This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
* struct sigacts gets a new sigact_sigdesc structure, which has the
sigaction and the trampoline/version. Version 0 means "legacy kernel
provided trampoline". Other versions are coordinated with machine-
dependent code in libc.
* sigaction1() grows two more arguments -- the trampoline pointer and
the trampoline version.
* A new __sigaction_sigtramp() system call is provided to register a
trampoline along with a signal handler.
* The handler is no longer passed to sensig() functions. Instead,
sendsig() looks up the handler by peeking in the sigacts for the
process getting the signal (since it has to look in there for the
trampoline anyway).
* Native sendsig() functions now select the appropriate trampoline and
its arguments based on the trampoline version in the sigacts.
Changes to libc to use the new facility will be checked in later. Kernel
version not bumped; we will ride the 1.6C bump made recently.
between creation of a file descriptor and close(2) when using kernel
assisted threads. What we do is stick descriptors in the table, but
mark them as "larval". This causes essentially everything to treat
it as a non-existent descriptor, except for fdalloc(), which sees a
filled slot so that it won't (incorrectly) allocate it again. When
a descriptor is fully constructed, the code that has constructed it
marks it as "mature" (which actually clears the "larval" flag), and
things continue to work as normal.
While here, gather all the code that gets a descriptor from the table
into a fd_getfile() function, and call it, rather than having the
same (sometimes incorrect) code copied all over the place.
*_emul_path variables
change macros CHECK_ALT_{CREAT|EXIST} to use that, 'root' doesn't need
to be passed explicitly any more and *_CHECK_ALT_{CREAT|EXIST} are removed
change explicit emul_find() calls in probe functions to get the emulation
path from the checked exec switch entry's emulation
remove no longer needed header files
add e_flags and e_syscall to struct emul; these are unsed and empty for now
* Remove the casts to vaddr_t from the round_page() and trunc_page() macros to
make them type-generic, which is necessary i.e. to operate on file offsets
without truncating them.
* In due course, cast pointer arguments to these macros to an appropriate
integral type (paddr_t, vaddr_t).
Originally done by Chuck Silvers, updated by myself.
count is 0, wait for use count to drain before finishing the close.
This is necessary in order for multiple processes to safely share file
descriptor tables.
the individual emulated readdirs must check.
Since netbsd and freebsd return EINVAL for the error
and I don't know what the other platforms do, return
EINVAL for them too.
in 32 bits. Provide an error message to the user, and return EINVAL.
Also, pay attention to the EOF flag from VOP_READDIR. Correct a
misspell in a panic message.
directory and running out of space in the dest buffer, off should point to the
current entry (which was not saved) and not to the next.
I discovered this bug using linux and SunOS emulation over NFS, but seems to
affect other emulations as well.