/* $NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $ */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * Copyright (c) 1991, 1993, The Regents of the University of California. * * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_pageout.c 8.5 (Berkeley) 2/14/94 * from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * uvm_pdaemon.c: the page daemon */ #include __KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $"); #include "opt_uvmhist.h" #include "opt_readahead.h" #define __RWLOCK_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UVMHIST #ifndef UVMHIST_PDHIST_SIZE #define UVMHIST_PDHIST_SIZE 100 #endif static struct kern_history_ent pdhistbuf[UVMHIST_PDHIST_SIZE]; UVMHIST_DEFINE(pdhist) = UVMHIST_INITIALIZER(pdhisthist, pdhistbuf); #endif /* * UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate * in a pass thru the inactive list when swap is full. the value should be * "small"... if it's too large we'll cycle the active pages thru the inactive * queue too quickly to for them to be referenced and avoid being freed. */ #define UVMPD_NUMDIRTYREACTS 16 /* * local prototypes */ static void uvmpd_scan(void); static void uvmpd_scan_queue(void); static void uvmpd_tune(void); static void uvmpd_pool_drain_thread(void *); static void uvmpd_pool_drain_wakeup(void); static unsigned int uvm_pagedaemon_waiters; /* State for the pool drainer thread */ static kmutex_t uvmpd_lock __cacheline_aligned; static kcondvar_t uvmpd_pool_drain_cv; static bool uvmpd_pool_drain_run = false; /* * XXX hack to avoid hangs when large processes fork. */ u_int uvm_extrapages; /* * uvm_wait: wait (sleep) for the page daemon to free some pages * * => should be called with all locks released * => should _not_ be called by the page daemon (to avoid deadlock) */ void uvm_wait(const char *wmsg) { int timo = 0; if (uvm.pagedaemon_lwp == NULL) panic("out of memory before the pagedaemon thread exists"); mutex_spin_enter(&uvmpd_lock); /* * check for page daemon going to sleep (waiting for itself) */ if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) { /* * now we have a problem: the pagedaemon wants to go to * sleep until it frees more memory. but how can it * free more memory if it is asleep? that is a deadlock. * we have two options: * [1] panic now * [2] put a timeout on the sleep, thus causing the * pagedaemon to only pause (rather than sleep forever) * * note that option [2] will only help us if we get lucky * and some other process on the system breaks the deadlock * by exiting or freeing memory (thus allowing the pagedaemon * to continue). for now we panic if DEBUG is defined, * otherwise we hope for the best with option [2] (better * yet, this should never happen in the first place!). */ printf("pagedaemon: deadlock detected!\n"); timo = hz >> 3; /* set timeout */ #if defined(DEBUG) /* DEBUG: panic so we can debug it */ panic("pagedaemon deadlock"); #endif } uvm_pagedaemon_waiters++; wakeup(&uvm.pagedaemon); /* wake the daemon! */ UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo); } /* * uvm_kick_pdaemon: perform checks to determine if we need to * give the pagedaemon a nudge, and do so if necessary. */ void uvm_kick_pdaemon(void) { int fpages = uvm_availmem(false); if (fpages + uvmexp.paging < uvmexp.freemin || (fpages + uvmexp.paging < uvmexp.freetarg && uvmpdpol_needsscan_p()) || uvm_km_va_starved_p()) { mutex_spin_enter(&uvmpd_lock); wakeup(&uvm.pagedaemon); mutex_spin_exit(&uvmpd_lock); } } /* * uvmpd_tune: tune paging parameters * * => called when ever memory is added (or removed?) to the system */ static void uvmpd_tune(void) { int val; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * try to keep 0.5% of available RAM free, but limit to between * 128k and 1024k per-CPU. XXX: what are these values good for? */ val = uvmexp.npages / 200; val = MAX(val, (128*1024) >> PAGE_SHIFT); val = MIN(val, (1024*1024) >> PAGE_SHIFT); val *= ncpu; /* Make sure there's always a user page free. */ if (val < uvmexp.reserve_kernel + 1) val = uvmexp.reserve_kernel + 1; uvmexp.freemin = val; /* Calculate free target. */ val = (uvmexp.freemin * 4) / 3; if (val <= uvmexp.freemin) val = uvmexp.freemin + 1; uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0); uvmexp.wiredmax = uvmexp.npages / 3; UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd", uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0); } /* * uvm_pageout: the main loop for the pagedaemon */ void uvm_pageout(void *arg) { int npages = 0; int extrapages = 0; int fpages; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); UVMHIST_LOG(pdhist,"", 0, 0, 0, 0); mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM); cv_init(&uvmpd_pool_drain_cv, "pooldrain"); /* Create the pool drainer kernel thread. */ if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, uvmpd_pool_drain_thread, NULL, NULL, "pooldrain")) panic("fork pooldrain"); /* * ensure correct priority and set paging parameters... */ uvm.pagedaemon_lwp = curlwp; npages = uvmexp.npages; uvmpd_tune(); /* * main loop */ for (;;) { bool needsscan, needsfree, kmem_va_starved; kmem_va_starved = uvm_km_va_starved_p(); mutex_spin_enter(&uvmpd_lock); if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) && !kmem_va_starved) { UVMHIST_LOG(pdhist," <>",0,0,0,0); UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon, &uvmpd_lock, false, "pgdaemon", 0); uvmexp.pdwoke++; UVMHIST_LOG(pdhist," <>",0,0,0,0); } else { mutex_spin_exit(&uvmpd_lock); } /* * now recompute inactive count */ if (npages != uvmexp.npages || extrapages != uvm_extrapages) { npages = uvmexp.npages; extrapages = uvm_extrapages; uvmpd_tune(); } uvmpdpol_tune(); /* * Estimate a hint. Note that bufmem are returned to * system only when entire pool page is empty. */ fpages = uvm_availmem(false); UVMHIST_LOG(pdhist," free/ftarg=%jd/%jd", fpages, uvmexp.freetarg, 0,0); needsfree = fpages + uvmexp.paging < uvmexp.freetarg; needsscan = needsfree || uvmpdpol_needsscan_p(); /* * scan if needed */ if (needsscan) { uvmpd_scan(); } /* * if there's any free memory to be had, * wake up any waiters. */ if (uvm_availmem(false) > uvmexp.reserve_kernel || uvmexp.paging == 0) { mutex_spin_enter(&uvmpd_lock); wakeup(&uvmexp.free); uvm_pagedaemon_waiters = 0; mutex_spin_exit(&uvmpd_lock); } /* * scan done. if we don't need free memory, we're done. */ if (!needsfree && !kmem_va_starved) continue; /* * kick the pool drainer thread. */ uvmpd_pool_drain_wakeup(); } /*NOTREACHED*/ } void uvm_pageout_start(int npages) { atomic_add_int(&uvmexp.paging, npages); } void uvm_pageout_done(int npages) { KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages); if (npages == 0) { return; } atomic_add_int(&uvmexp.paging, -npages); /* * wake up either of pagedaemon or LWPs waiting for it. */ mutex_spin_enter(&uvmpd_lock); if (uvm_availmem(false) <= uvmexp.reserve_kernel) { wakeup(&uvm.pagedaemon); } else if (uvm_pagedaemon_waiters != 0) { wakeup(&uvmexp.free); uvm_pagedaemon_waiters = 0; } mutex_spin_exit(&uvmpd_lock); } static krwlock_t * uvmpd_page_owner_lock(struct vm_page *pg) { struct uvm_object *uobj = pg->uobject; struct vm_anon *anon = pg->uanon; krwlock_t *slock; KASSERT(mutex_owned(&pg->interlock)); #ifdef DEBUG if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) { return NULL; } #endif if (uobj != NULL) { slock = uobj->vmobjlock; KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj); } else if (anon != NULL) { slock = anon->an_lock; KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon); } else { slock = NULL; } return slock; } /* * uvmpd_trylockowner: trylock the page's owner. * * => called with page interlock held. * => resolve orphaned O->A loaned page. * => return the locked mutex on success. otherwise, return NULL. */ krwlock_t * uvmpd_trylockowner(struct vm_page *pg) { krwlock_t *slock, *heldslock = NULL; KASSERT(mutex_owned(&pg->interlock)); slock = uvmpd_page_owner_lock(pg); if (slock == NULL) { /* Page may be in state of flux - ignore. */ mutex_exit(&pg->interlock); return NULL; } if (rw_tryenter(slock, RW_WRITER)) { goto success; } /* * The try-lock didn't work, so now do a blocking lock after * dropping the page interlock. Prevent the owner lock from * being freed by taking a hold on it first. */ rw_obj_hold(slock); mutex_exit(&pg->interlock); rw_enter(slock, RW_WRITER); heldslock = slock; /* * Now we hold some owner lock. Check if the lock we hold * is