/* $NetBSD: kern_sysctl.c,v 1.57 2000/02/06 07:29:58 fair Exp $ */ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95 */ /* * sysctl system call. */ #include "opt_ddb.h" #include "opt_insecure.h" #include "opt_defcorename.h" #include "opt_sysv.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(DDB) #include #endif /* * Locking and stats */ static struct sysctl_lock { int sl_lock; int sl_want; int sl_locked; } memlock; int sys___sysctl(p, v, retval) struct proc *p; void *v; register_t *retval; { register struct sys___sysctl_args /* { syscallarg(int *) name; syscallarg(u_int) namelen; syscallarg(void *) old; syscallarg(size_t *) oldlenp; syscallarg(void *) new; syscallarg(size_t) newlen; } */ *uap = v; int error, dolock = 1; size_t savelen = 0, oldlen = 0; sysctlfn *fn; int name[CTL_MAXNAME]; size_t *oldlenp; /* * all top-level sysctl names are non-terminal */ if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2) return (EINVAL); error = copyin(SCARG(uap, name), &name, SCARG(uap, namelen) * sizeof(int)); if (error) return (error); /* * For all but CTL_PROC, must be root to change a value. * For CTL_PROC, must be root, or owner of the proc (and not suid), * this is checked in proc_sysctl() (once we know the targer proc). */ if (SCARG(uap, new) != NULL && name[0] != CTL_PROC && (error = suser(p->p_ucred, &p->p_acflag))) return error; switch (name[0]) { case CTL_KERN: fn = kern_sysctl; if (name[2] != KERN_VNODE) /* XXX */ dolock = 0; break; case CTL_HW: fn = hw_sysctl; break; case CTL_VM: fn = uvm_sysctl; break; case CTL_NET: fn = net_sysctl; break; case CTL_VFS: fn = vfs_sysctl; break; case CTL_MACHDEP: fn = cpu_sysctl; break; #ifdef DEBUG case CTL_DEBUG: fn = debug_sysctl; break; #endif #ifdef DDB case CTL_DDB: fn = ddb_sysctl; break; #endif case CTL_PROC: fn = proc_sysctl; break; default: return (EOPNOTSUPP); } oldlenp = SCARG(uap, oldlenp); if (oldlenp) { if ((error = copyin(oldlenp, &oldlen, sizeof(oldlen)))) return (error); oldlenp = &oldlen; } if (SCARG(uap, old) != NULL) { if (!uvm_useracc(SCARG(uap, old), oldlen, B_WRITE)) return (EFAULT); while (memlock.sl_lock) { memlock.sl_want = 1; sleep((caddr_t)&memlock, PRIBIO+1); memlock.sl_locked++; } memlock.sl_lock = 1; if (dolock) { /* * XXX Um, this is kind of evil. What should we * XXX be passing here? */ if (uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_NONE) != KERN_SUCCESS) { memlock.sl_lock = 0; if (memlock.sl_want) { memlock.sl_want = 0; wakeup((caddr_t)&memlock); return (EFAULT); } } } savelen = oldlen; } error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old), oldlenp, SCARG(uap, new), SCARG(uap, newlen), p); if (SCARG(uap, old) != NULL) { if (dolock) uvm_vsunlock(p, SCARG(uap, old), savelen); memlock.sl_lock = 0; if (memlock.sl_want) { memlock.sl_want = 0; wakeup((caddr_t)&memlock); } } if (error) return (error); if (SCARG(uap, oldlenp)) error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen)); return (error); } /* * Attributes stored in the kernel. */ char hostname[MAXHOSTNAMELEN]; int hostnamelen; char domainname[MAXHOSTNAMELEN]; int domainnamelen; long hostid; #ifdef INSECURE int securelevel = -1; #else int securelevel = 0; #endif #ifdef DEFCORENAME char defcorename[MAXPATHLEN] = DEFCORENAME; int defcorenamelen = sizeof(DEFCORENAME); #else char defcorename[MAXPATHLEN] = "%n.core"; int defcorenamelen = sizeof("%n.core"); #endif extern int kern_logsigexit; /* * kernel related system variables. */ int kern_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; struct proc *p; { int error, level, inthostid; int old_autonicetime; int old_vnodes; extern char