/* $NetBSD: ntp_refclock.c,v 1.6 1998/08/27 20:31:03 ross Exp $ */ /* * ntp_refclock - processing support for reference clocks */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #ifdef HAVE_SYS_IOCTL_H # include #endif /* HAVE_SYS_IOCTL_H */ #include "ntpd.h" #include "ntp_io.h" #include "ntp_unixtime.h" #include "ntp_refclock.h" #include "ntp_stdlib.h" #ifdef REFCLOCK #ifdef TTYCLK #include #endif /* TTYCLK */ #ifdef CHUCLK #include #endif /* CHUCLK */ #ifdef PPS #include #endif /* PPS */ /* * Reference clock support is provided here by maintaining the fiction * that the clock is actually a peer. As no packets are exchanged with a * reference clock, however, we replace the transmit, receive and packet * procedures with separate code to simulate them. Routines * refclock_transmit() and refclock_receive() maintain the peer * variables in a state analogous to an actual peer and pass reference * clock data on through the filters. Routines refclock_peer() and * refclock_unpeer() are called to initialize and terminate reference * clock associations. A set of utility routines is included to open * serial devices, process sample data, edit input lines to extract * embedded timestamps and to peform various debugging functions. * * The main interface used by these routines is the refclockproc * structure, which contains for most drivers the decimal equivalants of * the year, day, month, hour, second and millisecond/microsecond * decoded from the ASCII timecode. Additional information includes the * receive timestamp, exception report, statistics tallies, etc. In * addition, there may be a driver-specific unit structure used for * local control of the device. * * The support routines are passed a pointer to the peer structure, * which is used for all peer-specific processing and contains a pointer * to the refclockproc structure, which in turn containes a pointer to * the unit structure, if used. In addition, some routines expect an * address in the dotted quad form 127.127.t.u, where t is the clock * type and u the unit. A table typeunit[type][unit] contains the peer * structure pointer for each configured clock type and unit. * * Most drivers support the 1-pps signal provided by some radios and * connected via a level converted described in the gadget directory. * The signal is captured using a separate, dedicated serial port and * the tty_clk line discipline/streams modules described in the kernel * directory. For the highest precision, the signal is captured using * the carrier-detect line of the same serial port using the ppsclock * streams module described in the ppsclock directory. */ #define REFCLOCKMAXDISPERSE (FP_SECOND/4) /* max sample dispersion */ #define MAXUNIT 4 /* max units */ #ifndef CLKLDISC #define CLKLDISC 10 /* XXX temp tty_clk line discipline */ #endif #ifndef CHULDISC #define CHULDISC 10 /* XXX temp tty_chu line discipline */ #endif /* * The refclock configuration table. Imported from refclock_conf */ extern struct refclock *refclock_conf[]; extern u_char num_refclock_conf; /* * Imported from the I/O module */ extern struct interface *any_interface; extern struct interface *loopback_interface; /* * Imported from ntp_loopfilter module */ extern int fdpps; /* pps file descriptor */ #ifdef PPS extern int pps_enable; /* pps enabled indicator (from ntp_loopfilter.c) */ #endif /* PPS */ /* * Imported from the timer module */ extern u_long current_time; extern struct event timerqueue[]; /* * Imported from the main and peer modules. We use the same algorithm * for spacing out timers at configuration time that the peer module * does. */ extern u_long init_peer_starttime; extern int initializing; extern int debug; /* * Type/unit peer index. Used to find the peer structure for control and * debugging. When all clock drivers have been converted to new style, * this dissapears. */ static struct peer *typeunit[REFCLK_MAX + 1][MAXUNIT]; /* * Forward declarations */ static int refclock_cmpl_fp P((const void *, const void *)); /* * refclock_report - note the occurance of an event * * This routine presently just remembers the report and logs it, but * does nothing heroic for the trap handler. It tries to be a good * citizen and bothers the system log only if things change. */ void refclock_report(peer, code) struct peer *peer; u_int code; { struct refclockproc *pp; if (!