still the lock for the owner of the page. * If it is then return it, otherwise release it and return NULL. */ mutex_enter(&pg->interlock); slock = uvmpd_page_owner_lock(pg); if (heldslock != slock) { rw_exit(heldslock); slock = NULL; } else { success: /* * Set PG_ANON if it isn't set already. */ if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) { KASSERT(pg->loan_count > 0); pg->loan_count--; pg->flags |= PG_ANON; /* anon now owns it */ } } mutex_exit(&pg->interlock); if (heldslock != NULL) { rw_obj_free(heldslock); } return slock; } #if defined(VMSWAP) struct swapcluster { int swc_slot; int swc_nallocated; int swc_nused; struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)]; }; static void swapcluster_init(struct swapcluster *swc) { swc->swc_slot = 0; swc->swc_nused = 0; } static int swapcluster_allocslots(struct swapcluster *swc) { int slot; int npages; if (swc->swc_slot != 0) { return 0; } /* Even with strange MAXPHYS, the shift implicitly rounds down to a page. */ npages = MAXPHYS >> PAGE_SHIFT; slot = uvm_swap_alloc(&npages, true); if (slot == 0) { return ENOMEM; } swc->swc_slot = slot; swc->swc_nallocated = npages; swc->swc_nused = 0; return 0; } static int swapcluster_add(struct swapcluster *swc, struct vm_page *pg) { int slot; struct uvm_object *uobj; KASSERT(swc->swc_slot != 0); KASSERT(swc->swc_nused < swc->swc_nallocated); KASSERT((pg->flags & PG_SWAPBACKED) != 0); slot = swc->swc_slot + swc->swc_nused; uobj = pg->uobject; if (uobj == NULL) { KASSERT(rw_write_held(pg->uanon->an_lock)); pg->uanon->an_swslot = slot; } else { int result; KASSERT(rw_write_held(uobj->vmobjlock)); result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot); if (result == -1) { return ENOMEM; } } swc->swc_pages[swc->swc_nused] = pg; swc->swc_nused++; return 0; } static void swapcluster_flush(struct swapcluster *swc, bool now) { int slot; int nused; int nallocated; int error __diagused; if (swc->swc_slot == 0) { return; } KASSERT(swc->swc_nused <= swc->swc_nallocated); slot = swc->swc_slot; nused = swc->swc_nused; nallocated = swc->swc_nallocated; /* * if this is the final pageout we could have a few * unused swap blocks. if so, free them now. */ if (nused < nallocated) { if (!now) { return; } uvm_swap_free(slot + nused, nallocated - nused); } /* * now start the pageout. */ if (nused > 0) { uvmexp.pdpageouts++; uvm_pageout_start(nused); error = uvm_swap_put(slot, swc->swc_pages, nused, 0); KASSERT(error == 0 || error == ENOMEM); } /* * zero swslot to indicate that we are * no longer building a swap-backed cluster. */ swc->swc_slot = 0; swc->swc_nused = 0; } static int swapcluster_nused(struct swapcluster *swc) { return swc->swc_nused; } /* * uvmpd_dropswap: free any swap allocated to this page. * * => called with owner locked. * => return true if a page had an associated slot. */ bool uvmpd_dropswap(struct vm_page *pg) { bool result = false; struct vm_anon *anon = pg->uanon; if ((pg->flags & PG_ANON) && anon->an_swslot) { uvm_swap_free(anon->an_swslot, 1); anon->an_swslot = 0; uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); result = true; } else if (pg->flags & PG_AOBJ) { int slot = uao_set_swslot(pg->uobject, pg->offset >> PAGE_SHIFT, 0); if (slot) { uvm_swap_free(slot, 1); uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY); result = true; } } return result; } #endif /* defined(VMSWAP) */ /* * uvmpd_scan_queue: scan an replace candidate list for pages * to clean or free. * * => we work on meeting our free target by converting inactive pages * into free pages. * => we handle the building of swap-backed clusters */ static void uvmpd_scan_queue(void) { struct vm_page *p; struct uvm_object *uobj; struct vm_anon *anon; #if defined(VMSWAP) struct swapcluster swc; #endif /* defined(VMSWAP) */ int dirtyreacts; krwlock_t *slock; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * swslot is non-zero if we are building a swap cluster. we want * to stay in the loop while we have a page to scan or we have * a swap-cluster to build. */ #if defined(VMSWAP) swapcluster_init(&swc); #endif /* defined(VMSWAP) */ dirtyreacts = 0; uvmpdpol_scaninit(); while (/* CONSTCOND */ 1) { /* * see if we've met the free target. */ if (uvm_availmem(false) + uvmexp.paging #if defined(VMSWAP) + swapcluster_nused(&swc) #endif /* defined(VMSWAP) */ >= uvmexp.freetarg << 2 || dirtyreacts == UVMPD_NUMDIRTYREACTS) { UVMHIST_LOG(pdhist," met free target: " "exit loop", 0, 0, 0, 0); break; } /* * first we have the pdpolicy select a victim page * and attempt to lock the object that the page * belongs to. if our attempt fails we skip on to * the next page (no harm done). it is important to * "try" locking the object as we are locking in the * wrong order (pageq -> object) and we don't want to * deadlock. * * the only time we expect to see an ownerless page * (i.e. a page with no uobject and !PG_ANON) is if an * anon has loaned a page from a uvm_object and the * uvm_object has dropped the ownership. in that * case, the anon can "take over" the loaned page * and make it its own. */ p = uvmpdpol_selectvictim(&slock); if (p == NULL) { break; } KASSERT(uvmpdpol_pageisqueued_p(p)); KASSERT(uvm_page_owner_locked_p(p, true)); KASSERT(p->wire_count == 0); /* * we are below target and have a new page to consider. */ anon = p->uanon; uobj = p->uobject; if (p->flags & PG_BUSY) { rw_exit(slock); uvmexp.pdbusy++; continue; } /* does the page belong to an object? */ if (uobj != NULL) { uvmexp.pdobscan++; } else { #if defined(VMSWAP) KASSERT(anon != NULL); uvmexp.pdanscan++; #else /* defined(VMSWAP) */ panic("%s: anon", __func__); #endif /* defined(VMSWAP) */ } /* * we now have the object locked. * if the page is not swap-backed, call the object's * pager to flush and free the page. */ #if defined(READAHEAD_STATS) if ((p->flags & PG_READAHEAD) != 0) { p->flags &= ~PG_READAHEAD; uvm_ra_miss.ev_count++; } #endif /* defined(READAHEAD_STATS) */ if ((p->flags & PG_SWAPBACKED) == 0) { KASSERT(uobj != NULL); (void) (uobj->pgops->pgo_put)(uobj, p->offset, p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE); continue; } /* * the page is swap-backed. remove all the permissions * from the page so we can sync the modified info * without any race conditions. if the page is clean * we can free it now and continue. */ pmap_page_protect(p, VM_PROT_NONE); if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) { if (pmap_clear_modify(p)) { uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY); } else { uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN); } } if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) { int slot; int pageidx; pageidx = p->offset >> PAGE_SHIFT; uvm_pagefree(p); atomic_inc_uint(&uvmexp.pdfreed); /* * for anons, we need to remove the page * from the anon ourselves. for aobjs, * pagefree did that for us. */ if (anon) { KASSERT(anon->an_swslot != 0); anon->an_page = NULL; slot = anon->an_swslot; } else { slot = uao_find_swslot(uobj, pageidx); } if (slot > 0) { /* this page is now only in swap. */ KASSERT(uvmexp.swpgonly < uvmexp.swpginuse); atomic_inc_uint(&uvmexp.swpgonly); } rw_exit(slock); continue; } #if defined(VMSWAP) /* * this page is dirty, skip it if we'll have met our * free target when all the current pageouts complete. */ if (uvm_availmem(false) + uvmexp.paging > uvmexp.freetarg << 2) { rw_exit(slock); continue; } /* * free any swap space allocated to the page since * we'll have to write it again with its new data. */ uvmpd_dropswap(p); /* * start new swap pageout cluster (if necessary). * * if swap is full reactivate this page so that * we eventually cycle all pages through the * inactive queue. */ if (swapcluster_allocslots(&swc)) { dirtyreacts++; uvm_pagelock(p); uvm_pageactivate(p); uvm_pageunlock(p); rw_exit(slock); continue; } /* * at this point, we're definitely going reuse this * page. mark the page busy and delayed-free. * we should remove the page from the page queues * so we don't ever look at it again. * adjust counters and such. */ p->flags |= PG_BUSY; UVM_PAGE_OWN(p, "scan_queue"); p->flags |= PG_PAGEOUT; uvmexp.pgswapout++; uvm_pagelock(p); uvm_pagedequeue(p); uvm_pageunlock(p); /* * add the new page to the cluster. */ if (swapcluster_add(&swc, p)) { p->flags &= ~(PG_BUSY|PG_PAGEOUT); UVM_PAGE_OWN(p, NULL); dirtyreacts++; uvm_pagelock(p); uvm_pageactivate(p); uvm_pageunlock(p); rw_exit(slock); continue; } rw_exit(slock); swapcluster_flush(&swc, false); /* * the