that tells whether the given path is in user space or kernel space, so it
can tell NDINIT().
While the raidframe calls were ok, both ccd(4) and cgd(4) were passing
pointers to user space data, which leads to strange error on i386, as
reported by Jukka Salmi on current-users.
The issue has been there since last august, I'm actually a bit surprised
that no one in the meantime has used ccd(4) or cgd(4) on an arch where it
would have simply faulted.
Patch by Slava Semushin <slava.semushin@gmail.com>
Again, this was tested by comparing obj files from a pristine and a patched
source tree against an i386/ALL kernel, and also for src/sbin/fsck_ffs,
src/sbin/fsdb and src/usr.sbin/makefs. Only changes in assert() line numbers
were detected in 'objdump -d' output.
even if we've detected a 'root on raid' autoconfigure. This change is really
only cosmetic, since setroot() will still do the right thing and honor
the 'root on foo' setting.
with spl used to protect other allocations and frees, or datastructure
element insertion and removal, in adjacent code.
It is almost unquestionably the case that some of the spl()/splx() calls
added here are superfluous, but it really seems wrong to see:
s=splfoo();
/* frob data structure */
splx(s);
pool_put(x);
and if we think we need to protect the first operation, then it is hard
to see why we should not think we need to protect the next. "Better
safe than sorry".
It is also almost unquestionably the case that I missed some pool
gets/puts from interrupt context with my strategy for finding these
calls; use of PR_NOWAIT is a strong hint that a pool may be used from
interrupt context but many callers in the kernel pass a "can wait/can't
wait" flag down such that my searches might not have found them. One
notable area that needs to be looked at is pf.
See also:
http://mail-index.netbsd.org/tech-kern/2006/07/19/0003.htmlhttp://mail-index.netbsd.org/tech-kern/2006/07/19/0009.html
unsigned for now. This prevents rf_reasonable_label() from rejecting
a valid label when these fields have an integer overflow. The reality
is that these need to be 64-bit quantities, but that will come later.
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
original RAIDframe code had the same bug with dag_h being used when
possibly NULL. Use dagList as the starting point for any potential
dag_h's. Move the initialization of dag_h in this part to a
little later. Loop now runs through in equivalent lock-step with the
construction of the dagList earlier in the function.
Addresses Coverity CID 1129 (id=6841 Run 5).
pool each time a new array was configured. This causes grief
with things like 'vmstat -m' by causing it to loop. Make RAIDframe
only initialize PSS bits once.
Pointed out by simonb@. Fix tested by simonb@. Thanks!