instead of bytes for the index, and never search below fs->lfs_freehd.
Fix a bug in the previous version of the search (an erroneous assumption
that ino_t was signed).
Free the bitmap when we unmount the filesystem.
by Michel Oey, in which an aged LFS writes up to an extra Ifile block for
every file created; and paves the way for the truncation of the Ifile when
many files are deleted.
lfs_balloc(), and use that to estimate the number of dirty pages belonging
to LFS (subsystem or filesystem). This is almost certainly wrong for
the case of a large mmap()ed region, but the accounting is tighter than
what we had before, and performs much better in the typical case of pages
dirtied through write().
into a single, system-wide table, rather than having a separate hash table
per inode. Significantly reduces the "system" cpu usage of your average
file write.
be assured that the last byte of a file is always allocated. Previously
a file extension could cause the filesystem to be flushed, writing an
inconsistent inode to disk. Although this condition would be corrected
the next time blocks were written to disk, an intervening crash would leave
the filesystem in an inconsistent state, leaving fsck_lfs to complain
of an inode "partially truncated".
to prevent a deadlock trying to call VOP_PUTPAGES() on a VDIROP vnode.
This can happen when a stacked filesystem is mounted on top of an LFS: an
LFS dirop needs to get a vnode, which is available from the upper layer.
The corresponding lower layer vnode, however, is VDIROP, so the upper layer
can't be cleaned out since its VOP_PUTPAGES() is passed through to the lower
layer, which waits for dirops to drain before it can proceed. Deadlock.
Tweak ufs_makeinode() and ufs_mkdir() to pass the a_vpp argument through
to VOP_VALLOC().
Partially addresses PR # 26043, though it probably does not completely fix
the problem described there.
stuff under '#ifdef DEBUG', and use sysctl knobs to turn on/off particular
parts of the debugging reporting (if DEBUG is enabled). Re-enable the LFS
statistics in sysctl, while I'm there. A bit of a rototill.
* Note when lfs_putpages(9) thinks it is not going to be writing any
pages before calling genfs_putpages(9). This prevents a situation in
which blocks can be queued for writing without a segment header.
* Correct computation of NRESERVE(), though it is still a gross
overestimate in most cases. Note that if NRESERVE() is too high, it
may be impossible to create files on the filesystem. We catch this
case on filesystem mount and refuse to mount r/w.
* Allow filesystems to be mounted whose block size is == MAXBSIZE.
* Somewhere along the line, ufs_bmaparray(9) started mangling UNWRITTEN
entries in indirect blocks again, triggering a failed assertion "daddr
<= LFS_MAX_DADDR". Explicitly convert to and from int32_t to correct
this.
* Add a high-water mark for the number of dirty pages any given LFS can
hold before triggering a flush. This is settable by sysctl, but off
(zero) by default.
* Be more careful about the MAX_BYTES and MAX_BUFS computations so we
shouldn't see "please increase to at least zero" messages.
* Note that VBLK and VCHR vnodes can have nonzero values in di_db[0]
even though their v_size == 0. Don't panic when we see this.
* Change lfs_bfree to a signed quantity. The manner in which it is
processed before being passed to the cleaner means that sometimes it
may drop below zero, and the cleaner must be aware of this.
* Never report bfree < 0 (or higher than lfs_dsize) through
lfs_statvfs(9). This prevents df(1) from ever telling us that our full
filesystems have 16TB free.
* Account space allocated through lfs_balloc(9) that does not have
associated buffer headers, so that the pagedaemon doesn't run us out
of segments.
* Return ENOSPC from lfs_balloc(9) when bfree drops to zero.
* Address a deadlock in lfs_bmapv/lfs_markv when the filesystem is being
unmounted. Because vfs_busy() is a shared lock, and
lfs_bmapv/lfs_markv mark the filesystem vfs_busy(), the cleaner can be
holding the lock that umount() is blocking on, then try to vfs_busy()
again in getnewvnode().
setting those flags, it does not cause the inode to be written in the periodic
sync. This is used for writes to special files (devices and named pipes) and
FIFOs.
Do not preemptively sync updates to access times and modification times. They
are now updated in the inode only opportunistically, or when the file or device
is closed. (Really, it should be delayed beyond close, but this is enough to
help substantially with device nodes.)
And the most amusing part:
Trickle sync was broken on both FFS and ext2fs, in different ways. In FFS, the
periodic call to VFS_SYNC(MNT_LAZY) was still causing all file data to be
synced. In ext2fs, it was causing the metadata to *not* be synced. We now
only call VOP_UPDATE() on the node if we're doing MNT_LAZY. I've confirmed
that we do in fact trickle correctly now.
