); static void vge_setmulti(struct vge_softc *); static void vge_reset(struct vge_softc *); CFATTACH_DECL_NEW(vge, sizeof(struct vge_softc), vge_match, vge_attach, NULL, NULL); static inline void vge_set_txaddr(struct vge_txfrag *f, bus_addr_t daddr) { f->tf_addrlo = htole32((uint32_t)daddr); if (sizeof(bus_addr_t) == sizeof(uint64_t)) f->tf_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF); else f->tf_addrhi = 0; } static inline void vge_set_rxaddr(struct vge_rxdesc *rxd, bus_addr_t daddr) { rxd->rd_addrlo = htole32((uint32_t)daddr); if (sizeof(bus_addr_t) == sizeof(uint64_t)) rxd->rd_addrhi = htole16(((uint64_t)daddr >> 32) & 0xFFFF); else rxd->rd_addrhi = 0; } /* * Defragment mbuf chain contents to be as linear as possible. * Returns new mbuf chain on success, NULL on failure. Old mbuf * chain is always freed. * XXX temporary until there would be generic function doing this. */ #define m_defrag vge_m_defrag struct mbuf * vge_m_defrag(struct mbuf *, int); struct mbuf * vge_m_defrag(struct mbuf *mold, int flags) { struct mbuf *m0, *mn, *n; size_t sz = mold->m_pkthdr.len; #ifdef DIAGNOSTIC if ((mold->m_flags & M_PKTHDR) == 0) panic("m_defrag: not a mbuf chain header"); #endif MGETHDR(m0, flags, MT_DATA); if (m0 == NULL) return NULL; m0->m_pkthdr.len = mold->m_pkthdr.len; mn = m0; do { if (sz > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(m0); return NULL; } } mn->m_len = MIN(sz, MCLBYTES); m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len, mtod(mn, void *)); sz -= mn->m_len; if (sz > 0) { /* need more mbufs */ MGET(n, M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m0); return NULL; } mn->m_next = n; mn = n; } } while (sz > 0); return m0; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static uint16_t vge_read_eeprom(struct vge_softc *sc, int addr) { int i; uint16_t word = 0; /* * Enter EEPROM embedded programming mode. In order to * access the EEPROM at all, we first have to set the * EELOAD bit in the CHIPCFG2 register. */ CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); /* Select the address of the word we want to read */ CSR_WRITE_1(sc, VGE_EEADDR, addr); /* Issue read command */ CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); /* Wait for the done bit to be set. */ for (i = 0; i < VGE_TIMEOUT; i++) { if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) break; } if (i == VGE_TIMEOUT) { printf("%s: EEPROM read timed out\n", device_xname(sc->sc_dev)); return 0; } /* Read the result */ word = CSR_READ_2(sc, VGE_EERDDAT); /* Turn off EEPROM access mode. */ CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); return word; } static void vge_miipoll_stop(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_MIICMD, 0); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to idle MII autopoll\n", device_xname(sc->sc_dev)); } } static void vge_miipoll_start(struct vge_softc *sc) { int i; /* First, make sure we're idle. */ CSR_WRITE_1(sc, VGE_MIICMD, 0); CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to idle MII autopoll\n", device_xname(sc->sc_dev)); return; } /* Now enable auto poll mode. */ CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); /* And make sure it started. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to start MII autopoll\n", device_xname(sc->sc_dev)); } } static int vge_miibus_readreg(device_t dev, int phy, int reg) { struct vge_softc *sc; int i, s; uint16_t rval; sc = device_private(dev); rval = 0; if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return 0; s = splnet(); vge_miipoll_stop(sc); /* Specify the register we want to read. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Issue read command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); /* Wait for the read command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) break; } if (i == VGE_TIMEOUT) printf("%s: MII read timed out\n", device_xname(sc->sc_dev)); else rval = CSR_READ_2(sc, VGE_MIIDATA); vge_miipoll_start(sc); splx(s); return rval; } static void vge_miibus_writereg(device_t dev, int phy, int reg, int data) { struct vge_softc *sc; int i, s; sc = device_private(dev); if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return; s = splnet(); vge_miipoll_stop(sc); /* Specify the register we want to write. