percpu(9) has a certain memory storage for each CPU and provides it by the piece
to users. If the storages went short, percpu(9) enlarges them by allocating new
larger memory areas, replacing old ones with them and destroying the old ones.
A percpu storage referenced by a pointer gotten via percpu_getref can be
destroyed by the mechanism after a running thread sleeps even if percpu_putref
has not been called.
Using rtcache, i.e., packet processing, typically involves sleepable operations
such as rwlock so we must avoid dereferencing a rtcache that is directly stored
in a percpu storage during packet processing. Address this situation by having
just a pointer to a rtcache in a percpu storage instead.
Reviewed by knakahara@ and yamaguchi@
Use this when we notify userland of a duplicate address
and set RTA_AUTHOR to the hardware address of the sender.
While here, match the logging diagnostic of INET6 to the simpler one
of INET so it's consistent.
tree. Otherwise a 5.2 version of getifaddrs(2) gets errors.
This makes the 5.2 version of ifconfig(8) behave the same on both
NetBSD-8 and -current. HOWEVER, both of them print nothing (for
``ifconfig -l'' command) so there's still a bug somewhere.
As reported originally by der Mouse.
Some callers of rtrequest1(RTM_ADD) adjust rt_ifa of an rtentry created by
rtrequest1 that may change rt_ifa (in ifa_rtrequest) with another ifa that is
different from requested one. It's wasteful and even worse introduces a race
condition. rtrequest1 should just use a passed ifa as is if a caller hopes so.
This change sweeps remaining lock decisions based on if locked or not by moving
utility functions of rtentry updates from rtsock.c and ensuring holding the
rt_lock. It also improves the atomicity of a update of a rtentry.
The change introduces a global generation counter that is incremented when any
routes have been added or deleted. When a rtcache caches a rtentry into itself,
it also stores a snapshot of the generation counter. If the snapshot equals to
the global counter, the cache is still valid, otherwise invalidated.
One drawback of the change is that all rtcaches of all protocol families are
invalidated when any routes of any protocol families are added or deleted.
If that matters, we should have separate generation counters based on
protocol families.
This change removes LIST_ENTRY from struct route, which fixes a part of
PR kern/52515.
un-wanted route(4) messages.
Inspired by the ROUTE_MSGFILTER equivalent in OpenBSD,
but with an API which allows the full range of potential message types.
See the following descriptions for details.
Proposed on tech-kern and tech-net
Overview
--------
We protect the routing table with a rwock and protect
rtcaches with another rwlock. Each rtentry is protected
from being freed or updated via reference counting and psref.
Global rwlocks
--------------
There are two rwlocks; one for the routing table (rt_lock) and
the other for rtcaches (rtcache_lock). rtcache_lock covers
all existing rtcaches; there may have room for optimizations
(future work).
The locking order is rtcache_lock first and rt_lock is next.
rtentry references
------------------
References to an rtentry is managed with reference counting
and psref. Either of the two mechanisms is used depending on
where a rtentry is obtained. Reference counting is used when
we obtain a rtentry from the routing table directly via
rtalloc1 and rtrequest{,1} while psref is used when we obtain
a rtentry from a rtcache via rtcache_* APIs. In both cases,
a caller can sleep/block with holding an obtained rtentry.
The reasons why we use two different mechanisms are (i) only
using reference counting hurts the performance due to atomic
instructions (rtcache case) (ii) ease of implementation;
applying psref to APIs such rtaloc1 and rtrequest{,1} requires
additional works (adding a local variable and an argument).
We will finally migrate to use only psref but we can do it
when we have a lockless routing table alternative.
Reference counting for rtentry
------------------------------
rt_refcnt now doesn't count permanent references such as for
rt_timers and rtcaches, instead it is used only for temporal
references when obtaining a rtentry via rtalloc1 and rtrequest{,1}.
