There are still about 1600 left, but they have ',' or /* ... */
in the actual variable definitions - which my awk script doesn't handle.
There are also many that need () -> (void).
(The script does handle misordered arguments.)
When a link-layer address changes (e.g., ifconfig ex0 link
02🇩🇪ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor
Advertisement to update the network-/link-layer address bindings
on our LAN peers.
Refuse a change of ethernet address to the address 00:00:00:00:00:00
or to any multicast/broadcast address. (Thanks matt@.)
Reorder ifnet ioctl operations so that driver ioctls may inherit
the functions of their "class"---ether_ioctl(), fddi_ioctl(), et
cetera---and the class ioctls may inherit from the generic ioctl,
ifioctl_common(), but both driver- and class-ioctls may override
the generic behavior. Make network drivers share more code.
Distinguish a "factory" link-layer address from others for the
purposes of both protecting that address from deletion and computing
EUI64.
Return consistent, appropriate error codes from network drivers.
Improve readability. KNF.
*** Details ***
In if_attach(), always initialize the interface ioctl routine,
ifnet->if_ioctl, if the driver has not already initialized it.
Delete if_ioctl == NULL tests everywhere else, because it cannot
happen.
In the ioctl routines of network interfaces, inherit common ioctl
behaviors by calling either ifioctl_common() or whichever ioctl
routine is appropriate for the class of interface---e.g., ether_ioctl()
for ethernets.
Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In
the user->kernel interface, SIOCSIFADDR's argument was an ifreq,
but on the protocol->ifnet interface, SIOCSIFADDR's argument was
an ifaddr. That was confusing, and it would work against me as I
make it possible for a network interface to overload most ioctls.
On the protocol->ifnet interface, replace SIOCSIFADDR with
SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to
invoke SIOCINITIFADDR.
In ifioctl(), give the interface the first shot at handling most
interface ioctls, and give the protocol the second shot, instead
of the other way around. Finally, let compatibility code (COMPAT_OSOCK)
take a shot.
Pull device initialization out of switch statements under
SIOCINITIFADDR. For example, pull ..._init() out of any switch
statement that looks like this:
switch (...->sa_family) {
case ...:
..._init();
...
break;
...
default:
..._init();
...
break;
}
Rewrite many if-else clauses that handle all permutations of IFF_UP
and IFF_RUNNING to use a switch statement,
switch (x & (IFF_UP|IFF_RUNNING)) {
case 0:
...
break;
case IFF_RUNNING:
...
break;
case IFF_UP:
...
break;
case IFF_UP|IFF_RUNNING:
...
break;
}
unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and
#ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4).
In ipw(4), remove an if_set_sadl() call that is out of place.
In nfe(4), reuse the jumbo MTU logic in ether_ioctl().
Let ethernets register a callback for setting h/w state such as
promiscuous mode and the multicast filter in accord with a change
in the if_flags: ether_set_ifflags_cb() registers a callback that
returns ENETRESET if the caller should reset the ethernet by calling
if_init(), 0 on success, != 0 on failure. Pull common code from
ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(),
and register if_flags callbacks for those drivers.
Return ENOTTY instead of EINVAL for inappropriate ioctls. In
zyd(4), use ENXIO instead of ENOTTY to indicate that the device is
not any longer attached.
Add to if_set_sadl() a boolean 'factory' argument that indicates
whether a link-layer address was assigned by the factory or some
other source. In a comment, recommend using the factory address
for generating an EUI64, and update in6_get_hw_ifid() to prefer a
factory address to any other link-layer address.
Add a routing message, RTM_LLINFO_UPD, that tells protocols to
update the binding of network-layer addresses to link-layer addresses.
Implement this message in IPv4 and IPv6 by sending a gratuitous
ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD
messages on a change of an interface's link-layer address.
In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address
that is broadcast/multicast or equal to 00:00:00:00:00:00.
Make ether_ioctl() call ifioctl_common() to handle ioctls that it
does not understand.
In gif(4), initialize if_softc and use it, instead of assuming that
the gif_softc and ifp overlap.
Let ifioctl_common() handle SIOCGIFADDR.
Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels
that certain invariants on a struct route are satisfied.
In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit
about the ioctls that we do not allow on an agr(4) member interface.
bzero -> memset. Delete unnecessary casts to void *. Use
sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with
NULL instead of "testing truth". Replace some instances of (type
*)0 with NULL. Change some K&R prototypes to ANSI C, and join
lines.
- Socket layer becomes MP safe.
- Unix protocols become MP safe.