ostype[], osrelease[], version[]; /* All sysctl names at this level, except for a few, are terminal. */ switch (name[0]) { case KERN_PROC: case KERN_PROF: case KERN_MBUF: /* Not terminal. */ break; default: if (namelen != 1) return (ENOTDIR); /* overloaded */ } switch (name[0]) { case KERN_OSTYPE: return (sysctl_rdstring(oldp, oldlenp, newp, ostype)); case KERN_OSRELEASE: return (sysctl_rdstring(oldp, oldlenp, newp, osrelease)); case KERN_OSREV: return (sysctl_rdint(oldp, oldlenp, newp, NetBSD)); case KERN_VERSION: return (sysctl_rdstring(oldp, oldlenp, newp, version)); case KERN_MAXVNODES: old_vnodes = desiredvnodes; error = sysctl_int(oldp, oldlenp, newp, newlen, &desiredvnodes); if (old_vnodes > desiredvnodes) { desiredvnodes = old_vnodes; return (EINVAL); } return (error); case KERN_MAXPROC: return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc)); case KERN_MAXFILES: return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles)); case KERN_ARGMAX: return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX)); case KERN_SECURELVL: level = securelevel; if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) || newp == NULL) return (error); if (level < securelevel && p->p_pid != 1) return (EPERM); securelevel = level; return (0); case KERN_HOSTNAME: error = sysctl_string(oldp, oldlenp, newp, newlen, hostname, sizeof(hostname)); if (newp && !error) hostnamelen = newlen; return (error); case KERN_DOMAINNAME: error = sysctl_string(oldp, oldlenp, newp, newlen, domainname, sizeof(domainname)); if (newp && !error) domainnamelen = newlen; return (error); case KERN_HOSTID: inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */ error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid); hostid = inthostid; return (error); case KERN_CLOCKRATE: return (sysctl_clockrate(oldp, oldlenp)); case KERN_BOOTTIME: return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime, sizeof(struct timeval))); case KERN_VNODE: return (sysctl_vnode(oldp, oldlenp, p)); case KERN_PROC: return (sysctl_doeproc(name + 1, namelen - 1, oldp, oldlenp)); case KERN_FILE: return (sysctl_file(oldp, oldlenp)); #ifdef GPROF case KERN_PROF: return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif case KERN_POSIX1: return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION)); case KERN_NGROUPS: return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX)); case KERN_JOB_CONTROL: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_SAVED_IDS: #ifdef _POSIX_SAVED_IDS return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_MAXPARTITIONS: return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS)); case KERN_RAWPARTITION: return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART)); #ifdef NTP case KERN_NTPTIME: return (sysctl_ntptime(oldp, oldlenp)); #endif case KERN_AUTONICETIME: old_autonicetime = autonicetime; error = sysctl_int(oldp, oldlenp, newp, newlen, &autonicetime); if (autonicetime < 0) autonicetime = old_autonicetime; return (error); case KERN_AUTONICEVAL: error = sysctl_int(oldp, oldlenp, newp, newlen, &autoniceval); if (autoniceval < PRIO_MIN) autoniceval = PRIO_MIN; if (autoniceval > PRIO_MAX) autoniceval = PRIO_MAX; return (error); case KERN_RTC_OFFSET: return (sysctl_rdint(oldp, oldlenp, newp, rtc_offset)); case KERN_ROOT_DEVICE: return (sysctl_rdstring(oldp, oldlenp, newp, root_device->dv_xname)); case KERN_MSGBUFSIZE: /* * deal with cases where the message buffer has * become corrupted. */ if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) { msgbufenabled = 0; return (ENXIO); } return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs)); case