We can do so because destroying a rtentry always involves
removing references of rt_timers and rtcaches to the rtentry
and we don't need to track such references. This also makes
it easy to wait for readers to release references on deleting
or updating a rtentry, i.e., we can simply wait until the
reference counter is 0 or 1. (If there are permanent references
the counter can be arbitrary.)
rt_ref increments a reference counter of a rtentry and rt_unref
decrements it. rt_ref is called inside APIs (rtalloc1 and
rtrequest{,1} so users don't need to care about it while
users must call rt_unref to an obtained rtentry after using it.
rtfree is removed and we use rt_unref and rt_free instead.
rt_unref now just decrements the counter of a given rtentry
and rt_free just tries to destroy a given rtentry.
See the next section for destructions of rtentries by rt_free.
Destructions of rtentries
-------------------------
We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE);
the original implementation can destroy in any rtfree where it's
the last reference. If we use reference counting or psref, it's
easy to understand if the place that a rtentry is destroyed is
fixed.
rt_free waits for references to a given rtentry to be released
before actually destroying the rtentry. rt_free uses a condition
variable (cv_wait) (and psref_target_destroy for psref) to wait.
Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint
that we cannot use cv_wait. In that case, we have to defer the
destruction to a workqueue.
rtentry#rt_cv, rtentry#rt_psref and global variables
(see rt_free_global) are added to conduct the procedure.
Updates of rtentries
--------------------
One difficulty to use refcnt/psref instead of rwlock for rtentry
is updates of rtentries. We need an additional mechanism to
prevent readers from seeing inconsistency of a rtentry being
updated.
We introduce RTF_UPDATING flag to rtentries that are updating.
While the flag is set to a rtentry, users cannot acquire the
rtentry. By doing so, we avoid users to see inconsistent
rtentries.
There are two options when a user tries to acquire a rtentry
with the RTF_UPDATING flag; if a user runs in softint context
the user fails to acquire a rtentry (NULL is returned).
Otherwise a user waits until the update completes by waiting
on cv.
The procedure of a updater is simpler to destruction of
a rtentry. Wait on cv (and psref) and after all readers left,
proceed with the update.
Global variables (see rt_update_global) are added to conduct
the procedure.
Currently we apply the mechanism to only RTM_CHANGE in
rtsock.c. We would have to apply other codes. See
"Known issues" section.
psref for rtentry
-----------------
When we obtain a rtentry from a rtcache via rtcache_* APIs,
psref is used to reference to the rtentry.
rtcache_ref acquires a reference to a rtentry with psref
and rtcache_unref releases the reference after using it.
rtcache_ref is called inside rtcache_* APIs and users don't
need to take care of it while users must call rtcache_unref
to release the reference.
struct psref and int bound that is needed for psref is
embedded into struct route. By doing so we don't need to
add local variables and additional argument to APIs.
However this adds another constraint to psref other than
reference counting one's; holding a reference of an rtentry
via a rtcache is allowed by just one caller at the same time.
So we must not acquire a rtentry via a rtcache twice and
avoid a recursive use of a rtcache. And also a rtcache must
be arranged to be used by a LWP/softint at the same time
somehow. For IP forwarding case, we have per-CPU rtcaches
used in softint so the constraint is guaranteed. For a h
rtcache of a PCB case, the constraint is guaranteed by the
solock of each PCB. Any other cases (pf, ipf, stf and ipsec)
are currently guaranteed by only the existence of the global
locks (softnet_lock and/or KERNEL_LOCK). If we've found the
cases that we cannot guarantee the constraint, we would need
to introduce other rtcache APIs that use simple reference
counting.
psref of rtcache is created with IPL_SOFTNET and so rtcache
shouldn't used at an IPL higher than IPL_SOFTNET.
Note that rtcache_free is used to invalidate a given rtcache.
We don't need another care by my change; just keep them as
they are.