- Allows protocol processing interrupts to safely block on locks.
- Fixes a number of race conditions.
With much feedback from matt@ and plunky@.
to _ro_rt. Use rtcache_getrt() to access a route cache's struct
rtentry *.
Introduce struct ifnet->if_dl that always points at the interface
identifier/link-layer address. Make code that treated the first
ifaddr on struct ifnet->if_addrlist as the interface address use
if_dl, instead.
Remove stale debugging code from net/route.c. Move the rtflush()
code into rtcache_clear() and delete rtflush(). Delete rtalloc(),
because nothing uses it any more.
Make ND6_HINT an inline, lowercase subroutine, nd6_hint.
I've done my best to convert IP Filter, the ISO stack, and the
AppleTalk stack to rtcache_getrt(). They compile, but I have not
tested them. I have given the changes to PF, GRE, IPv4 and IPv6
stacks a lot of exercise.
and dom_sa_len members from struct domain. Pools of fixed-size
objects are too rigid for sockaddr_dls, whose size can vary over
a wide range.
Return sockaddr_dl to its "historical" size. Now that I'm using
malloc(9) instead of pool(9) to allocate sockaddr_dl, I can create
a sockaddr_dl of any size in the kernel, so expanding sockaddr_dl
is useless.
Avoid using sizeof(struct sockaddr_dl) in the kernel.
Introduce sockaddr_dl_alloc() for allocating & initializing an
arbitrary sockaddr_dl on the heap.
Add an argument, the sockaddr length, to sockaddr_alloc(),
sockaddr_copy(), and sockaddr_dl_setaddr().
Constify: LLADDR() -> CLLADDR().
Where the kernel overwrites LLADDR(), use sockaddr_dl_setaddr(),
instead. Used properly, sockaddr_dl_setaddr() will not overrun
the end of the sockaddr.
identify sockaddr_dl abuse that remains in the kernel, especially
the potential for overwriting memory past the end of a sockaddr_dl
with, e.g., memcpy(LLADDR(), ...).
Use sockaddr_dl_setaddr() in a few places.
avoid an indirect function call by comparing the family, length,
and bytes [dom->dom_sa_cmpofs, dom->dom_sa_cmpofs + dom->dom_sa_cmplen),
corresponding to the the sockaddrs' "address" members.
For ISO, actually use sockaddr_iso_cmp, for a change. Thanks to
yamt@ for pointing out my error.
route_in6, struct route_iso), replacing all caches with a struct
route.
The principle benefit of this change is that all of the protocol
families can benefit from route cache-invalidation, which is
necessary for correct routing. Route-cache invalidation fixes an
ancient PR, kern/3508, at long last; it fixes various other PRs,
also.
Discussions with and ideas from Joerg Sonnenberger influenced this
work tremendously. Of course, all design oversights and bugs are
mine.
DETAILS
1 I added to each address family a pool of sockaddrs. I have
introduced routines for allocating, copying, and duplicating,
and freeing sockaddrs:
struct sockaddr *sockaddr_alloc(sa_family_t af, int flags);
struct sockaddr *sockaddr_copy(struct sockaddr *dst,
const struct sockaddr *src);
struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags);
void sockaddr_free(struct sockaddr *sa);
sockaddr_alloc() returns either a sockaddr from the pool belonging
to the specified family, or NULL if the pool is exhausted. The
returned sockaddr has the right size for that family; sa_family
and sa_len fields are initialized to the family and sockaddr
length---e.g., sa_family = AF_INET and sa_len = sizeof(struct
sockaddr_in). sockaddr_free() puts the given sockaddr back into
its family's pool.
sockaddr_dup() and sockaddr_copy() work analogously to strdup()
and strcpy(), respectively. sockaddr_copy() KASSERTs that the
family of the destination and source sockaddrs are alike.
The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is
passed directly to pool_get(9).
2 I added routines for initializing sockaddrs in each address
family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(),
etc. They are fairly self-explanatory.
3 structs route_in6 and route_iso are no more. All protocol families
use struct route. I have changed the route cache, 'struct route',
so that it does not contain storage space for a sockaddr. Instead,
struct route points to a sockaddr coming from the pool the sockaddr
belongs to. I added a new method to struct route, rtcache_setdst(),
for setting the cache destination:
int rtcache_setdst(struct route *, const struct sockaddr *);
rtcache_setdst() returns 0 on success, or ENOMEM if no memory is
available to create the sockaddr storage.
It is now possible for rtcache_getdst() to return NULL if, say,
rtcache_setdst() failed. I check the return value for NULL
everywhere in the kernel.