KERN_FSYNC: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_SYSVMSG: #ifdef SYSVMSG return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_SYSVSEM: #ifdef SYSVSEM return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_SYSVSHM: #ifdef SYSVSHM return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_DEFCORENAME: if (newp && newlen < 1) return (EINVAL); error = sysctl_string(oldp, oldlenp, newp, newlen, defcorename, sizeof(defcorename)); if (newp && !error) defcorenamelen = newlen; return (error); case KERN_SYNCHRONIZED_IO: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_IOV_MAX: return (sysctl_rdint(oldp, oldlenp, newp, IOV_MAX)); case KERN_MBUF: return (sysctl_dombuf(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); case KERN_MAPPED_FILES: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_MEMLOCK: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_MEMLOCK_RANGE: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_MEMORY_PROTECTION: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_LOGIN_NAME_MAX: return (sysctl_rdint(oldp, oldlenp, newp, LOGIN_NAME_MAX)); case KERN_LOGSIGEXIT: return (sysctl_int(oldp, oldlenp, newp, newlen, &kern_logsigexit)); default: return (EOPNOTSUPP); } /* NOTREACHED */ } /* * hardware related system variables. */ int hw_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; struct proc *p; { extern char machine[], machine_arch[], cpu_model[]; /* all sysctl names at this level are terminal */ if (namelen != 1) return (ENOTDIR); /* overloaded */ switch (name[0]) { case HW_MACHINE: return (sysctl_rdstring(oldp, oldlenp, newp, machine)); case HW_MACHINE_ARCH: return (sysctl_rdstring(oldp, oldlenp, newp, machine_arch)); case HW_MODEL: return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model)); case HW_NCPU: return (sysctl_rdint(oldp, oldlenp, newp, 1)); /* XXX */ case HW_BYTEORDER: return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER)); case HW_PHYSMEM: return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem))); case HW_USERMEM: return (sysctl_rdint(oldp, oldlenp, newp, ctob(physmem - uvmexp.wired))); case HW_PAGESIZE: return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE)); default: return (EOPNOTSUPP); } /* NOTREACHED */ } #ifdef DEBUG /* * Debugging related system variables. */ struct ctldebug debug0, debug1, debug2, debug3, debug4; struct ctldebug debug5, debug6, debug7, debug8, debug9; struct ctldebug debug10, debug11, debug12, debug13, debug14; struct ctldebug debug15, debug16, debug17, debug18, debug19; static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = { &debug0, &debug1, &debug2, &debug3, &debug4, &debug5, &debug6, &debug7, &debug8, &debug9, &debug10, &debug11, &debug12, &debug13, &debug14, &debug15, &debug16, &debug17, &debug18, &debug19, }; int debug_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; struct proc *p; { struct ctldebug *cdp; /* all sysctl names at this level are name and field */ if (namelen != 2) return (ENOTDIR); /* overloaded */ cdp = debugvars[name[0]]; if (name[0] >= CTL_DEBUG_MAXID || cdp->debugname == 0) return (EOPNOTSUPP); switch (name[1]) { case CTL_DEBUG_NAME: return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname)); case CTL_DEBUG_VALUE: return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar)); default: return (EOPNOTSUPP); } /* NOTREACHED */ } #endif /* DEBUG */ int proc_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; struct proc *p; { struct proc *ptmp=NULL; const struct proclist_desc *pd; int error = 0; struct rlimit alim; struct plimit *newplim; char *tmps = NULL; int i, curlen, len; if (namelen < 2) return