(pp = peer->procptr)) return; if (code == CEVNT_BADREPLY) pp->badformat++; if (code == CEVNT_BADTIME) pp->baddata++; if (code == CEVNT_TIMEOUT) pp->noreply++; if (pp->currentstatus != code) { pp->currentstatus = code; pp->lastevent = code; if (code == CEVNT_FAULT) { NLOG(NLOG_CLOCKEVENT) msyslog(LOG_ERR, "clock %s fault '%s' (0x%02x)", refnumtoa(peer->srcadr.sin_addr.s_addr), ceventstr(code), code); } else { NLOG(NLOG_CLOCKEVENT) msyslog(LOG_INFO, "clock %s event '%s' (0x%02x)", refnumtoa(peer->srcadr.sin_addr.s_addr), ceventstr(code), code); } } } /* * init_refclock - initialize the reference clock drivers * * This routine calls each of the drivers in turn to initialize internal * variables, if necessary. Most drivers have nothing to say at this * point. */ void init_refclock() { int i, j; for (i = 0; i < (int)num_refclock_conf; i++) { if (refclock_conf[i]->clock_init != noentry) (refclock_conf[i]->clock_init)(); for (j = 0; j < MAXUNIT; j++) typeunit[i][j] = 0; } } /* * refclock_newpeer - initialize and start a reference clock * * This routine allocates and initializes the interface structure which * supports a reference clock in the form of an ordinary NTP peer. A * driver-specific support routine completes the initialization, if * used. Default peer variables which identify the clock and establish * its reference ID and stratum are set here. It returns one if success * and zero if the clock address is invalid or already running, * insufficient resources are available or the driver declares a bum * rap. */ int refclock_newpeer(peer) struct peer *peer; /* peer structure pointer */ { struct refclockproc *pp; u_char clktype; int unit; /* * Check for valid clock address. If already running, shut it * down first. */ if (!ISREFCLOCKADR(&peer->srcadr)) { msyslog(LOG_ERR, "refclock_newpeer: clock address %s invalid", ntoa(&peer->srcadr)); return (0); } clktype = (u_char)REFCLOCKTYPE(&peer->srcadr); unit = REFCLOCKUNIT(&peer->srcadr); if (clktype >= num_refclock_conf || unit > MAXUNIT || refclock_conf[clktype]->clock_start == noentry) { msyslog(LOG_ERR, "refclock_newpeer: clock type %d invalid\n", clktype); return (0); } refclock_unpeer(peer); /* * Allocate and initialize interface structure */ if (!(pp = (struct refclockproc *) emalloc(sizeof(struct refclockproc)))) return (0); memset((char *)pp, 0, sizeof(struct refclockproc)); typeunit[clktype][unit] = peer; peer->procptr = pp; /* * Initialize structures */ peer->refclktype = clktype; peer->refclkunit = unit; peer->flags |= FLAG_REFCLOCK; peer->event_timer.peer = peer; peer->event_timer.event_handler = refclock_transmit; pp->type = clktype; pp->timestarted = current_time; peer->stratum = STRATUM_REFCLOCK; peer->refid = peer->srcadr.sin_addr.s_addr; peer->maxpoll = peer->minpoll; /* * Do driver dependent initialization */ if (!((refclock_conf[clktype]->clock_start)(unit, peer))) { free(pp); return (0); } peer->hpoll = peer->minpoll; peer->ppoll = peer->maxpoll; if (peer->stratum <= 1) peer->refid = pp->refid; else peer->refid = peer->srcadr.sin_addr.s_addr; /* * Set up the timeout for polling and reachability determination */ if (initializing) { init_peer_starttime += (1 << EVENT_TIMEOUT); if (init_peer_starttime >= (u_long)(1 << peer->minpoll)) init_peer_starttime = (1 << EVENT_TIMEOUT); peer->event_timer.event_time = init_peer_starttime; } else { peer->event_timer.event_time = current_time + (1 << peer->hpoll); } TIMER_ENQUEUE(timerqueue, &peer->event_timer); return (1); } /* * refclock_unpeer - shut down a clock */ void refclock_unpeer(peer) struct peer *peer; /* peer structure pointer */ { u_char clktype; int unit; /* * Wiggle the driver to release its resources, then give back * the interface structure. */ if (!peer->procptr) return; clktype = peer->refclktype; unit = peer->refclkunit; if (refclock_conf[clktype]->clock_shutdown != noentry) (refclock_conf[clktype]->clock_shutdown)(unit, peer); free(peer->procptr); peer->procptr = 0; } /* * refclock_transmit - simulate the transmit procedure * * This routine implements the NTP transmit procedure for a reference * clock. This provides a mechanism to call the driver at the NTP poll * interval, as well as provides a reachability mechanism to detect a * broken radio or other madness. */ void refclock_transmit(peer) struct peer *peer; /* peer structure pointer */ { struct refclockproc *pp; u_char clktype; int unit; u_char opeer_reach; pp = peer->procptr; clktype = peer->refclktype; unit = peer->refclkunit; peer->sent++; /* * The transmit procedure is supposed to freeze a timestamp. * Get one just for fun, and to tell when