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Specify the data we want to write. */ CSR_WRITE_2(sc, VGE_MIIDATA, data); /* Issue write command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); /* Wait for the write command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: MII write timed out\n", device_xname(sc->sc_dev)); } vge_miipoll_start(sc); splx(s); } static void vge_cam_clear(struct vge_softc *sc) { int i; /* * Turn off all the mask bits. This tells the chip * that none of the entries in the CAM filter are valid. * desired entries will be enabled as we fill the filter in. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); /* Clear the VLAN filter too. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); sc->sc_camidx = 0; } static int vge_cam_set(struct vge_softc *sc, uint8_t *addr) { int i, error; error = 0; if (sc->sc_camidx == VGE_CAM_MAXADDRS) return ENOSPC; /* Select the CAM data page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); /* Set the filter entry we want to update and enable writing. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE | sc->sc_camidx); /* Write the address to the CAM registers */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); /* Issue a write command. */ CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); /* Wake for it to clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: setting CAM filter failed\n", device_xname(sc->sc_dev)); error = EIO; goto fail; } /* Select the CAM mask page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); /* Set the mask bit that enables this filter. */ CSR_SETBIT_1(sc, VGE_CAM0 + (sc->sc_camidx / 8), 1 << (sc->sc_camidx & 7)); sc->sc_camidx++; fail: /* Turn off access to CAM. */ CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); return error; } /* * Program the multicast filter. We use the 64-entry CAM filter * for perfect filtering. If there's more than 64 multicast addresses, * we use the hash filter instead. */ static void vge_setmulti(struct vge_softc *sc) { struct ifnet *ifp; int error; uint32_t h, hashes[2] = { 0, 0 }; struct ether_multi *enm; struct ether_multistep step; error = 0; ifp = &sc->sc_ethercom.ec_if; /* First, zot all the multicast entries. */ vge_cam_clear(sc); CSR_WRITE_4(sc, VGE_MAR0, 0); CSR_WRITE_4(sc, VGE_MAR1, 0); ifp->if_flags &= ~IFF_ALLMULTI; /* * If the user wants allmulti or promisc mode, enable reception * of all multicast frames. */ if (ifp->if_flags & IFF_PROMISC) { allmulti: CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); ifp->if_flags |= IFF_ALLMULTI; return; } /* Now program new ones */ ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm); while (enm != NULL) { /* * If multicast range, fall back to ALLMULTI. */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; error = vge_cam_set(sc, enm->enm_addrlo); if (error) break; ETHER_NEXT_MULTI(step, enm); } /* If there were too many addresses, use the hash filter. */ if (error) { vge_cam_clear(sc); ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm); while (enm != NULL) { /* * If multicast range, fall back to ALLMULTI. */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; hashes[h >> 5] |= 1 << (h & 0x1f); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); } } static void vge_reset(struct vge_softc *sc) { int i; CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: soft reset timed out", device_xname(sc->sc_dev)); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); DELAY(2000); } DELAY(5000); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: EEPROM reload timed out\n", device_xname(sc->sc_dev)); return; } /* * On some machine, the first read data from EEPROM could be * messed up, so read one dummy data here to avoid the mess. */ (void)vge_read_eeprom(sc, 0); CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); } /* * Probe for a VIA gigabit chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int vge_match(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X) return 1; return 0; } static int vge_allocmem(struct vge_softc *sc) { int error; int nseg; int i; bus_dma_segment_t seg; /* * Allocate memory for control data. */ error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct vge_control_data), VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "could not allocate control data dma memory\n"); goto fail_1; } /* Map the memory to kernel VA space */ error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, sizeof(struct