* Remove the "lwp *" argument that was added to vget(). Turns out
that nothing actually used it!
* Remove the "lwp *" arguments that were added to VFS_ROOT(), VFS_VGET(),
and VFS_FHTOVP(); all they did was pass it to vget() (which, as noted
above, didn't use it).
* Remove all of the "lwp *" arguments to internal functions that were added
just to appease the above.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
64 bit block pointers, extended attribute storage, and a few
other things.
This commit does not yet include the code to manipulate the extended
storage (for e.g. ACLs), this will be done later.
Originally written by Kirk McKusick and Network Associates Laboratories for
FreeBSD.
be expanded to cover other per-fs and subsystem-wide data as well.
Fix a case of IN_MODIFIED being set without updating lfs_uinodes, resulting
in a "lfs_uinodes < 0" panic.
Fix a deadlock in lfs_putpages arising from the need to busy all pages in a
block; unbusy any that had already been busied before starting over.
(there are still some details to work out) but expect that to go
away soon. To support these basic changes (creation of lfs_putpages,
lfs_gop_write, mods to lfs_balloc) several other changes were made, to
wit:
* Create a writer daemon kernel thread whose purpose is to handle page
writes for the pagedaemon, but which also takes over some of the
functions of lfs_check(). This thread is started the first time an
LFS is mounted.
* Add a "flags" parameter to GOP_SIZE. Current values are
GOP_SIZE_READ, meaning that the call should return the size of the
in-core version of the file, and GOP_SIZE_WRITE, meaning that it
should return the on-disk size. One of GOP_SIZE_READ or
GOP_SIZE_WRITE must be specified.
* Instead of using malloc(...M_WAITOK) for everything, reserve enough
resources to get by and use malloc(...M_NOWAIT), using the reserves if
necessary. Use the pool subsystem for structures small enough that
this is feasible. This also obsoletes LFS_THROTTLE.
And a few that are not strictly necessary:
* Moves the LFS inode extensions off onto a separately allocated
structure; getting closer to LFS as an LKM. "Welcome to 1.6O."
* Unified GOP_ALLOC between FFS and LFS.
* Update LFS copyright headers to correct values.
* Actually cast to unsigned in lfs_shellsort, like the comment says.
* Keep track of which segments were empty before the previous
checkpoint; any segments that pass two checkpoints both dirty and
empty can be summarily cleaned. Do this. Right now lfs_segclean
still works, but this should be turned into an effectless
compatibility syscall.
I found while making sure there weren't any new ones.
* Make the write clusters keep track of the buffers whose blocks they contain.
This should make it possible to (1) write clusters using a page mapping
instead of malloc, if desired, and (2) schedule blocks for rewriting
(somewhere else) if a write error occurs. Code is present to use
pagemove() to construct the clusters but that is untested and will go away
anyway in favor of page mapping.
* DEBUG now keeps a log of Ifile writes, so that any lingering instances of
the "dirty bufs" problem can be properly debugged.
* Keep track of whether the Ifile has been dirtied by various routines that
can be called by lfs_segwrite, and loop on that until it is clean, for
a checkpoint. Checkpoints need to be squeaky clean.
* Warn the user (once) if the Ifile grows larger than is reasonable for their
buffer cache. Both lfs_mountfs and lfs_unmount check since the Ifile can
grow.
* If an inode is not found in a disk block, try rereading the block, under
the assumption that the block was copied to a cluster and then freed.
* Protect WRITEINPROG() with splbio() to fix a hang in lfs_update.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
Kernels and tools understand both v1 and v2 filesystems; newfs_lfs
generates v2 by default. Changes for the v2 layout include:
- Segments of non-PO2 size and arbitrary block offset, so these can be
matched to convenient physical characteristics of the partition (e.g.,
stripe or track size and offset).
- Address by fragment instead of by disk sector, paving the way for
non-512-byte-sector devices. In theory fragments can be as large
as you like, though in reality they must be smaller than MAXBSIZE in size.
- Use serial number and filesystem identifier to ensure that roll-forward
doesn't get old data and think it's new. Roll-forward is enabled for
v2 filesystems, though not for v1 filesystems by default.
- The inode free list is now a tailq, paving the way for undelete (undelete
is not yet implemented, but can be without further non-backwards-compatible
changes to disk structures).
- Inode atime information is kept in the Ifile, instead of on the inode;
that is, the inode is never written *just* because atime was changed.
Because of this the inodes remain near the file data on the disk, rather
than wandering all over as the disk is read repeatedly. This speeds up
repeated reads by a small but noticeable amount.