we last were here. */ get_systime(&peer->xmt); /* * Fiddle reachability. */ opeer_reach = peer->reach; peer->reach <<= 1; if (peer->reach == 0) { /* * Clear this one out. No need to redo selection since * this fellow will definitely be suffering from * dispersion madness. */ if (opeer_reach != 0) { peer_clear(peer); peer->timereachable = current_time; report_event(EVNT_UNREACH, peer); } /* * Update reachability and poll variables */ } else if ((opeer_reach & 3) == 0) { l_fp off; if (peer->valid > 0) peer->valid--; L_CLR(&off); clock_filter(peer, &off, 0, NTP_MAXDISPERSE); if (peer->flags & FLAG_SYSPEER) clock_select(); } else if (peer->valid < NTP_SHIFT) peer->valid++; /* * If he wants to be polled, do it. New style drivers do not use * the unit argument, since the fudge stuff is in the * refclockproc structure. */ if (refclock_conf[clktype]->clock_poll != noentry) (refclock_conf[clktype]->clock_poll)(unit, peer); /* * Finally, reset the timer */ peer->event_timer.event_time += (1 << peer->hpoll); TIMER_ENQUEUE(timerqueue, &peer->event_timer); } /* * Compare two l_fp's - used with qsort() */ static int refclock_cmpl_fp(p1, p2) register const void *p1, *p2; /* l_fp to compare */ { if (!L_ISGEQ((const l_fp *)p1, (const l_fp *)p2)) return (-1); if (L_ISEQU((const l_fp *)p1, (const l_fp *)p2)) return (0); return (1); } /* * refclock_process - process a pile of samples from the clock * * This routine converts the timecode in the form days, hours, miinutes, * seconds, milliseconds/microseconds to internal timestamp format. * Further processing is then delegated to refclock sample */ int refclock_process(pp, nstart, nskeep) struct refclockproc *pp; /* peer structure pointer */ int nstart; /* stages of median filter */ int nskeep; /* stages after outlyer trim */ { l_fp offset; /* * Compute the timecode timestamp from the days, hours, minutes, * seconds and milliseconds/microseconds of the timecode. Use * clocktime() for the aggregate seconds and the msec/usec for * the fraction, when present. Note that this code relies on the * filesystem time for the years and does not use the years of * the timecode. */ if (!clocktime(pp->day, pp->hour, pp->minute, pp->second, GMT, pp->lastrec.l_ui, &pp->yearstart, &offset.l_ui)) return (0); if (pp->usec) { TVUTOTSF(pp->usec, offset.l_uf); } else { MSUTOTSF(pp->msec, offset.l_uf); } L_ADD(&offset, &pp->fudgetime1); pp->lastref = offset; /* save last reference time */ /* * Include the configured fudgetime1 adjustment. */ L_SUB(&offset, &pp->lastrec); /* form true offset */ return refclock_sample(&offset, pp, nstart, nskeep); } /* * refclock_sample - process a pile of samples from the clock * * This routine converts the timecode in the form days, hours, miinutes, * seconds, milliseconds/microseconds to internal timestamp format. It * then calculates the difference from the receive timestamp and * assembles the samples in a shift register. It implements a recursive * median filter to suppress spikes in the data, as well as determine a * rough dispersion estimate. A configuration constant time adjustment * fudgetime1 can be added to the final offset to compensate for various * systematic errors. The routine returns one if success and zero if * failure due to invalid timecode data or very noisy offsets. * * This interface is needed to allow for clocks (e. g. parse) that can * provide the correct offset including year information (though NTP * usually gives up on offsets greater than 1000 seconds). */ int refclock_sample(sample_offset, pp, nstart, nskeep) l_fp *sample_offset; /* input offset (offset! - not a time stamp) for filter machine */ struct refclockproc *pp; /* peer structure pointer */ int nstart; /* stages of median filter */ int nskeep; /* stages after outlyer trim */ { int i, n; l_fp offset, median, lftmp; l_fp off[MAXSTAGE]; u_fp disp; /* * Subtract the receive timestamp from the timecode timestamp * to form the raw offset. Insert in the median filter shift * register. */ pp->nstages = nstart; offset = *sample_offset; i = ((int)(pp->coderecv)) % pp->nstages; pp->filter[i] = offset; if (pp->coderecv == 0) for (i = 1; (u_int) i < pp->nstages; i++) pp->filter[i] = pp->filter[0]; pp->coderecv++; /* * Copy the raw offsets and sort into ascending order */ for (i = 0; (u_int) i < pp->nstages; i++) off[i] = pp->filter[i]; qsort((char *)off, pp->nstages, sizeof(l_fp), refclock_cmpl_fp); /* * Reject the furthest from the median of nstages samples until * nskeep samples