device controllers, and more specifically raid controllers.
Add a new sensor type, ENVSYS_DRIVE, to report drive status. From OpenBSD.
Add bio and sysmon support to mfi(4). This allow userland to query
status for drives and logical volumes attached to a mfi(4) controller. While
there fix some debug printfs in mfi so they compile.
Add bio(4) to amd64 and i386 GENERIC.
NetBSD Foundation Membership still pending.) This stack was written by
Iain under sponsorship from Itronix Inc.
The stack includes support for rfcomm networking (networking via your
bluetooth enabled cell phone), hid devices (keyboards/mice), and headsets.
Drivers for both PCMCIA and USB bluetooth controllers are included.
drivers that attach to it. This allows for other host interface chips
that use the same keyboards and mice, such as the ones in the ARM
IOMD20, ARM7500, and SA-1111. The PC-compatible driver is still
called pckbc(4), and the new abstraction layer is "pckbport", so the
child devices have moved from sys/dev/pckbc to sys/dev/pckbport, which
also contains some code shared between all host controllers. To avoid
incompatibility, pckbdreg.h is still installed in
/usr/include/dev/pckbc.
In theory, this shouldn't cause any behavioural changes in the drivers
concerned. Thy just use rather more function pointers than before. Tested
on i386 and (with a new host driver) acorn32. Compiled on several other
affected architectures.
Uses a hook in spec_strategy() to save data written from a mounted
file system to its block device and a hook in dounmount().
Not enabled by default in any kernel config.
Approved by: Frank van der Linden <fvdl@netbsd.org>
isochronous reception routine for IEEE 1394 OHCI (fwohci). The
transmission part is under construction.
The minimum configuration options for this feature are:
# IEEE 1394 (i.LINK)
fwohci* at pci? dev ? function ?
pseudo-device fwiso 1
the block comment at the top of the file:
This module provides kernel support for testing network
throughput from the perspective of the kernel. It is
similar in spirit to the classic ttcp network benchmark
program, the main difference being that with kttcp, the
kernel is the source and sink of the data.
Testing like this is useful for a few reasons:
1. This allows us to know what kind of performance we can
expect from network applications that run in the kernel
space, such as the NFS server or the NFS client. These
applications don't have to move the data to/from userspace,
and so benchmark programs which run in userspace don't
give us an accurate model.
2. Since data received is just thrown away, the receiver
is very fast. This can provide better exercise for the
sender at the other end.
3. Since the NetBSD kernel currently uses a run-to-completion
scheduling model, kttcp provides a benchmark model where
preemption of the benchmark program is not an issue.
There is a companion "kttcp" user program which uses the kttcp
pseudo-device.
Largely written by Frank van der Linden, with some modifications
from me.
saves about 2.2MB under /usr/include/dev/. Discussed on tech-kern@
recently.
I HOPE to get the list right. The headers I left in are ones
used for MI tools and those whose usage I discovered by grep over tree sources.
Feel free to put needed includes back in if you encounter anything which
should not be removed from lists.
as with user-land programs, include files are installed by each directory
in the tree that has includes to install. (This allows more flexibility
as to what gets installed, makes 'partial installs' easier, and gives us
more options as to which machines' includes get installed at any given
time.) The old SYS_INCLUDES={symlinks,copies} behaviours are _both_
still supported, though at least one bug in the 'symlinks' case is
fixed by this change. Include files can't be build before installation,
so directories that have includes as targets (e.g. dev/pci) have to move
those targets into a different Makefile.