EINVAL; if (name[0] == PROC_CURPROC) { ptmp = p; } else { proclist_lock_read(); for (pd = proclists; pd->pd_list != NULL; pd++) { for (ptmp = LIST_FIRST(pd->pd_list); ptmp != NULL; ptmp = LIST_NEXT(ptmp, p_list)) { /* Skip embryonic processes. */ if (ptmp->p_stat == SIDL) continue; if (ptmp->p_pid == (pid_t)name[0]) break; } if (ptmp != NULL) break; } proclist_unlock_read(); if (ptmp == NULL) return(ESRCH); if (p->p_ucred->cr_uid != 0) { if(p->p_cred->p_ruid != ptmp->p_cred->p_ruid || p->p_cred->p_ruid != ptmp->p_cred->p_svuid) return EPERM; if (ptmp->p_cred->p_rgid != ptmp->p_cred->p_svgid) return EPERM; /* sgid proc */ for (i = 0; i < p->p_ucred->cr_ngroups; i++) { if (p->p_ucred->cr_groups[i] == ptmp->p_cred->p_rgid) break; } if (i == p->p_ucred->cr_ngroups) return EPERM; } } if (name[1] == PROC_PID_CORENAME) { if (namelen != 2) return EINVAL; /* * Can't use sysctl_string() here because we may malloc a new * area during the process, so we have to do it by hand. */ curlen = strlen(ptmp->p_limit->pl_corename) + 1; if (oldlenp && *oldlenp < curlen) { if (!oldp) *oldlenp = curlen; return (ENOMEM); } if (newp) { if (securelevel > 2) return EPERM; if (newlen > MAXPATHLEN) return ENAMETOOLONG; tmps = malloc(newlen + 1, M_TEMP, M_WAITOK); if (tmps == NULL) return ENOMEM; error = copyin(newp, tmps, newlen + 1); tmps[newlen] = '\0'; if (error) goto cleanup; /* Enforce to be either 'core' for end with '.core' */ if (newlen < 4) { /* c.o.r.e */ error = EINVAL; goto cleanup; } len = newlen - 4; if (len > 0) { if (tmps[len - 1] != '.' && tmps[len - 1] != '/') { error = EINVAL; goto cleanup; } } if (strcmp(&tmps[len], "core") != 0) { error = EINVAL; goto cleanup; } } if (oldp && oldlenp) { *oldlenp = curlen; error = copyout(ptmp->p_limit->pl_corename, oldp, curlen); } if (newp && error == 0) { /* if the 2 strings are identical, don't limcopy() */ if (strcmp(tmps, ptmp->p_limit->pl_corename) == 0) { error = 0; goto cleanup; } if (ptmp->p_limit->p_refcnt > 1 && (ptmp->p_limit->p_lflags & PL_SHAREMOD) == 0) { newplim = limcopy(ptmp->p_limit); limfree(ptmp->p_limit); ptmp->p_limit = newplim; } else if (ptmp->p_limit->pl_corename != defcorename) { free(ptmp->p_limit->pl_corename, M_TEMP); } ptmp->p_limit->pl_corename = tmps; return (0); } cleanup: if (tmps) free(tmps, M_TEMP); return (error); } if (name[1] == PROC_PID_LIMIT) { if (namelen != 4 || name[2] >= PROC_PID_LIMIT_MAXID) return EINVAL; memcpy(&alim, &ptmp->p_rlimit[name[2] - 1], sizeof(alim)); if (name[3] == PROC_PID_LIMIT_TYPE_HARD) error = sysctl_quad(oldp, oldlenp, newp, newlen, &alim.rlim_max); else if (name[3] == PROC_PID_LIMIT_TYPE_SOFT) error = sysctl_quad(oldp, oldlenp, newp, newlen, &alim.rlim_cur); else error = EINVAL; if (error) return error; if (newp) error = dosetrlimit(ptmp, p->p_cred, name[2] - 1, &alim); return error; } return (EINVAL); } /* * Convenience macros. */ #define SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, len) \ if (oldlenp) { \ if (!oldp) \ *oldlenp = len; \ else { \ if (*oldlenp < len) \ return(ENOMEM); \ *oldlenp = len; \ error = copyout((caddr_t)valp, oldp, len); \ } \ } #define SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, typ) \ SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, valp, sizeof(typ)) #define SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) \ if (newp && newlen != len) \ return (EINVAL); #define SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, typ) \ SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, sizeof(typ)) #define SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, len) \ if (error == 0 && newp) \ error = copyin(newp, valp, len); #define SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, typ) \ SYSCTL_SCALAR_NEWPCOP_LEN(newp, valp, sizeof(typ)) #define SYSCTL_STRING_CORE(oldp, oldlenp, str) \ if (oldlenp) { \ len = strlen(str) + 1; \ if (!oldp) \ *oldlenp = len; \ else { \ if (*oldlenp < len) { \ err2 = ENOMEM; \ len = *oldlenp; \ } else \ *oldlenp = len; \ error = copyout(str, oldp, len);\ if (error == 0) \ error = err2; \ } \ } /* * Validate parameters and get old / set new parameters * for an integer-valued sysctl function. */ int sysctl_int(oldp, oldlenp, newp, newlen, valp) void *oldp; size_t *oldlenp; void *newp; size_t newlen; int *valp; { int error = 0; SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, int) SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, int) SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, int) return (error); } /* * As above, but read-only. */ int sysctl_rdint(oldp, oldlenp, newp, val) void *oldp; size_t *oldlenp; void *newp; int val; { int error = 0; if (newp) return (EPERM); SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, int) return (error); } /* * Validate parameters and get old / set new parameters * for an quad-valued sysctl function. */ int sysctl_quad(oldp, oldlenp, newp, newlen, valp) void *oldp; size_t *oldlenp; void *newp; size_t newlen; quad_t *valp; { int error = 0; SYSCTL_SCALAR_NEWPCHECK_TYP(newp, newlen, quad_t) SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, valp, quad_t) SYSCTL_SCALAR_NEWPCOP_TYP(newp, valp, quad_t) return (error); } /* * As above, but read-only. */ int sysctl_rdquad(oldp, oldlenp, newp, val) void *oldp; size_t *oldlenp; void *newp; quad_t val; { int error = 0; if (newp) return (EPERM); SYSCTL_SCALAR_CORE_TYP(oldp, oldlenp, &val, quad_t) return (error); } /* * Validate parameters and get old / set new parameters * for a string-valued sysctl function. */ int sysctl_string(oldp, oldlenp, newp, newlen, str, maxlen) void *oldp; size_t *oldlenp; void *newp; size_t newlen; char *str; int maxlen; { int len, error = 0, err2 = 0; if (newp && newlen >= maxlen) return (EINVAL); SYSCTL_STRING_CORE(oldp, oldlenp, str); if (error == 0 && newp) { error = copyin(newp, str, newlen); str[newlen] = 0; } return (error); } /* * As above, but read-only. */ int sysctl_rdstring(oldp, oldlenp, newp, str) void *oldp; size_t *oldlenp; void *newp; char *str; { int len, error = 0, err2 = 0; if (newp) return (EPERM); SYSCTL_STRING_CORE(oldp, oldlenp, str); return (error); } /* * Validate parameters and get old / set new parameters * for a structure oriented sysctl function. */ int sysctl_struct(oldp, oldlenp, newp, newlen, sp, len) void *oldp; size_t *oldlenp; void *newp; size_t newlen; void *sp; int len; { int error = 0; SYSCTL_SCALAR_NEWPCHECK_LEN(newp, newlen, len) SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len) SYSCTL_SCALAR_NEWPCOP_LEN(newp, sp, len) return (error); } /* * Validate parameters and get old parameters * for a structure oriented sysctl function. */ int sysctl_rdstruct(oldp, oldlenp, newp, sp, len) void *oldp; size_t *oldlenp; void *newp, *sp; int len; { int error = 0; if (newp) return (EPERM); SYSCTL_SCALAR_CORE_LEN(oldp, oldlenp, sp, len) return (error); } /* * Get file structures. */ int sysctl_file(where, sizep) char *where; size_t *sizep; { int buflen, error; struct file *fp; char *start = where; buflen = *sizep; if (where == NULL) { /* * overestimate by 10 files */ *sizep = sizeof(filehead) + (nfiles + 10) * sizeof(struct file); return (0); } /* * first copyout filehead */ if (buflen < sizeof(filehead)) { *sizep = 0; return (0); } error = copyout((caddr_t)&filehead, where, sizeof(filehead)); if (error) return (error); buflen -= sizeof(filehead); where += sizeof(filehead); /* * followed by an array of file structures */ for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) { if (buflen < sizeof(struct file)) { *sizep = where - start; return (ENOMEM); } error = copyout((caddr_t)fp, where, sizeof(struct file)); if (error) return (error); buflen -= sizeof(struct file); where += sizeof(struct file); } *sizep = where - start; return (0); } /* * try over estimating by 5 procs */ #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) int sysctl_doeproc(name, namelen, where, sizep) int *name; u_int namelen; char *where; size_t *sizep; { register struct proc *p; register struct kinfo_proc *dp = (struct kinfo_proc *)where; register int needed = 0; int buflen = where != NULL ? *sizep : 0; const struct proclist_desc *pd; struct eproc eproc; int error = 0; if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL)) return (EINVAL); proclist_lock_read(); pd = proclists; again: for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) { /* * Skip embryonic processes. */ if (p->p_stat == SIDL) continue; /* * TODO - make more efficient (see notes below). * do by session. */ switch (name[0]) { case KERN_PROC_PID: /* could do this with just a lookup */ if (p->p_pid != (pid_t)name[1]) continue; break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp->pg_id != (pid_t)name[1]) continue; break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session->s_ttyp == NULL || p->p_session->s_ttyp->t_dev != (dev_t)name[1]) continue; break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)name[1]) continue; break; case KERN_PROC_RUID: if (p->p_cred->p_ruid != (uid_t)name[1]) continue; break; } if (buflen >= sizeof(struct kinfo_proc)) { fill_eproc(p, &eproc); error = copyout((caddr_t)p, &dp->kp_proc, sizeof(struct proc)); if (error) goto cleanup; error = copyout((caddr_t)&eproc, &dp->kp_eproc, sizeof(eproc)); if (error) goto cleanup; dp++; buflen -= sizeof(struct kinfo_proc); } needed += sizeof(struct kinfo_proc); } pd++; if (pd->pd_list != NULL) goto again; proclist_unlock_read(); if (where != NULL) { *sizep = (caddr_t)dp - where; if (needed > *sizep) return (ENOMEM); } else { needed += KERN_PROCSLOP; *sizep = needed; } return (0); cleanup: proclist_unlock_read(); return (error); } /* * Fill in an eproc structure for the specified process. */ void fill_eproc(p, ep) register struct proc *p; register struct eproc *ep; { register struct tty *tp; ep->e_paddr = p; ep->e_sess = p->p_pgrp->pg_session; ep->e_pcred = *p->p_cred; ep->e_ucred = *p->p_ucred; if (p->p_stat == SIDL || P_ZOMBIE(p)) { ep->e_vm.vm_rssize = 0; ep->e_vm.vm_tsize = 0; ep->e_vm.vm_dsize = 0; ep->e_vm.vm_ssize = 0; /* ep->e_vm.vm_pmap = XXX; */ } else { register struct vmspace *vm = p->p_vmspace; ep->e_vm.vm_rssize = vm_resident_count(vm); ep->e_vm.vm_tsize = vm->vm_tsize; ep->e_vm.vm_dsize = vm->vm_dsize; ep->e_vm.vm_ssize = vm->vm_ssize; } if (p->p_pptr) ep->e_ppid = p->p_pptr->p_pid; else ep->e_ppid = 0; ep->e_pgid = p->p_pgrp->pg_id; ep->e_sid = ep->e_sess->s_sid; ep->e_jobc = p->p_pgrp->pg_jobc; if ((p->p_flag & P_CONTROLT) && (tp = ep->e_sess->s_ttyp)) { ep->e_tdev = tp->t_dev; ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; ep->e_tsess = tp->t_session; } else ep->e_tdev = NODEV; if (p->p_wmesg) strncpy(ep->e_wmesg, p->p_wmesg, WMESGLEN); ep->e_xsize = ep->e_xrssize = 0; ep->e_xccount = ep->e_xswrss = 0; ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0; if (SESS_LEADER(p)) ep->e_flag |= EPROC_SLEADER; strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME); }