4 Each routing domain (struct domain) has a list of live route
caches, dom_rtcache. rtflushall(sa_family_t af) looks up the
domain indicated by 'af', walks the domain's list of route caches
and invalidates each one.
parentheses in return statements.
Cosmetic: don't open-code TAILQ_FOREACH().
Cosmetic: change types of variables to avoid oodles of casts: in
in6_src.c, avoid casts by changing several route_in6 pointers
to struct route pointers. Remove unnecessary casts to caddr_t
elsewhere.
Pave the way for eliminating address family-specific route caches:
soon, struct route will not embed a sockaddr, but it will hold
a reference to an external sockaddr, instead. We will set the
destination sockaddr using rtcache_setdst(). (I created a stub
for it, but it isn't used anywhere, yet.) rtcache_free() will
free the sockaddr. I have extracted from rtcache_free() a helper
subroutine, rtcache_clear(). rtcache_clear() will "forget" a
cached route, but it will not forget the destination by releasing
the sockaddr. I use rtcache_clear() instead of rtcache_free()
in rtcache_update(), because rtcache_update() is not supposed
to forget the destination.
Constify:
1 Introduce const accessor for route->ro_dst, rtcache_getdst().
2 Constify the 'dst' argument to ifnet->if_output(). This
led me to constify a lot of code called by output routines.
3 Constify the sockaddr argument to protosw->pr_ctlinput. This
led me to constify a lot of code called by ctlinput routines.
4 Introduce const macros for converting from a generic sockaddr
to family-specific sockaddrs, e.g., sockaddr_in: satocsin6,
satocsin, et cetera.
rtcache_init and rtcache_init_noclone lookup ro_dst and store
the result in ro_rt, taking care of the reference counting and
calling the domain specific route cache.
rtcache_free checks if a route was cashed and frees the reference.
rtcache_copy copies ro_dst of the given struct route, checking that
enough space is available and incrementing the reference count of the
cached rtentry if necessary.
rtcache_check validates that the cached route is still up. If it isn't,
it tries to look it up again. Afterwards ro_rt is either a valid again
or NULL.
rtcache_copy is used internally.
Adjust to callers of rtalloc/rtflush in the tree to check the sanity of
ro_dst first (if necessary). If it doesn't fit the expectations, free
the cache, otherwise check if the cached route is still valid. After
that combination, a single check for ro_rt == NULL is enough to decide
whether a new lookup needs to be done with a different ro_dst.
Make the route checking in gre stricter by repeating the loop check
after revalidation.
Remove some unused RADIX_MPATH code in in6_src.c. The logic is slightly
changed here to first validate the route and check RTF_GATEWAY
afterwards. This is sementically equivalent though.
etherip doesn't need sc_route_expire similiar to the gif changes from
dyoung@ earlier.
Based on the earlier patch from dyoung@, reviewed and discussed with
him.
routing caused by stale route caches (struct route). Route caches
are sprinkled throughout PCBs, the IP fast-forwarding table, and
IP tunnel interfaces (gre, gif, stf).
Stale IPv6 and ISO route caches will be treated by separate patches.
Thank you to Christoph Badura for suggesting the general approach
to invalidating route caches that I take here.
Here are the details:
Add hooks to struct domain for tracking and for invalidating each
domain's route caches: dom_rtcache, dom_rtflush, and dom_rtflushall.
Introduce helper subroutines, rtflush(ro) for invalidating a route
cache, rtflushall(family) for invalidating all route caches in a
routing domain, and rtcache(ro) for notifying the domain of a new
cached route.
Chain together all IPv4 route caches where ro_rt != NULL. Provide
in_rtcache() for adding a route to the chain. Provide in_rtflush()
and in_rtflushall() for invalidating IPv4 route caches. In
in_rtflush(), set ro_rt to NULL, and remove the route from the
chain. In in_rtflushall(), walk the chain and remove every route
cache.
In rtrequest1(), call rtflushall() to invalidate route caches when
a route is added.
In gif(4), discard the workaround for stale caches that involves
expiring them every so often.
Replace the pattern 'RTFREE(ro->ro_rt); ro->ro_rt = NULL;' with a
call to rtflush(ro).
Update ipflow_fastforward() and all other users of route caches so
that they expect a cached route, ro->ro_rt, to turn to NULL.
Take care when moving a 'struct route' to rtflush() the source and
to rtcache() the destination.
In domain initializers, use .dom_xxx tags.
KNF here and there.
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html