remain. */ i = 0; n = pp->nstages; while ((n - i) > nskeep) { lftmp = off[n - 1]; median = off[(n + i) / 2]; L_SUB(&lftmp, &median); L_SUB(&median, &off[i]); if (L_ISHIS(&median, &lftmp)) { /* reject low end */ i++; } else { /* reject high end */ n--; } } /* * Compute the dispersion based on the difference between the * extremes of the remaining offsets. Add to this the time since * the last clock update, which represents the dispersion * increase with time. We know that NTP_MAXSKEW is 16. If the * sum is greater than the allowed sample dispersion, bail out. * If the loop is unlocked, return the most recent offset; * otherwise, return the median offset. */ lftmp = off[n - 1]; L_SUB(&lftmp, &off[i]); disp = LFPTOFP(&lftmp) + current_time - pp->lasttime; if (disp > REFCLOCKMAXDISPERSE) return (0); pp->offset = off[(n + i) / 2]; pp->dispersion = disp; return (1); } /* * refclock_receive - simulate the receive and packet procedures * * This routine simulates the NTP receive and packet procedures for a * reference clock. This provides a mechanism in which the ordinary NTP * filter, selection and combining algorithms can be used to suppress * misbehaving radios and to mitigate between them when more than one is * available for backup. */ void refclock_receive(peer, offset, delay, dispersion, reftime, rectime, leap) struct peer *peer; /* peer structure pointer */ l_fp *offset; /* computed offset (s) */ s_fp delay; /* computed delay to peer */ u_fp dispersion; /* computed dispersion to peer */ l_fp *reftime; /* time at last clock update */ l_fp *rectime; /* time at last peer update */ int leap; /* synchronization/leap code */ { int restrict_mask; int trustable; int refclock_own_states; u_fp precision; peer->received++; #ifdef DEBUG if (debug) printf("refclock_receive: %s %s %s %s)\n", ntoa(&peer->srcadr), lfptoa(offset, 6), fptoa(delay, 5), ufptoa(dispersion, 5)); #endif /* * some refclock implementations do a complete state and * event handling. reporting events must be disabled for * these critters (namely parse) */ refclock_own_states = leap & REFCLOCK_OWN_STATES; leap &= ~REFCLOCK_OWN_STATES; /* * The authentication and access-control machinery works, but * its utility may be questionable. */ restrict_mask = restrictions(&peer->srcadr); if (restrict_mask & (RES_IGNORE|RES_DONTSERVE)) return; peer->processed++; peer->timereceived = current_time; if (restrict_mask & RES_DONTTRUST) trustable = 0; else trustable = 1; if (peer->flags & FLAG_AUTHENABLE) { if (trustable) peer->flags |= FLAG_AUTHENTIC; else peer->flags &= ~FLAG_AUTHENTIC; } peer->leap = leap; /* * Set the timestamps. rec and org are in local time, while ref * is in timecode time. */ peer->rec = peer->org = *rectime; peer->reftime = *reftime; /* * If the interface has been set to any_interface, set it to the * loopback address if we have one. This is so that peers which * are unreachable are easy to see in the peer display. */ if (peer->dstadr == any_interface && loopback_interface != 0) peer->dstadr = loopback_interface; /* * Set peer.pmode based on the hmode. For appearances only. */ switch (peer->hmode) { case MODE_ACTIVE: peer->pmode = MODE_PASSIVE; break; default: peer->pmode = MODE_SERVER; break; } /* * Abandon ship if the radio came bum. We only got this far * in order to make pretty billboards, even if bum. */ if (leap == LEAP_NOTINSYNC) return; /* * If this guy was previously unreachable, report him * reachable. */ if (peer->reach == 0) report_event(EVNT_REACH, peer); peer->reach |= 1; /* * Give the data to the clock filter and update the clock. Note * the clock reading precision initialized by the driver is * added at this point. */ precision = FP_SECOND >> -(int)peer->precision; if (precision == 0) precision = 1; if (!refclock_own_states) refclock_report(peer, CEVNT_NOMINAL); clock_filter(peer, offset, delay, dispersion + precision); clock_update(peer); } /* * refclock_gtlin - groom next input line and extract timestamp * * This routine processes the timecode received from the clock and * removes the parity bit and control characters. If a timestamp is * present in the timecode, as produced by the tty_clk line * discipline/streams module, it returns that as the timestamp; * otherwise, it returns the buffer timestamp. The routine return code * is the number of characters in the line. */ int refclock_gtlin(rbufp, lineptr, bmax, tsptr) struct recvbuf *rbufp; /* receive buffer pointer */ char *lineptr; /* current line pointer */ int bmax; /* remaining characters in line */ l_fp *tsptr; /* pointer to timestamp returned */ { char *dpt, *dpend, *dp; int i; l_fp trtmp, tstmp; char c; #ifdef TIOCDCDTIMESTAMP struct timeval dcd_time; #endif /* * Check for the presence of a timestamp left by the tty_clock * line discipline/streams module and, if present, use that * instead of the buffer timestamp captured by the I/O routines. * We recognize a timestamp by noting its value is earlier than * the buffer timestamp, but not more than one second earlier. */ dpt = (char *)&rbufp->recv_space; dpend = dpt + rbufp->recv_length; trtmp = rbufp->recv_time; #ifdef TIOCDCDTIMESTAMP if(ioctl(rbufp->fd, TIOCDCDTIMESTAMP, &dcd_time) != -1) { TVTOTS(&dcd_time, &tstmp); tstmp.l_ui += JAN_1970; L_SUB(&trtmp, &tstmp); if (trtmp.l_ui == 0) { #ifdef DEBUG if (debug) { printf( "refclock_gtlin: fd %d DCDTIMESTAMP %s", rbufp->fd, lfptoa(&tstmp, 6)); printf(" sigio %s\n", lfptoa(&trtmp, 6)); } #endif trtmp = tstmp; } else trtmp = rbufp->recv_time; } else /* XXX fallback to old method if kernel refuses TIOCDCDTIMESTAMP */ #endif /* TIOCDCDTIMESTAMP */ if (dpend >= dpt + 8) { if (buftvtots(dpend - 8, &tstmp)) { L_SUB(&trtmp, &tstmp); if (trtmp.l_ui == 0) { #ifdef DEBUG if (debug) { printf( "refclock_gtlin: fd %d ldisc %s", rbufp->fd, lfptoa(&trtmp, 6)); get_systime(&trtmp); L_SUB(&trtmp, &tstmp); printf(" sigio %s\n", lfptoa(&trtmp, 6)); } #endif dpend -= 8; trtmp = tstmp; } else trtmp = rbufp->recv_time; } } /* * Edit timecode to remove control chars. Don't monkey with the * line buffer if the input buffer contains no ASCII printing * characters. */ if (dpend - dpt > bmax - 1) dpend = dpt + bmax - 1; for (dp = lineptr; dpt < dpend; dpt++) { c = *dpt & 0x7f; if (c >= ' ') *dp++ = c; } i = dp - lineptr; if (i > 0) *dp = '\0'; #ifdef DEBUG if (debug) printf("refclock_gtlin: fd %d time %s timecode %d %s\n", rbufp->fd, ulfptoa(&trtmp, 6), i, lineptr); #endif *tsptr = trtmp; return (i); } /* * The following code does not apply to WINNT & VMS ... */ #ifndef SYS_VXWORKS #if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS) /* * refclock_open - open serial port for reference clock * * This routine opens a serial port for I/O and sets default options. It * returns the file descriptor if success and zero if failure. */ int refclock_open(dev, speed, flags) char *dev; /* device name pointer */ int speed; /* serial port speed (code) */ int flags; /* line discipline flags */ { int fd; #ifdef HAVE_TERMIOS struct termios ttyb, *ttyp; #endif /* HAVE_TERMIOS */ #ifdef HAVE_SYSV_TTYS struct termio ttyb, *ttyp; #endif /* HAVE_SYSV_TTYS */ #ifdef HAVE_BSD_TTYS struct sgttyb ttyb, *ttyp; #endif /* HAVE_BSD_TTYS */ #ifdef TIOCMGET u_long ltemp; #endif /* TIOCMGET */ /* * Open serial port and set default options */ fd = open(dev, O_RDWR #ifdef O_NONBLOCK | O_NONBLOCK #endif , 0777); if (fd == -1) { msyslog(LOG_ERR, "refclock_open: %s: %m", dev); return (0); } /* * The following sections initialize the serial line port in * canonical (line-oriented) mode and set the specified line * speed, 8 bits and no parity. The modem control, break, erase * and kill functions are normally disabled. There is a * different section for each terminal interface, as selected at * compile time. */ ttyp = &ttyb; #ifdef HAVE_TERMIOS /* * POSIX serial line parameters (termios interface) */ if (tcgetattr(fd, ttyp) < 0) { msyslog(LOG_ERR, "refclock_open: fd %d tcgetattr %m", fd); return (0); } /* * Set canonical mode and local connection; set specified speed, * 8 bits and no parity; map CR to NL; ignore break. */ ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL; ttyp->c_oflag = 0; ttyp->c_cflag = CS8 | CLOCAL | CREAD; (void)cfsetispeed(&ttyb, speed); (void)cfsetospeed(&ttyb, speed); ttyp->c_lflag = ICANON; ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; #ifdef TIOCMGET /* * If we have modem control, check to see if modem leads are * active; if so, set remote connection. This is necessary for * the kernel pps mods to work. */ ltemp = 0; if (ioctl(fd, TIOCMGET, (char *)<emp) < 0) msyslog(LOG_ERR, "refclock_open: fd %d TIOCMGET failed: %m", fd); #if DEBUG if (debug) printf("refclock_open: fd %d modem status %lx\n", fd, ltemp); #endif if (ltemp & TIOCM_DSR) ttyp->c_cflag &= ~CLOCAL; #endif /* TIOCMGET */ if (tcsetattr(fd, TCSANOW, ttyp) < 0) { msyslog(LOG_ERR, "refclock_open: fd %d TCSANOW failed: %m", fd); return (0); } if (tcflush(fd, TCIOFLUSH) < 0) { msyslog(LOG_ERR, "refclock_open: fd %d TCIOFLUSH failed: %m", fd); return (0); } #endif /* HAVE_TERMIOS */ #ifdef HAVE_SYSV_TTYS /* * System V serial line parameters (termio interface) * */ if (ioctl(fd, TCGETA, ttyp) < 0) { msyslog(LOG_ERR, "refclock_open: fd %d TCGETA failed: %m", fd); return (0); } /* * Set canonical mode and local connection; set specified speed, * 8 bits and no parity; map CR to NL; ignore break. */ ttyp->c_iflag = IGNBRK | IGNPAR | ICRNL; ttyp->c_oflag = 0; ttyp->c_cflag = speed | CS8 | CLOCAL | CREAD; ttyp->c_lflag = ICANON; ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; #ifdef TIOCMGET /* * If we have modem control, check to see if modem leads are * active; if so, set remote connection. This is necessary for * the kernel pps mods to work. */ ltemp = 0; if (ioctl(fd, TIOCMGET, (char *)<emp) < 0) msyslog(LOG_ERR, "refclock_open: fd %d TIOCMGET failed: %m", fd); #if DEBUG if (debug) printf("refclock_open: fd %d modem status %lx\n", fd, ltemp); #endif if (ltemp & TIOCM_DSR) ttyp->c_cflag &= ~CLOCAL; #endif /* TIOCMGET */ if (ioctl(fd, TCSETA, ttyp) < 0) { msyslog(LOG_ERR, "refclock_open: fd %d TCSETA failed: %m", fd); return (0); } #endif /* HAVE_SYSV_TTYS */ #ifdef HAVE_BSD_TTYS /* * 4.3bsd serial line parameters (sgttyb interface) */ if (ioctl(fd, TIOCGETP, (char *)ttyp) < 0) { msyslog(LOG_ERR, "refclock_open: fd %d TIOCGETP %m", fd); return (0); } ttyp->sg_ispeed = ttyp->sg_ospeed = speed; ttyp->sg_flags = EVENP | ODDP | CRMOD; if (ioctl(fd, TIOCSETP, (char *)ttyp) < 0) { msyslog(LOG_ERR, "refclock_open: TIOCSETP failed: %m"); return (0); } #endif /* HAVE_BSD_TTYS */ if (!refclock_ioctl(fd, flags)) { (void)close(fd); msyslog(LOG_ERR, "refclock_open: fd %d ioctl fails", fd); return (0); } return (fd); } #endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */ #endif /* SYS_VXWORKS */ /* * refclock_ioctl - set serial port control functions * * This routine attempts to hide the internal, system-specific details * of serial ports. It can handle POSIX (termios), SYSV (termio) and BSD * (sgtty) interfaces with varying degrees of success. The routine sets * up the tty_clk, chu_clk and ppsclock streams module/line discipline, * if compiled in the daemon and requested in the call. The routine * returns one if success and zero if failure. */ int refclock_ioctl(fd, flags) int fd; /* file descriptor */ int flags; /* line discipline flags */ { /* simply return 1 if no UNIX line discipline is supported */ #ifndef SYS_VXWORKS #if defined(HAVE_TERMIOS) || defined(HAVE_SYSV_TTYS) || defined(HAVE_BSD_TTYS) #ifdef HAVE_TERMIOS struct termios ttyb, *ttyp; #endif /* HAVE_TERMIOS */ #ifdef HAVE_SYSV_TTYS struct termio ttyb, *ttyp; #endif /* HAVE_SYSV_TTYS */ #ifdef HAVE_BSD_TTYS struct sgttyb ttyb, *ttyp; #endif /* HAVE_BSD_TTYS */ #ifdef DEBUG if (debug) printf("refclock_ioctl: fd %d flags %x\n", fd, flags); #endif /* * The following sections select optional features, such as * modem control, line discipline and so forth. Some require * specific operating system support in the form of streams * modules, which can be loaded and unloaded at run time without * rebooting the kernel, or line discipline modules, which must * be compiled in the kernel. The streams modules require System * V STREAMS support, while the line discipline modules require * 4.3bsd or later. The checking frenzy is attenuated here, * since the device is already open. * * Note that both the clk and ppsclock modules are optional; the * dang thing still works, but the accuracy improvement using * them will not be available. The ppsclock module is associated * with a specific, declared line and should be used only once. * If requested, the chu module is mandatory, since the driver * will not work without it. * * Use the LDISC_PPS option ONLY with Sun baseboard ttya or * ttyb. Using it with the SPIF multipexor crashes the kernel. */ if (flags == 0) return (1); #if !