return failure if swap is full and there are no free physical pages.
have malloc() use this flag if M_CANFAIL is passed to it.
use M_CANFAIL to allow amap_extend() to fail when memory is scarce.
this should prevent most of the remaining hangs in low-memory situations.
- fix the loaned case in uvm_pagefree().
- redo uvmexp.swpgonly accounting to work with page loaning.
add an assertion before each place we adjust uvmexp.swpgonly.
- fix uvm_km_pgremove() to always free any swap space associated with
the range being removed.
- get rid of UVM_LOAN_WIRED flag. instead, we just make sure that
pages loaned to the kernel are never on the page queues.
this allows us to assert that pages are not loaned and wired
at the same time.
- add yet more assertions.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.
an spl-protected "interrupt safe map" list, simply require that callers
of uvm_fault() never call us in interrupt context (MD code must make
the assertion), and check for interrupt-safe maps in uvmfault_lookup()
before we lock the map.
- pmap_enter()
- pmap_remove()
- pmap_protect()
- pmap_kenter_pa()
- pmap_kremove()
as described in pmap(9).
These calls are relatively conservative. It may be possible to
optimize these a little more.
routine. Works similarly fto pmap_prefer(), but allows callers
to specify a minimum power-of-two alignment of the region.
How we ever got along without this for so long is beyond me.
<vm/pglist.h> -> <uvm/uvm_pglist.h>
<vm/vm_inherit.h> -> <uvm/uvm_inherit.h>
<vm/vm_kern.h> -> into <uvm/uvm_extern.h>
<vm/vm_object.h> -> nothing
<vm/vm_pager.h> -> into <uvm/uvm_pager.h>
also includes a bunch of <vm/vm_page.h> include removals (due to redudancy
with <vm/vm.h>), and a scattering of other similar headers.
value (KERN_SUCCESS or KERN_RESOURCE_SHORTAGE) indicating if it succeeded
or failed. Change the `wired' and `access_type' arguments to a single
`flags' argument, which includes the access type, and flags:
PMAP_WIRED the old `wired' boolean
PMAP_CANFAIL pmap_enter() is allowed to fail
If PMAP_CANFAIL is not specified, the pmap should behave as it always
has in the face of a drastic resource shortage: fall over dead.
Change the fault handler to deal with failure (which indicates resource
shortage) by unlocking everything, waiting for the pagedaemon to free
more memory, then retrying the fault.
looking up a kernel address, check to see if the address is on this
"interrupt-safe" list. If so, return failure immediately. This prevents
a locking screw if a page fault is taken on an interrupt-safe map in or
out of interrupt context.
access_type to pmap_enter() to ensure that when these mappings are accessed,
possibly in interrupt context, that they won't cause mod/ref emulation
page faults.
has PAGEABLE and INTRSAFE flags. PAGEABLE now really means "pageable",
not "allocate vm_map_entry's from non-static pool", so update all map
creations to reflect that. INTRSAFE maps are maps that are used in
interrupt context (e.g. kmem_map, mb_map), and thus use the static
map entry pool (XXX as does kernel_map, for now). This will eventually
change now these maps are locked, as well.
which can be used in an interrupt context. Use pmap_kenter*() and
pmap_kremove() only for mappings owned by these objects.
Fixes some locking protocol issues related to MP support, and eliminates
all of the pmap_enter vs. pmap_kremove inconsistencies.
define a flag UVM_PGA_USERESERVE to allow non-kernel object
allocations to use pages from the reserve.
use the new flag for allocations in pmap modules.
memory access a mapping was caused by. This is passed through from uvm_fault()
and udv_fault(), and in most other cases is 0.
The pmap module may use this to preset R/M information. On MMUs which require
R/M emulation, the implementation may preset the bits and avoid taking another
fault. On MMUs which keep R/M information in hardware, the implementation may
preset its cached bits to speed up the next call to pmap_is_modified() or
pmap_is_referenced().