Other changes of note include:
- The ifile written by newfs_lfs can now be of arbitrary length, it is no
longer restricted to a single indirect block.
- Fixed an old bug where ctime was changed every time a vnode was created.
I need to look more closely to make sure that the times are only updated
during write(2) and friends, not after-the-fact during a segment write,
and certainly not by the cleaner.
lfs_writeseg (possibly after they had been freed).
If MALLOCLOG is defined, make lfs_newbuf and lfs_freebuf pass along the
caller's file and line to _malloc and _free.
on mount, through the newer checkpoint and on through any newer
partial-segments that may have been written but not checkpointed because
of an intervening crash.
LFS_DO_ROLLFORWARD is not defined by default.
Kernel:
* Add runtime quantity lfs_ravail, the number of disk-blocks reserved
for writing. Writes to the filesystem first reserve a maximum amount
of blocks before their write is allowed to proceed; after the blocks
are allocated the reserved total is reduced by a corresponding amount.
If the lfs_reserve function cannot immediately reserve the requested
number of blocks, the inode is unlocked, and the thread sleeps until
the cleaner has made enough space available for the blocks to be
reserved. In this way large files can be written to the filesystem
(or, smaller files can be written to a nearly-full but thoroughly
clean filesystem) and the cleaner can still function properly.
* Remove explicit switching on dlfs_minfreeseg from the kernel code; it
is now merely a fs-creation parameter used to compute dlfs_avail and
dlfs_bfree (and used by fsck_lfs(8) to check their accuracy). Its
former role is better assumed by a properly computed dlfs_avail.
* Bounds-check inode numbers submitted through lfs_bmapv and lfs_markv.
This prevents a panic, but, if the cleaner is feeding the filesystem
the wrong data, you are still in a world of hurt.
* Cleanup: remove explicit references of DEV_BSIZE in favor of
btodb()/dbtob().
lfs_cleanerd:
* Make -n mean "send N segments' blocks through a single call to
lfs_markv". Previously it had meant "clean N segments though N calls
to lfs_markv, before looking again to see if more need to be cleaned".
The new behavior gives better packing of direct data on disk with as
little metadata as possible, largely alleviating the problem that the
cleaner can consume more disk through inefficient use of metadata than
it frees by moving dirty data away from clean "holes" to produce
entirely clean segments.
* Make -b mean "read as many segments as necessary to write N segments
of dirty data back to disk", rather than its former meaning of "read
as many segments as necessary to free N segments worth of space". The
new meaning, combined with the new -n behavior described above,
further aids in cleaning storage efficiency as entire segments can be
written at once, using as few blocks as possible for segment summaries
and inode blocks.
* Make the cleaner take note of segments which could not be cleaned due
to error, and not attempt to clean them until they are entirely free
of dirty blocks. This prevents the case in which a cleanerd running
with -n 1 and without -b (formerly the default) would spin trying
repeatedly to clean a corrupt segment, while the remaining space
filled and deadlocked the filesystem.
* Update the lfs_cleanerd manual page to describe all the options,
including the changes mentioned here (in particular, the -b and -n
flags were previously undocumented).
fsck_lfs:
* Check, and optionally fix, lfs_avail (to an exact figure) and
lfs_bfree (within a margin of error) in pass 5.
newfs_lfs:
* Reduce the default dlfs_minfreeseg to 1/20 of the total segments.
* Add a warning if the sgs disklabel field is 16 (the default for FFS'
cpg, but not usually desirable for LFS' sgs: 5--8 is a better range).
* Change the calculation of lfs_avail and lfs_bfree, corresponding to
the kernel changes mentioned above.
mount_lfs:
* Add -N and -b options to pass corresponding -n and -b options to
lfs_cleanerd.
* Default to calling lfs_cleanerd with "-b -n 4".
[All of these changes were largely tested in the 1.5 branch, with the
idea that they (along with previous un-pulled-up work) could be applied
to the branch while it was still in ALPHA2; however my test system has
experienced corruption on another filesystem (/dev/console has gone
missing :^), and, while I believe this unrelated to the LFS changes, I
cannot with good conscience request that the changes be pulled up.]
Make lfs_uinodes a signed quantity for debugging purposes, and set it to
zero as fs mount time.
Enclose setting/clearing of the dirty flags (IN_MODIFIED, IN_ACCESSED,
IN_CLEANING) in macros, and use those macros everywhere. Make
LFS_ITIMES use these macros; updated the ITIMES macro in inode.h to know
about this. Make ufs_getattr use ITIMES instead of FFS_ITIMES.