(defined(HAVE_TERMIOS) || defined(HAVE_BSD_TTYS)) if (flags & (LDISC_CLK | LDISC_CHU | LDISC_PPS | LDISC_ACTS)) msyslog(LOG_ERR, "refclock_ioctl: unsupported terminal interface"); return (0); #endif /* HAVE_TERMIOS HAVE_BSD_TTYS */ ttyp = &ttyb; #ifdef STREAM #ifdef TTYCLK /* * The TTYCLK option provides timestamping at the driver level. * It requires the tty_clk streams module and System V STREAMS * support. */ if (flags & (LDISC_CLK | LDISC_CLKPPS | LDISC_ACTS)) { if (ioctl(fd, I_PUSH, "clk") < 0) { msyslog(LOG_NOTICE, "refclock_ioctl: optional clk streams module unavailable: %m"); } else { char *str; if (flags & LDISC_PPS) str = "\377"; else if (flags & LDISC_ACTS) str = "*"; else str = "\n"; if (ioctl(fd, CLK_SETSTR, str) < 0) msyslog(LOG_ERR, "refclock_ioctl: CLK_SETSTR failed: %m"); } } /* * The ACTS line discipline requires additional line-ending * character '*'. */ if (flags & LDISC_ACTS) { (void)tcgetattr(fd, ttyp); ttyp->c_cc[VEOL] = '*'; (void)tcsetattr(fd, TCSANOW, ttyp); } #else if (flags & LDISC_CLK) msyslog(LOG_NOTICE, "refclock_ioctl: optional clk streams module unsupported"); #endif /* TTYCLK */ #ifdef CHUCLK /* * The CHUCLK option provides timestamping and decoding for the CHU * timecode. It requires the tty_chu streams module and System V * STREAMS support. */ if (flags & LDISC_CHU) { (void)tcgetattr(fd, ttyp); ttyp->c_lflag = 0; ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\0'; ttyp->c_cc[VMIN] = 1; ttyp->c_cc[VTIME] = 0; (void)tcsetattr(fd, TCSANOW, ttyp); (void)tcflush(fd, TCIOFLUSH); while (ioctl(fd, I_POP, 0) >= 0); if (ioctl(fd, I_PUSH, "chu") < 0) { msyslog(LOG_ERR, "refclock_ioctl: required chu streams module unavailable"); return (0); } } #else if (flags & LDISC_CHU) { msyslog(LOG_ERR, "refclock_ioctl: required chu streams module unsupported"); return (0); } #endif /* CHUCLK */ #ifdef PPS /* * The PPS option provides timestamping at the driver level. * It uses a 1-pps signal and level converter (gadget box) and * requires the ppsclock streams module and System V STREAMS * support. */ if (flags & LDISC_PPS) { if (fdpps != -1) { msyslog(LOG_ERR, "refclock_ioctl: ppsclock already configured"); return (0); } if ( #ifdef SYS_SOLARIS (ioctl(fd, TIOCSPPS, (char *)&pps_enable) < 0) #else (ioctl(fd, I_PUSH, "ppsclock") < 0) #endif /* SYS_SOLARIS */ ) { msyslog(LOG_NOTICE, "refclock_ioctl: optional ppsclock streams module unavailable"); } else { fdpps = fd; } } #else if (flags & LDISC_PPS) msyslog(LOG_NOTICE, "refclock_ioctl: optional ppsclock streams module unsupported"); #endif /* PPS */ #else /* not STREAM */ #ifdef HAVE_TERMIOS #ifdef TTYCLK /* * The TTYCLK option provides timestamping at the driver level. It * requires the tty_clk line discipline and 4.3bsd or later. */ if (flags & (LDISC_CLK | LDISC_CLKPPS | LDISC_ACTS)) { (void)tcgetattr(fd, ttyp); ttyp->c_lflag = 0; if (flags & LDISC_CLKPPS) ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\377'; else if (flags & LDISC_ACTS) { ttyp->c_cc[VERASE] = '*'; ttyp->c_cc[VKILL] = '#'; } else ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\n'; ttyp->c_cc[VMIN] = 1; ttyp->c_cc[VTIME] = 0; ttyp->c_line = CLKLDISC; (void)tcsetattr(fd, TCSANOW, ttyp); (void)tcflush(fd, TCIOFLUSH); } #else if (flags & LDISC_CLK) msyslog(LOG_NOTICE, "refclock_ioctl: optional clk line discipline unsupported"); #endif /* TTYCLK */ #ifdef CHUCLK /* * The CHUCLK option provides timestamping and decoding for the CHU * timecode. It requires the tty_chu line disciplne and 4.3bsd * or later. */ if (flags & LDISC_CHU) { (void)tcgetattr(fd, ttyp); ttyp->c_lflag = 0; ttyp->c_cc[VERASE] = ttyp->c_cc[VKILL] = '\r'; ttyp->c_cc[VMIN] = 1; ttyp->c_cc[VTIME] = 0; ttyp->c_line = CHULDISC; (void)tcsetattr(fd, TCSANOW, ttyp) < 0); (void)tcflush(fd, TCIOFLUSH); } #else if (flags & LDISC_CHU) { msyslog(LOG_ERR, "refclock_ioctl: required chu line discipline unsupported"); return (0); } #endif /* CHUCLK */ #endif /* HAVE_TERMIOS */ #ifdef HAVE_BSD_TTYS #ifdef TTYCLK /* * The TTYCLK option provides timestamping at the driver level. It * requires the tty_clk line discipline and 4.3bsd or later. */ if (flags & (LDISC_CLK | LDISC_CLKPPS | LDISC_ACTS)) { int ldisc = CLKLDISC; (void)ioctl(fd, TIOCGETP, (char *)ttyp); if (flags & LDISC_CLKPPS) ttyp->sg_erase = ttyp->sg_kill = '\377'; else if (flags & LDISC_ACTS) { ttyp->sg_erase = '*'; ttyp->sg_kill = '#'; } else ttyp->sg_erase = ttyp->sg_kill = '\r'; ttyp->sg_flags = RAW; (void)ioctl(fd, TIOCSETP, ttyp); if (ioctl(fd, TIOCSETD, (char *)&ldisc) < 0) msyslog(LOG_NOTICE, "refclock_ioctl: optional clk line discipline unavailable"); } #else if (flags & LDISC_CLK) msyslog(LOG_NOTICE, "refclock_ioctl: optional clk line discipline unsupported"); #endif /* TTYCLK */ #ifdef CHUCLK /* * The CHUCLK option provides timestamping and decoding for the CHU * timecode. It requires the tty_chu line disciplne and 4.3bsd * or later. */ if (flags & LDISC_CHU) { int ldisc = CHULDISC; (void)ioctl(fd, TIOCGETP, (char *)ttyp); ttyp->sg_erase = ttyp->sg_kill = '\r'; ttyp->sg_flags = RAW; (void)ioctl(fd, TIOCSETP, (char *)ttyp); if (ioctl(fd, TIOCSETD, (char *)&ldisc) < 0) { msyslog(LOG_ERR, "refclock_ioctl: required chu line discipline unavailable"); return (0); } } #else if (flags & LDISC_CHU) { msyslog(LOG_ERR, "refclock_ioctl: required chu line discipline unsupported"); return (0); } #endif /* CHUCLK */ #endif /* HAVE_BSD_TTYS */ #endif /* STREAM */ #endif /* HAVE_TERMIOS || HAVE_SYSV_TTYS || HAVE_BSD_TTYS */ #endif /* SYS_VXWORKS */ return (1); } /* * refclock_control - set and/or return clock values * * This routine is used mainly for debugging. It returns designated * values from the interface structure that can be displayed using * xntpdc and the clockstat command. It can also be used to initialize * configuration variables, such as fudgetimes, fudgevalues, reference * ID and stratum. */ void refclock_control(srcadr, in, out) struct sockaddr_in *srcadr; struct refclockstat *in; struct refclockstat *out; { struct peer *peer; struct refclockproc *pp; u_char clktype; int unit; /* * Check for valid address and running peer */ if (!ISREFCLOCKADR(srcadr)) return; clktype = (u_char)REFCLOCKTYPE(srcadr); unit = REFCLOCKUNIT(srcadr); if (clktype >= num_refclock_conf || unit > MAXUNIT) return; if (!(peer = typeunit[clktype][unit])) return; pp = peer->procptr; /* * Initialize requested data */ if (in != 0) { if (in->haveflags & CLK_HAVETIME1) pp->fudgetime1 = in->fudgetime1; if (in->haveflags & CLK_HAVETIME2) pp->fudgetime2 = in->fudgetime2; if (in->haveflags & CLK_HAVEVAL1) peer->stratum = (u_char) in->fudgeval1; if (in->haveflags & CLK_HAVEVAL2) pp->refid = in->fudgeval2; if (peer->stratum <= 1) peer->refid = pp->refid; else peer->refid = peer->srcadr.sin_addr.s_addr; if (in->haveflags & CLK_HAVEFLAG1) { pp->sloppyclockflag &= ~CLK_FLAG1; pp->sloppyclockflag |= in->flags & CLK_FLAG1; } if (in->haveflags & CLK_HAVEFLAG2) { pp->sloppyclockflag &= ~CLK_FLAG2; pp->sloppyclockflag |= in->flags & CLK_FLAG2; } if (in->haveflags & CLK_HAVEFLAG3) { pp->sloppyclockflag &= ~CLK_FLAG3; pp->sloppyclockflag |= in->flags & CLK_FLAG3; } if (in->haveflags & CLK_HAVEFLAG4) { pp->sloppyclockflag &= ~CLK_FLAG4; pp->sloppyclockflag |= in->flags & CLK_FLAG4; } if (in->flags & CLK_FLAG3) (void)refclock_ioctl(pp->io.fd, LDISC_PPS); } /* * Readback requested data */ if (out != 0) { out->haveflags = CLK_HAVETIME1 | CLK_HAVEVAL1 | CLK_HAVEVAL2 | CLK_HAVEFLAG4; out->fudgetime1 = pp->fudgetime1; out->fudgetime2 = pp->fudgetime2; out->fudgeval1 = peer->stratum; out->fudgeval2 = pp->refid; out->flags = (u_char) pp->sloppyclockflag; out->timereset = current_time - pp->timestarted; out->polls = pp->polls; out->noresponse = pp->noreply; out->badformat = pp->badformat; out->baddata = pp->baddata; out->lastevent = pp->lastevent; out->currentstatus = pp->currentstatus; out->type = pp->type; out->clockdesc = pp->clockdesc; out->lencode = pp->lencode; out->p_lastcode = pp->a_lastcode; } /* * Give the stuff to the clock */ if (refclock_conf[clktype]->clock_control != noentry) (refclock_conf[clktype]->clock_control)(unit, in, out); } /* * refclock_buginfo - return debugging info * * This routine is used mainly for debugging. It returns designated * values from the interface structure that can be displayed using * xntpdc and the clkbug command. */ void refclock_buginfo(srcadr, bug) struct sockaddr_in *srcadr; /* clock address */ struct refclockbug *bug; /* output structure */ { struct peer *peer; struct refclockproc *pp; u_char clktype; int unit; int i; /* * Check for valid address and peer structure */ if (!ISREFCLOCKADR(srcadr)) return; clktype = (u_char) REFCLOCKTYPE(srcadr); unit = REFCLOCKUNIT(srcadr); if (clktype >= num_refclock_conf || unit > MAXUNIT) return; if (!(peer = typeunit[clktype][unit])) return; pp = peer->procptr; /* * Copy structure values */ bug->nvalues = 8; bug->values[0] = pp->year; bug->values[1] = pp->day; bug->values[2] = pp->hour; bug->values[3] = pp->minute; bug->values[4] = pp->second; bug->values[5] = pp->msec; bug->values[6] = pp->yearstart; bug->values[7] = pp->coderecv; bug->ntimes = pp->nstages + 3; if (bug->ntimes > NCLKBUGTIMES) bug->ntimes = NCLKBUGTIMES; bug->stimes = 0xfffffffc; bug->times[0] = pp->lastref; bug->times[1] = pp->lastrec; UFPTOLFP(pp->dispersion, &bug->times[2]); for (i = 0; i < (int)bug->ntimes; i++) bug->times[i + 3] = pp->filter[i]; /* * Give the stuff to the clock */ if (refclock_conf[clktype]->clock_buginfo != noentry) (refclock_conf[clktype]->clock_buginfo)(unit, bug); } #endif /* REFCLOCK */