vge_control_data), (void **)&sc->sc_control_data, BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "could not map control data dma memory\n"); goto fail_2; } memset(sc->sc_control_data, 0, sizeof(struct vge_control_data)); /* * Create map for control data. */ error = bus_dmamap_create(sc->sc_dmat, sizeof(struct vge_control_data), 1, sizeof(struct vge_control_data), 0, BUS_DMA_NOWAIT, &sc->sc_cddmamap); if (error) { aprint_error_dev(sc->sc_dev, "could not create control data dmamap\n"); goto fail_3; } /* Load the map for the control data. */ error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct vge_control_data), NULL, BUS_DMA_NOWAIT); if (error) { aprint_error_dev(sc->sc_dev, "could not load control data dma memory\n"); goto fail_4; } /* Create DMA maps for TX buffers */ for (i = 0; i < VGE_NTXDESC; i++) { error = bus_dmamap_create(sc->sc_dmat, VGE_TX_MAXLEN, VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT, &sc->sc_txsoft[i].txs_dmamap); if (error) { aprint_error_dev(sc->sc_dev, "can't create DMA map for TX descs\n"); goto fail_5; } } /* Create DMA maps for RX buffers */ for (i = 0; i < VGE_NRXDESC; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_rxsoft[i].rxs_dmamap); if (error) { aprint_error_dev(sc->sc_dev, "can't create DMA map for RX descs\n"); goto fail_6; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } return 0; fail_6: for (i = 0; i < VGE_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_5: for (i = 0; i < VGE_NTXDESC; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_4: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct vge_control_data)); fail_2: bus_dmamem_free(sc->sc_dmat, &seg, nseg); fail_1: return ENOMEM; } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static void vge_attach(device_t parent, device_t self, void *aux) { uint8_t *eaddr; struct vge_softc *sc = device_private(self); struct ifnet *ifp; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; const char *intrstr; pci_intr_handle_t ih; uint16_t val; char intrbuf[PCI_INTRSTR_LEN]; sc->sc_dev = self; pci_aprint_devinfo_fancy(pa, NULL, "VIA VT612X Gigabit Ethernet", 1); /* Make sure bus-mastering is enabled */ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* * Map control/status registers. */ if (pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_bst, &sc->sc_bsh, NULL, NULL) != 0) { aprint_error_dev(self, "couldn't map memory\n"); return; } /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "unable to map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc); if (sc->sc_intrhand == NULL) { aprint_error_dev(self, "unable to establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); /* Reset the adapter. */ vge_reset(sc); /* * Get station address from the EEPROM. */ eaddr = sc->sc_eaddr; val = vge_read_eeprom(sc, VGE_EE_EADDR + 0); eaddr[0] = val & 0xff; eaddr[1] = val >> 8; val = vge_read_eeprom(sc, VGE_EE_EADDR + 1); eaddr[2] = val & 0xff; eaddr[3] = val >> 8; val = vge_read_eeprom(sc, VGE_EE_EADDR + 2); eaddr[4] = val & 0xff; eaddr[5] = val >> 8; aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(eaddr)); /* * Use the 32bit tag. Hardware supports 48bit physical addresses, * but we don't use that for now. */ sc->sc_dmat = pa->pa_dmat; if (vge_allocmem(sc) != 0) return; ifp = &sc->sc_ethercom.ec_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); ifp->if_mtu = ETHERMTU; ifp->if_baudrate = IF_Gbps(1); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vge_ioctl; ifp->if_start = vge_start; ifp->if_init = vge_init; ifp->if_stop = vge_stop; /* * We can support 802.1Q VLAN-sized frames and jumbo * Ethernet frames. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_HWTAGGING; /* * We can do IPv4/TCPv4/UDPv4 checksums in hardware. */ ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; #ifdef DEVICE_POLLING #ifdef IFCAP_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif #endif ifp->if_watchdog = vge_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN)); IFQ_SET_READY(&ifp->if_snd); /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = vge_miibus_readreg; sc->sc_mii.mii_writereg = vge_miibus_writereg; sc->sc_mii.mii_statchg = vge_miibus_statchg; sc->sc_ethercom.ec_mii = &sc->sc_mii; ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange, ether_mediastatus); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Attach the interface. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, eaddr); ether_set_ifflags_cb(&sc->sc_ethercom, vge_ifflags_cb); callout_init(&sc->sc_timeout, 0); callout_setfunc(&sc->sc_timeout, vge_tick, sc); /* * Make sure the interface is shutdown during reboot. */ if (pmf_device_register1(self, NULL, NULL, vge_shutdown)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); } static int vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m) { struct mbuf *m_new; struct vge_rxdesc *rxd; struct vge_rxsoft *rxs; bus_dmamap_t map; int i; #ifdef DIAGNOSTIC uint32_t rd_sts; #endif m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return ENOBUFS; MCLGET(m_new, M_DONTWAIT); if ((m_new->m_flags & M_EXT) == 0) { m_freem(m_new); return ENOBUFS; } m = m_new; } else m->m_data = m->m_ext.ext_buf; /* * This is part of an evil trick to deal with non-x86 platforms. * The VIA chip requires RX buffers to be aligned on 32-bit * boundaries, but that will hose non-x86 machines. To get around * this, we leave some empty space at the start of each buffer * and for non-x86 hosts, we copy the buffer back two bytes * to achieve word alignment. This is slightly more efficient * than allocating a new buffer, copying the contents, and * discarding the old buffer. */ m->m_len = m->m_pkthdr.len = VGE_RX_BUFSIZE; #ifndef __NO_STRICT_ALIGNMENT m->m_data += VGE_RX_PAD; #endif rxs = &sc->sc_rxsoft[idx]; map = rxs->rxs_dmamap; if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT) != 0) goto out; rxd = &sc->sc_rxdescs[idx]; #ifdef DIAGNOSTIC /* If this descriptor is still owned by the chip, bail. */ VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rd_sts = le32toh(rxd->rd_sts); VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); if (rd_sts & VGE_RDSTS_OWN) { panic("%s: tried to map busy RX descriptor", device_xname(sc->sc_dev)); } #endif rxs->rxs_mbuf = m; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREREAD); rxd->rd_buflen = htole16(VGE_BUFLEN(map->dm_segs[0].ds_len) | VGE_RXDESC_I); vge_set_rxaddr(rxd, map->dm_segs[0].ds_addr); rxd->rd_sts = 0; rxd->rd_ctl = 0; VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Note: the manual fails to document the fact that for * proper opration, the driver needs to replentish the RX * DMA ring 4 descriptors at a time (rather than one at a * time, like most chips). We can allocate the new buffers * but we should not set the OWN bits until we're ready * to hand back 4 of them in one shot. */ #define VGE_RXCHUNK 4 sc->sc_rx_consumed++; if (sc->sc_rx_consumed == VGE_RXCHUNK) { for (i = idx; i != idx - VGE_RXCHUNK; i--) { KASSERT(i >= 0); sc->sc_rxdescs[i].rd_sts |= htole32(VGE_RDSTS_OWN); VGE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } sc->sc_rx_consumed = 0; } return 0; out: if (m_new != NULL) m_freem(m_new); return ENOMEM; } #ifndef __NO_STRICT_ALIGNMENT static inline void vge_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= ETHER_ALIGN; } #endif /* * RX handler. We support the reception of jumbo frames that have * been fragmented across multiple 2K mbuf cluster buffers. */ static void vge_rxeof(struct vge_softc *sc) { struct mbuf *m; struct ifnet *ifp; int idx, total_len, lim; struct vge_rxdesc *cur_rxd; struct vge_rxsoft *rxs; uint32_t rxstat, rxctl; ifp = &sc->sc_ethercom.ec_if; lim = 0; /* Invalidate the descriptor memory */ for (idx = sc->sc_rx_prodidx;; idx = VGE_NEXT_RXDESC(idx)) { cur_rxd = &sc->sc_rxdescs[idx]; VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rxstat = le32toh(cur_rxd->rd_sts); if ((rxstat & VGE_RDSTS_OWN) != 0) { VGE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); break; } rxctl = le32toh(cur_rxd->rd_ctl); rxs = &sc->sc_rxsoft[idx]; m = rxs->rxs_mbuf; total_len = (rxstat & VGE_RDSTS_BUFSIZ) >> 16; /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); /* * If the 'start of frame' bit is set, this indicates * either the first fragment in a multi-fragment receive, * or an intermediate fragment. Either way, we want to * accumulate the buffers. */ if (rxstat & VGE_RXPKT_SOF) { m->m_len = VGE_RX_BUFSIZE; if (sc->sc_rx_mhead == NULL) sc->sc_rx_mhead = sc->sc_rx_mtail = m; else { m->m_flags &= ~M_PKTHDR; sc->sc_rx_mtail->m_next = m; sc->sc_rx_mtail = m; } vge_newbuf(sc, idx, NULL); continue; } /* * Bad/error frames will have the RXOK bit cleared. * However, there's one error