pageout is in progress. bump counters and set up * for the next loop. */ atomic_inc_uint(&uvmexp.pdpending); #else /* defined(VMSWAP) */ uvm_pagelock(p); uvm_pageactivate(p); uvm_pageunlock(p); rw_exit(slock); #endif /* defined(VMSWAP) */ } uvmpdpol_scanfini(); #if defined(VMSWAP) swapcluster_flush(&swc, true); #endif /* defined(VMSWAP) */ } /* * uvmpd_scan: scan the page queues and attempt to meet our targets. */ static void uvmpd_scan(void) { int swap_shortage, pages_freed, fpages; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); uvmexp.pdrevs++; /* * work on meeting our targets. first we work on our free target * by converting inactive pages into free pages. then we work on * meeting our inactive target by converting active pages to * inactive ones. */ UVMHIST_LOG(pdhist, " starting 'free' loop",0,0,0,0); pages_freed = uvmexp.pdfreed; uvmpd_scan_queue(); pages_freed = uvmexp.pdfreed - pages_freed; /* * detect if we're not going to be able to page anything out * until we free some swap resources from active pages. */ swap_shortage = 0; fpages = uvm_availmem(false); if (fpages < uvmexp.freetarg && uvmexp.swpginuse >= uvmexp.swpgavail && !uvm_swapisfull() && pages_freed == 0) { swap_shortage = uvmexp.freetarg - fpages; } uvmpdpol_balancequeue(swap_shortage); /* * if still below the minimum target, try unloading kernel * modules. */ if (uvm_availmem(false) < uvmexp.freemin) { module_thread_kick(); } } /* * uvm_reclaimable: decide whether to wait for pagedaemon. * * => return true if it seems to be worth to do uvm_wait. * * XXX should be tunable. * XXX should consider pools, etc? */ bool uvm_reclaimable(void) { int filepages; int active, inactive; /* * if swap is not full, no problem. */ if (!uvm_swapisfull()) { return true; } /* * file-backed pages can be reclaimed even when swap is full. * if we have more than 1/16 of pageable memory or 5MB, try to reclaim. * NB: filepages calculation does not exclude EXECPAGES - intentional. * * XXX assume the worst case, ie. all wired pages are file-backed. * * XXX should consider about other reclaimable memory. * XXX ie. pools, traditional buffer cache. */ cpu_count_sync(false); filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) + cpu_count_get(CPU_COUNT_FILEUNKNOWN) + cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired); uvm_estimatepageable(&active, &inactive); if (filepages >= MIN((active + inactive) >> 4, 5 * 1024 * 1024 >> PAGE_SHIFT)) { return true; } /* * kill the process, fail allocation, etc.. */ return false; } void uvm_estimatepageable(int *active, int *inactive) { uvmpdpol_estimatepageable(active, inactive); } /* * Use a separate thread for draining pools. * This work can't done from the main pagedaemon thread because * some pool allocators need to take vm_map locks. */ static void uvmpd_pool_drain_thread(void *arg) { struct pool *firstpool, *curpool; int bufcnt, lastslept; bool cycled; firstpool = NULL; cycled = true; for (;;) { /* * sleep until awoken by the pagedaemon. */ mutex_enter(&uvmpd_lock); if (!uvmpd_pool_drain_run) { lastslept = getticks(); cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock); if (getticks() != lastslept) { cycled = false; firstpool = NULL; } } uvmpd_pool_drain_run = false; mutex_exit(&uvmpd_lock); /* * rate limit draining, otherwise in desperate circumstances * this can totally saturate the system with xcall activity. */ if (cycled) { kpause("uvmpdlmt", false, 1, NULL); cycled = false; firstpool = NULL; } /* * drain and temporarily disable the freelist cache. */ uvm_pgflcache_pause(); /* * kill unused metadata buffers. */ bufcnt = uvmexp.freetarg - uvm_availmem(false); if (bufcnt < 0) bufcnt = 0; mutex_enter(&bufcache_lock); buf_drain(bufcnt << PAGE_SHIFT); mutex_exit(&bufcache_lock); /* * drain a pool, and then re-enable the freelist cache. */ (void)pool_drain(&curpool); KASSERT(curpool != NULL); if (firstpool == NULL) { firstpool = curpool; } else if (firstpool == curpool) { cycled = true; } uvm_pgflcache_resume(); } /*NOTREACHED*/ } static void uvmpd_pool_drain_wakeup(void) { mutex_enter(&uvmpd_lock); uvmpd_pool_drain_run = true; cv_signal(&uvmpd_pool_drain_cv); mutex_exit(&uvmpd_lock); }