some time ago. The mistake was to check that the page was not
referenced since the last active scan before moving it to inactive.
Now we just clear reference and move it to inacive (which is where
the second clock hand sweep occurs).
dynamically re-coloring pages; as machine-dependent code discovers
the size of the system's caches, it may call uvm_page_recolor() with
the new number of colors to use. If the new mumber of colors is
smaller (or equal to) the current number of colors, then uvm_page_recolor()
is a no-op.
The system defaults to one bucket if machine-dependent code does not
initialize uvmexp.ncolors before uvm_page_init() is called.
Note that the number of color bins should be initialized to something
reasonable as early as possible -- for many early memory allocations,
we live with the consequences of the page choice for the lifetime of
the boot.
each vm_page structure. Add a VM_MDPAGE_INIT() macro to init this
data when pages are initialized by UVM. These macros are mandatory,
but ports may #define them to nothing if they are not needed/used.
This deprecates struct pmap_physseg. As a transitional measure,
allow a port to #define PMAP_PHYSSEG so that it can continue to
use it until its pmap is converted to use VM_MDPAGE_MEMBERS.
Use all this stuff to eliminate a lot of extra work in the Alpha
pmap module (it's smaller and faster now). Changes to other pmap
modules will follow.
algorithm (Solaris calls this "Bin Hopping").
This implementation currently relies on MD code to define a
constant defining the number of buckets. This will change
reasonably soon (MD code will be able to dynamically size
the bucket array).
- pmap_enter()
- pmap_remove()
- pmap_protect()
- pmap_kenter_pa()
- pmap_kremove()
as described in pmap(9).
These calls are relatively conservative. It may be possible to
optimize these a little more.
which have pmap_steal_memory(). This is to reduce the API differences
between pmaps that implement pmap_steal_memory() and pmaps which do
not.
Note that pmap_steal_memory() needs to adjust *vstartp and/or
*vendp only if it used addresses within the range provided to UVM
via the pmap_virtual_space() call. I.e. it is not necessary to do
so in any current pmap_steal_memory() implementation.
on locking rules to make code easier to understand. locking in
uvm_loananon still needs some work on fringe cases where anon's page
is actually on loan from a uobj.
if uvm_loanentry() returned 0; otherwise, the unlocking would already
have been done by uvmfault_unlockall() call in uvm_loanentry().
Okay'ed by Chuck Silvers
the process dsize for both positive and negative changes. Since atop()
casts its result to a paddr_t (which is unsigned), negative changes in
process data size resulted in unrealistic dsizes being set. Use
"dsize -= atop(-diff)" for a negative diffs. Fixes the "Impossible
process sizes" mentioned on current-users.
Unsigned cast catch and much debugging help from Martin Laubach.
the mapping is:
VM_PAGER_OK 0
VM_PAGER_BAD <unused>
VM_PAGER_FAIL <unused>
VM_PAGER_PEND 0 (see below)
VM_PAGER_ERROR EIO
VM_PAGER_AGAIN EAGAIN
VM_PAGER_UNLOCK EBUSY
VM_PAGER_REFAULT ERESTART
for async i/o requests, it used to be possible for the request to
be convert to sync, and the pager would return VM_PAGER_OK or VM_PAGER_PEND
to indicate whether the caller should perform post-i/o cleanup.
this is no longer allowed; pagers must now return 0 to indicate that
the async i/o was successfully started, and the caller never needs to
worry about doing the post-i/o cleanup.
each of the basic types (anonymous data, executable image, cached files)
and prevent the pagedaemon from reusing a given page if that would reduce
the count of that type of page below a sysctl-setable minimum threshold.
the thresholds are controlled via three new sysctl tunables:
vm.anonmin, vm.vnodemin, and vm.vtextmin. these tunables are the
percentages of pageable memory reserved for each usage, and we do not allow
the sum of the minimums to be more than 95% so that there's always some
memory that can be reused.
failed because we failed to acquire some resource needed to initiate
the pageout (such as failing to lock an indirect buffer) rather than
a hard i/o error. in this case we just want to reactivate the page(s)
so that we'll try to write them again later.
while I'm here, clean up some DIAGNOSTIC code.
space is already torn down in uvmspace_free() when the vmspace
refrence count reaches 0. Move the shmexit() call into uvmspace_free().
Note that there is a beneficial side-effect of deferring the unmap
to uvmspace_free() -- on systems where TLB invalidations are
particularly expensive, the unmapping of the address space won't
have to cause TLB invalidations; uvmspace_free() is going to be
run in a context other than the exiting process's, so the "pmap is
active" test will evaluate to FALSE in the pmap module.
entry in the map. the old code would walk around the end of the linked list,
through the header entry, and keep going from the first map entry until it
found a gap in the map, at which point it would return an error. if the map
had no gaps then it would loop forever. reported by k-abe@cs.utah.edu.
while I'm here, clean up this function a bit.
also, use MIN() instead of min(), since the latter takes arguments of
type "int" but we're passing it values of type "vaddr_t", which can be
a larger size.