case we want to allow: * if a VLAN tagged frame arrives and the chip can't * match it against the CAM filter, it considers this * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. * We don't want to drop the frame though: our VLAN * filtering is done in software. */ if ((rxstat & VGE_RDSTS_RXOK) == 0 && (rxstat & VGE_RDSTS_VIDM) == 0 && (rxstat & VGE_RDSTS_CSUMERR) == 0) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->sc_rx_mhead != NULL) { m_freem(sc->sc_rx_mhead); sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; } vge_newbuf(sc, idx, m); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (vge_newbuf(sc, idx, NULL)) { ifp->if_ierrors++; if (sc->sc_rx_mhead != NULL) { m_freem(sc->sc_rx_mhead); sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; } vge_newbuf(sc, idx, m); continue; } if (sc->sc_rx_mhead != NULL) { m->m_len = total_len % VGE_RX_BUFSIZE; /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->sc_rx_mtail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->sc_rx_mtail->m_next = m; } m = sc->sc_rx_mhead; sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = total_len - ETHER_CRC_LEN; #ifndef __NO_STRICT_ALIGNMENT vge_fixup_rx(m); #endif m_set_rcvif(m, ifp); /* Do RX checksumming if enabled */ if (ifp->if_csum_flags_rx & M_CSUM_IPv4) { /* Check IP header checksum */ if (rxctl & VGE_RDCTL_IPPKT) m->m_pkthdr.csum_flags |= M_CSUM_IPv4; if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; } if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { /* Check UDP checksum */ if (rxctl & VGE_RDCTL_TCPPKT) m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) { /* Check UDP checksum */ if (rxctl & VGE_RDCTL_UDPPKT) m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if (rxstat & VGE_RDSTS_VTAG) { /* * We use bswap16() here because: * On LE machines, tag is stored in BE as stream data. * On BE machines, tag is stored in BE as stream data * but it was already swapped by le32toh() above. */ VLAN_INPUT_TAG(ifp, m, bswap16(rxctl & VGE_RDCTL_VLANID), continue); } if_percpuq_enqueue(ifp->if_percpuq, m); lim++; if (lim == VGE_NRXDESC) break; } sc->sc_rx_prodidx = idx; CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); } static void vge_txeof(struct vge_softc *sc) { struct ifnet *ifp; struct vge_txsoft *txs; uint32_t txstat; int idx; ifp = &sc->sc_ethercom.ec_if; for (idx = sc->sc_tx_considx; sc->sc_tx_free < VGE_NTXDESC; idx = VGE_NEXT_TXDESC(idx), sc->sc_tx_free++) { VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); txstat = le32toh(sc->sc_txdescs[idx].td_sts); VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); if (txstat & VGE_TDSTS_OWN) { break; } txs = &sc->sc_txsoft[idx]; m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) ifp->if_collisions++; if (txstat & VGE_TDSTS_TXERR) ifp->if_oerrors++; else ifp->if_opackets++; } sc->sc_tx_considx = idx; if (sc->sc_tx_free > 0) { ifp->if_flags &= ~IFF_OACTIVE; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->sc_tx_free < VGE_NTXDESC) CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); else ifp->if_timer = 0; } static void vge_tick(void *arg) { struct vge_softc *sc; struct ifnet *ifp; struct mii_data *mii; int s; sc = arg; ifp = &sc->sc_ethercom.ec_if; mii = &sc->sc_mii; s = splnet(); callout_schedule(&sc->sc_timeout, hz); mii_tick(mii); if (sc->sc_link) { if ((mii->mii_media_status & IFM_ACTIVE) == 0) sc->sc_link = 0; } else { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->sc_link = 1; if (!IFQ_IS_EMPTY(&ifp->if_snd)) vge_start(ifp); } } splx(s); } static int vge_intr(void *arg) { struct vge_softc *sc; struct ifnet *ifp; uint32_t status; int claim; sc = arg; claim = 0; if (sc->sc_suspended) { return claim; } ifp = &sc->sc_ethercom.ec_if; if ((ifp->if_flags & IFF_UP) == 0) { return claim; } /* Disable interrupts */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); for (;;) { status = CSR_READ_4(sc, VGE_ISR); /* If the card has gone away the read returns 0xffffffff. */ if (status == 0xFFFFFFFF) break; if (status) { claim = 1; CSR_WRITE_4(sc, VGE_ISR, status); } if ((status & VGE_INTRS) == 0) break; if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) vge_rxeof(sc); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) vge_txeof(sc); if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) vge_init(ifp); if (status & VGE_ISR_LINKSTS) vge_tick(sc); } /* Re-enable