- Add a few scopes to the kernel: system, network, and machdep.
- Add a few more actions/sub-actions (requests), and start using them as
opposed to the KAUTH_GENERIC_ISSUSER place-holders.
- Introduce a basic set of listeners that implement our "traditional"
security model, called "bsd44". This is the default (and only) model we
have at the moment.
- Update all relevant documentation.
- Add some code and docs to help folks who want to actually use this stuff:
* There's a sample overlay model, sitting on-top of "bsd44", for
fast experimenting with tweaking just a subset of an existing model.
This is pretty cool because it's *really* straightforward to do stuff
you had to use ugly hacks for until now...
* And of course, documentation describing how to do the above for quick
reference, including code samples.
All of these changes were tested for regressions using a Python-based
testsuite that will be (I hope) available soon via pkgsrc. Information
about the tests, and how to write new ones, can be found on:
http://kauth.linbsd.org/kauthwiki
NOTE FOR DEVELOPERS: *PLEASE* don't add any code that does any of the
following:
- Uses a KAUTH_GENERIC_ISSUSER kauth(9) request,
- Checks 'securelevel' directly,
- Checks a uid/gid directly.
(or if you feel you have to, contact me first)
This is still work in progress; It's far from being done, but now it'll
be a lot easier.
Relevant mailing list threads:
http://mail-index.netbsd.org/tech-security/2006/01/25/0011.htmlhttp://mail-index.netbsd.org/tech-security/2006/03/24/0001.htmlhttp://mail-index.netbsd.org/tech-security/2006/04/18/0000.htmlhttp://mail-index.netbsd.org/tech-security/2006/05/15/0000.htmlhttp://mail-index.netbsd.org/tech-security/2006/08/01/0000.htmlhttp://mail-index.netbsd.org/tech-security/2006/08/25/0000.html
Many thanks to YAMAMOTO Takashi, Matt Thomas, and Christos Zoulas for help
stablizing kauth(9).
Full credit for the regression tests, making sure these changes didn't break
anything, goes to Matt Fleming and Jaime Fournier.
Happy birthday Randi! :)
- only set at boot
- only tracking delta of set-time operations
-> will keep boottime stable across ACPI sleeps
uptime(1) will report the time since last boot
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
discussed in the PR.
- introduce sys/timevar.h to hold kernel-specific stuff relevant to
sys/time.h. Ideally, timevar.h would contain all (or almost) of the
#ifdef _KERNEL part of time.h, but that's a pretty big and tedious
change to make. For now, it will contain only the prototypes I
introduced when working on COMPAT_NETBSD32.
- split copyinout_t into copyin_t and copyout_t, it makes prototypes more
explicit about the meaning of a given argument. Suggested by yamt@.
- move copyinout_t definition in sys/time.h to systm.h as copyin_t and
copyout_t
- make everything uses the new types and include the proper headers at
the proper places.
since both pool_get() and pool_put() can call wakeup().
instead, allocate the struct sadata_upcall before taking
sched_lock in mi_switch() and free it after releasing sched_lock.
clean up some modularity warts by adding a callback to
struct sadata_upcall for freeing sa_arg.
- Remove all NFS related stuff from file system specific code.
- Drop the vfs_checkexp hook and generalize it in the new nfs_check_export
function, thus removing redundancy from all file systems.
- Move all NFS export-related stuff from kern/vfs_subr.c to the new
file sys/nfs/nfs_export.c. The former was becoming large and its code
is always compiled, regardless of the build options. Using the latter,
the code is only compiled in when NFSSERVER is enabled. While doing this,
also make some functions in nfs_subs.c conditional to NFSSERVER.
- Add a new command in nfssvc(2), called NFSSVC_SETEXPORTSLIST, that takes a
path and a set of export entries. At the moment it can only clear the
exports list or append entries, one by one, but it is done in a way that
allows setting the whole set of entries atomically in the future (see the
comment in mountd_set_exports_list or in doc/TODO).
- Change mountd(8) to use the nfssvc(2) system call instead of mount(2) so
that it becomes file system agnostic. In fact, all this whole thing was
done to remove a 'XXX' block from this utility!
- Change the mount*, newfs and fsck* userland utilities to not deal with NFS
exports initialization; done internally by the kernel when initializing
the NFS support for each file system.
- Implement an interface for VFS (called VFS hooks) so that several kernel
subsystems can run arbitrary code upon receipt of specific VFS events.
At the moment, this only provides support for unmount and is used to
destroy NFS exports lists from the file systems being unmounted, though it
has room for extension.
Thanks go to yamt@, chs@, thorpej@, wrstuden@ and others for their comments
and advice in the development of this patch.
can be easily used by netbsd32 code.
XXX Meanwhile, introduce a copyinout_t type that matches the prototype of
XXX copyin(9) and copyout(9). Its logical place would be in systm.h, near
XXX the definition of copyin, but, well, see the comment.
relevant code with the COMPAT_NETBSD32 version, and make the latter use
the new functions.
This fixes netbsd32_setitimer() which had drifted from the native syscall
and did not work properly anymore.
do not leak siginfo structures.
Note that in the cases of trap signals and timer events, losing this
information could be very bad; right now it will cause us to spin until the
process is SIGKILLed.
"Needs work."
do { ... } while(/*CONSTCOND*/0)
so that they can be used unadorned in if/else blocks, etc. This means
that you now *have* to put a ; at the end of the "call" to these
macros.
further deprecate struct timezone usage by changing `tzp' argument to
gettimeofday() to void *; align utimes(2) declaration by changing `times`
argument from struct timeval * to struct timeval[2]. From Murray
Armfield in PR standards/25331.