interrupts */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); if (claim) if_schedule_deferred_start(ifp); return claim; } static int vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx) { struct vge_txsoft *txs; struct vge_txdesc *txd; struct vge_txfrag *f; struct mbuf *m_new; bus_dmamap_t map; int m_csumflags, seg, error, flags; struct m_tag *mtag; size_t sz; uint32_t td_sts, td_ctl; KASSERT(sc->sc_tx_free > 0); txd = &sc->sc_txdescs[idx]; #ifdef DIAGNOSTIC /* If this descriptor is still owned by the chip, bail. */ VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); td_sts = le32toh(txd->td_sts); VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD); if (td_sts & VGE_TDSTS_OWN) { return ENOBUFS; } #endif /* * Preserve m_pkthdr.csum_flags here since m_head might be * updated by m_defrag() */ m_csumflags = m_head->m_pkthdr.csum_flags; txs = &sc->sc_txsoft[idx]; map = txs->txs_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT); /* If too many segments to map, coalesce */ if (error == EFBIG || (m_head->m_pkthdr.len < ETHER_PAD_LEN && map->dm_nsegs == VGE_TX_FRAGS)) { m_new = m_defrag(m_head, M_DONTWAIT); if (m_new == NULL) return EFBIG; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_new, BUS_DMA_NOWAIT); if (error) { m_freem(m_new); return error; } m_head = m_new; } else if (error) return error; txs->txs_mbuf = m_head; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); for (seg = 0, f = &txd->td_frag[0]; seg < map->dm_nsegs; seg++, f++) { f->tf_buflen = htole16(VGE_BUFLEN(map->dm_segs[seg].ds_len)); vge_set_txaddr(f, map->dm_segs[seg].ds_addr); } /* Argh. This chip does not autopad short frames */ sz = m_head->m_pkthdr.len; if (sz < ETHER_PAD_LEN) { f->tf_buflen = htole16(VGE_BUFLEN(ETHER_PAD_LEN - sz)); vge_set_txaddr(f, VGE_CDPADADDR(sc)); sz = ETHER_PAD_LEN; seg++; } VGE_TXFRAGSYNC(sc, idx, seg, BUS_DMASYNC_PREWRITE); /* * When telling the chip how many segments there are, we * must use nsegs + 1 instead of just nsegs. Darned if I * know why. */ seg++; flags = 0; if (m_csumflags & M_CSUM_IPv4) flags |= VGE_TDCTL_IPCSUM; if (m_csumflags & M_CSUM_TCPv4) flags |= VGE_TDCTL_TCPCSUM; if (m_csumflags & M_CSUM_UDPv4) flags |= VGE_TDCTL_UDPCSUM; td_sts = sz << 16; td_ctl = flags | (seg << 28) | VGE_TD_LS_NORM; if (sz > ETHERMTU + ETHER_HDR_LEN) td_ctl |= VGE_TDCTL_JUMBO; /* * Set up hardware VLAN tagging. */ mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head); if (mtag != NULL) { /* * No need htons() here since vge(4) chip assumes * that tags are written in little endian and * we already use htole32() here. */ td_ctl |= VLAN_TAG_VALUE(mtag) | VGE_TDCTL_VTAG; } txd->td_ctl = htole32(td_ctl); txd->td_sts = htole32(td_sts); VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); txd->td_sts = htole32(VGE_TDSTS_OWN | td_sts); VGE_TXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_tx_free--; return 0; } /* * Main transmit routine. */ static void vge_start(struct ifnet *ifp) { struct vge_softc *sc; struct vge_txsoft *txs; struct mbuf *m_head; int idx, pidx, ofree, error; sc = ifp->if_softc; if (!sc->sc_link || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) { return; } m_head = NULL; idx = sc->sc_tx_prodidx; pidx = VGE_PREV_TXDESC(idx); ofree = sc->sc_tx_free; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { /* Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sc->sc_tx_free == 0) { /* * All slots used, stop for now. */ ifp->if_flags |= IFF_OACTIVE; break; } txs = &sc->sc_txsoft[idx]; KASSERT(txs->txs_mbuf == NULL); if ((error = vge_encap(sc, m_head, idx))) { if (error == EFBIG) { printf("%s: Tx packet consumes too many " "DMA segments, dropping...\n", device_xname(sc->sc_dev)); IFQ_DEQUEUE(&ifp->if_snd, m_head); m_freem(m_head); continue; } /* * Short on resources, just stop for now. */ if (error == ENOBUFS) ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m_head); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ sc->sc_txdescs[pidx].td_frag[0].tf_buflen |= htole16(VGE_TXDESC_Q); VGE_TXFRAGSYNC(sc, pidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); if (txs->txs_mbuf != m_head) { m_freem(m_head); m_head = txs->txs_mbuf; } pidx = idx; idx = VGE_NEXT_TXDESC(idx); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m_head); } if (sc->sc_tx_free < ofree) { /* TX packet queued */ sc->sc_tx_prodidx = idx; /* Issue a transmit command. */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the SSTIMER register, and then trigger an * interrupt. Each time we set the TIMER0_ENABLE bit, the * the timer count is reloaded. Only when the transmitter * is idle will the timer hit 0 and an interrupt fire. */ CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } static int vge_init(struct ifnet *ifp) { struct vge_softc *sc; int i, rc = 0; sc = ifp->if_softc; /* * Cancel pending I/O and free all RX/TX buffers. */ vge_stop(ifp, 0); vge_reset(sc); /* Initialize the RX descriptors and mbufs. */ memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs)); sc->sc_rx_consumed = 0; for (i = 0; i < VGE_NRXDESC; i++) { if (vge_newbuf(sc, i, NULL) == ENOBUFS) { printf("%s: unable to allocate or map rx buffer\n", device_xname(sc->sc_dev)); return 1; /* XXX */ } } sc->sc_rx_prodidx = 0; sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; /* Initialize the TX descriptors and mbufs. */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, VGE_CDTXOFF(0), sizeof(sc->sc_txdescs), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); for (i = 0; i < VGE_NTXDESC; i++) sc->sc_txsoft[i].txs_mbuf = NULL; sc->sc_tx_prodidx = 0; sc->sc_tx_considx = 0; sc->sc_tx_free = VGE_NTXDESC; /* Set our station address */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_PAR0 + i, sc->sc_eaddr[i]); /* * Set receive FIFO threshold. Also allow transmission and * reception of VLAN tagged frames. */ CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); /* Set DMA burst length */ CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); /* Set collision backoff algorithm */ CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); /* Disable LPSEL field in priority resolution */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); /* * Load the addresses of the DMA queues into the chip. * Note that we only use one transmit queue. */ CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(VGE_CDTXADDR(sc, 0))); CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_NTXDESC - 1); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(VGE_CDRXADDR(sc, 0))); CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_NRXDESC - 1); CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_NRXDESC); /* Enable and wake up the RX descriptor queue */ CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); /* Enable the TX descriptor queue */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); /* Set up the receive filter -- allow large frames for VLANs. */ CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); } /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); } /* Set multicast bit to capture multicast frames. */ if (ifp->if_flags & IFF_MULTICAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); } /* Init the cam filter. */ vge_cam_clear(sc); /* Init the multicast filter. */ vge_setmulti(sc); /* Enable flow control */ CSR_WRITE_1(sc, VGE_CRS2, 0x8B); /* Enable jumbo frame reception (if desired) */ /* Start the MAC. */ CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); /* * Configure one-shot timer for microsecond * resulution and load it for 500 usecs. */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); CSR_WRITE_2(sc, VGE_SSTIMER, 400); /* * Configure interrupt moderation for receive. Enable * the holdoff counter and load it, and set the RX * suppression count to the number of descriptors we * want to allow before triggering an interrupt. * The holdoff timer is in units of 20 usecs. */ #ifdef notyet CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); /* Select the interrupt holdoff timer page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ /* Enable use of the holdoff timer. */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); /* Select the RX suppression threshold page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ /* Restore the page select bits. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); #endif #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_flags & IFF_POLLING) { CSR_WRITE_4(sc, VGE_IMR, 0); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); } else /* otherwise ... */ #endif /* DEVICE_POLLING */ { /* * Enable interrupts. */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); } if ((rc = ether_mediachange(ifp)) != 0) goto out; ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->sc_if_flags = 0; sc->sc_link = 0; callout_schedule(&sc->sc_timeout, hz); out: return rc; } static void vge_miibus_statchg(struct ifnet *ifp) { struct vge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; /* * If the user manually selects a media mode, we need to turn * on the forced MAC mode bit in the DIAGCTL register. If the * user happens to choose a full duplex mode, we also need to * set the 'force full duplex' bit. This applies only to * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC * mode is disabled, and in 1000baseT mode, full duplex is * always implied, so we turn on the forced mode bit but leave * the FDX bit cleared. */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_1000_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_100_TX: case IFM_10_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } else { CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } break; default: printf("%s: unknown media type: %x\n", device_xname(sc->sc_dev), IFM_SUBTYPE(ife->ifm_media)); break; } } static int vge_ifflags_cb(struct ethercom *ec) { struct ifnet *ifp = &ec->ec_if; struct vge_softc *sc = ifp->if_softc; int change = ifp->if_flags ^ sc->sc_if_flags; if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) return ENETRESET; else if ((change & IFF_PROMISC) == 0) return 0; if ((ifp->if_flags & IFF_PROMISC) == 0) CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); else CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); return 0; } static int vge_ioctl(struct ifnet *ifp, u_long command, void *data) { struct vge_softc *sc; int s, error; sc = ifp->if_softc; error = 0; s = splnet(); if ((error = ether_ioctl(ifp, command, data)) == ENETRESET) { error = 0; if (command != SIOCADDMULTI && command != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the hardware filter * accordingly. */ vge_setmulti(sc); } } sc->sc_if_flags = ifp->if_flags; splx(s); return error; } static void vge_watchdog(struct ifnet *ifp) { struct vge_softc *sc; int s; sc = ifp->if_softc; s = splnet(); printf("%s: watchdog timeout\n", device_xname(sc->sc_dev)); ifp->if_oerrors++; vge_txeof(sc); vge_rxeof(sc); vge_init(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vge_stop(struct ifnet *ifp, int disable) { struct vge_softc *sc = ifp->if_softc; struct vge_txsoft *txs; struct vge_rxsoft *rxs; int i, s; s = splnet(); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); #ifdef DEVICE_POLLING ether_poll_deregister(ifp); #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); if (sc->sc_rx_mhead != NULL) { m_freem(sc->sc_rx_mhead); sc->sc_rx_mhead = sc->sc_rx_mtail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < VGE_NTXDESC; i++) { txs = &sc->sc_txsoft[i]; if (txs->txs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < VGE_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } splx(s); } #if VGE_POWER_MANAGEMENT /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int vge_suspend(device_t dev) { struct vge_softc *sc; int i; sc = device_get_softc(dev); vge_stop(sc); for (i = 0; i < 5; i++) sc->sc_saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); sc->sc_saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); sc->sc_saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); sc->sc_saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); sc->sc_saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); sc->suspended = 1; return 0; } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int vge_resume(device_t dev) { struct vge_softc *sc; struct ifnet *ifp; int i; sc = device_private(dev); ifp = &sc->sc_ethercom.ec_if; /* better way to do this? */ for (i = 0; i < 5; i++) pci_write_config(dev, PCIR_MAPS + i * 4, sc->sc_saved_maps[i], 4); pci_write_config(dev, PCIR_BIOS, sc->sc_saved_biosaddr, 4); pci_write_config(dev, PCIR_INTLINE, sc->sc_saved_intline, 1); pci_write_config(dev, PCIR_CACHELNSZ, sc->sc_saved_cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, sc->sc_saved_lattimer, 1); /* reenable busmastering */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) vge_init(sc); sc->suspended = 0; return 0; } #endif /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static bool vge_shutdown(device_t self, int howto) { struct vge_softc *sc; sc = device_private(self); vge_stop(&sc->sc_ethercom.ec_if, 1); return true; }