In due curse, reflect these changes in futimes(2), lutimes(2), and
settimeofday(2).
- move per VP data into struct sadata_vp referenced from l->l_savp
* VP id
* lock on VP data
* LWP on VP
* recently blocked LWP on VP
* queue of LWPs woken which ran on this VP before sleep
* faultaddr
* LWP cache for upcalls
* upcall queue
- add current concurrency and requested concurrency variables
- make process exit run LWP on all VPs
- make signal delivery consider all VPs
- make timer events consider all VPs
- add sa_newsavp to allocate new sadata_vp structure
- add sa_increaseconcurrency to prepare new VP
- make sys_sa_setconcurrency request new VP or wakeup idle VP
- make sa_yield lower current concurrency
- set sa_cpu = VP id in upcalls
- maintain cached LWPs per VP
an offset between ss_sp and struct sa_stackinfo_t (located in struct
__pthread_st) when calling sa_register. The kernel increments the
sast_gen counter in struct sastack when an upcall stack is used.
libpthread increments the sasi_stackgen counter in struct
sa_stackinfo_t when an upcall stack is freed. The kernel compares the
two counters to decide if a stack is free or in use.
- add struct sa_stackinfo_t with sasi_stackgen to count stack use in
userland
- add sast_gen to struct sastack to count stack use in kernel
- add SA_FLAG_STACKINFO to enable the stackinfo_offset argument in the
sa_register syscall
- add sa_stackinfo_offset to struct sadata for offset between ss_sp
and struct sa_stackinfo_t
- add ssize_t stackinfo_offset argument to sa_register, initialize
struct sadata's sa_stackinfo_offset from it if SA_FLAG_STACKINFO is
set
- add sa_getstack, sa_getstack0, sa_stackused and sa_setstackfree
functions to find/use/free upcall stacks and use these where
appropriate
- don't record stack for upcall in sa_upcall0
- pass sau to sa_switchcall instead of l2 (l2 = curlwp in sa_switchcall)
- add sa_vp_blocker to struct sadata to pass recently blocked lwp to
sa_switchcall
- delay finding a stack for blocked upcalls to sa_switchcall
- add sa_stacknext to struct sadata pointing to next most likely free
upcall stack; also g/c sa_stackslist in struct sadata and sast_list
in struct sastack
- add L_SA_WOKEN flag: LWP is on sa_woken queue
- add L_SA_RECYCLE flag: LWP should be recycled in sa_setwoken
- replace l_upcallstack with L_SA_WOKEN/L_SA_RECYCLE/L_SA_BLOCKING
flags
- g/c now unused sast_blocker in struct sastack
- make sa_switchcall, sa_upcall0 and sa_upcall_getstate static in
kern_sa.c
- call sa_upcall_userret only once in userret
- split sa_makeupcalls out of sa_upcall_userret and use to process
the sa_upcalls queue
- on process exit: mark LWPs sleeping in saunblock interruptible; also
there are no LWPs sleeping on l->l_upcallstack anymore; also clear
sa_wokenq_head to prevent unblocked upcalls
additional changes:
- cleanup timerupcall sa_vp == curlwp check
- add check in sa_yield if we didn't block on our way here and we
wouldn't any longer be the LWP on the VP
- invalidate sa_vp_ofaultaddr after resolving pagefault
copyin() or copyout().
uvm_useracc() tells us whether the mapping permissions allow access to
the desired part of an address space, and many callers assume that
this is the same as knowing whether an attempt to access that part of
the address space will succeed. however, access to user space can
fail for reasons other than insufficient permission, most notably that
paging in any non-resident data can fail due to i/o errors. most of
the callers of uvm_useracc() make the above incorrect assumption. the
rest are all misguided optimizations, which optimize for the case
where an operation will fail. we'd rather optimize for operations
succeeding, in which case we should just attempt the access and handle
failures due to insufficient permissions the same way we handle i/o
errors. since there appear to be no good uses of uvm_useracc(), we'll
just remove it.
General idea: only consider the LWP on the VP for signal delivery, all
other LWPs are either asleep or running from waking up until repossessing
the VP.
- in kern_sig.c:kpsignal2: handle all states the LWP on the VP can be in
- in kern_sig.c:proc_stop: only try to stop the LWP on the VP. All other
LWPs will suspend in sa_vp_repossess() until the VP-LWP donates the VP.
Restore original behaviour (before SA-specific hacks were added) for
non-SA processes.
- in kern_sig.c:proc_unstop: only return the LWP on the VP
- handle sa_yield as case 0 in sa_switch instead of clearing L_SA, add an
L_SA_YIELD flag
- replace sa_idle by L_SA_IDLE flag since it was either NULL or == sa_vp
Also don't output itimerfire overrun warning if the process is already
exiting.
Also g/c sa_woken because it's not used.
Also g/c some #if 0 code.
Right now the only flag is used to indicate if a ksiginfo_t is a
result of a trap. Add a predicate macro to test for this flag.
* Add initialization macros for ksiginfo_t's.
* Add accssor macro for ksi_trap. Expands to 0 if the ksiginfo_t was
not the result of a trap. This matches the sigcontext trapcode semantics.
* In kpsendsig(), use KSI_TRAP_P() to select the lwp that gets the signal.
Inspired by Matthias Drochner's fix to kpsendsig(), but correctly handles
the case of non-trap-generated signals that have a > 0 si_code.
This patch fixes a signal delivery problem with threaded programs noted by
Matthias Drochner on tech-kern.
As discussed on tech-kern. Reviewed and OK's by Christos.