Performance impact
------------------
When NET_MPSAFE is disabled the performance drop is 3% while
when it's enabled the drop is increased to 11%. The difference
comes from that currently we don't take any global locks and
don't use psref if NET_MPSAFE is disabled.
We can optimize the performance of the case of NET_MPSAFE
on by reducing lookups of rtcache that uses psref;
currently we do two lookups but we should be able to trim
one of two. This is a future work.
Known issues
------------
There are two known issues to be solved; one is that
a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit).
We need to prevent new references during the update. Or
we may be able to remove the code (perhaps, need more
investigations).
The other is rtredirect that updates a rtentry. We need
to apply our update mechanism, however it's not easy because
rtredirect is called in softint and we cannot apply our
mechanism simply. One solution is to defer rtredirect to
a workqueue but it requires some code restructuring.
In the MP-safe world, a rtentry stemming from a rtcache can be freed at any
points. So we need to protect rtentries somehow say by reference couting or
passive references. Regardless of the method, we need to call some release
function of a rtentry after using it.
The change adds a new function rtcache_unref to release a rtentry. At this
point, this function does nothing because for now we don't add a reference
to a rtentry when we get one from a rtcache. We will add something useful
in a further commit.
This change is a part of changes for MP-safe routing table. It is separated
to avoid one big change that makes difficult to debug by bisecting.
Some functions use rt_walktree to scan the routing table and delete
matched routes. However, we shouldn't use rt_walktree to delete
routes because rt_walktree is recursive to the routing table (radix
tree) and isn't friendly to MP-ification. rt_walktree allows a caller
to pass a callback function to delete an matched entry. The callback
function is called from an API of the radix tree (rn_walktree) but
also calls an API of the radix tree to delete an entry.
This change adds a new API of the radix tree, rn_search_matched,
which returns a matched entry that is selected by a callback
function passed by a caller and the caller itself deletes the
entry. By using the API, we can avoid the recursive form.
This change makes struct ifaddr and its variants (in_ifaddr and in6_ifaddr)
MP-safe by using pserialize and psref. At this moment, pserialize_perform
and psref_target_destroy are disabled because (1) we don't need them
because of softnet_lock (2) they cause a deadlock because of softnet_lock.
So we'll enable them when we remove softnet_lock in the future.
We no longer need to change rtentry below if_output.
The change makes it clear where rtentries are changed (or not)
and helps forthcoming locking (os psrefing) rtentries.
rt_gwroute of rtentry is a reference to a rtentry of the gateway
for a rtentry with RTF_GATEWAY. That was used by L2 (arp and ndp)
to look up L2 addresses. By separating L2 nexthop caches, we don't
need a route for the purpose and we can stop using rt_gwroute.
By doing so, we can reduce referencing and modifying rtentries,
which makes it easy to apply a lock (and/or psref) to the
routing table and rtentries.
One issue to do this is to keep RTF_REJECT behavior. It seems it
was broken when we moved rtalloc1 things from L2 output routines
(e.g., ether_output) to ip_hresolv_output, but (fortunately?)
it works unexpectedly. What we mistook are:
- RTF_REJECT was checked for any routes in L2 output routines,
but in ip_hresolv_output it is checked only when the route
is RTF_GATEWAY
- The RTF_REJECT check wasn't copied to IPv6 (nd6_output)
It seems that rt_gwroute checks hid the mistakes and it looked
work (unexpectedly) and removing rt_gwroute checks unveil the
issue. So we need to fix RTF_REJECT checks in ip_hresolv_output
and also add them to nd6_output.
One more point we have to care is returning an errno; we need
to mimic looutput behavior. Originally RTF_REJECT check was
done either in L2 output routines or in looutput. The latter is
applied when a reject route directs to a loopback interface.
However, now RTF_REJECT check is done before looutput so to keep
the original behavior we need to return an errno which looutput
chooses. Added rt_check_reject_route does such tweaks.
By this change, nexthop caches (IP-MAC address pair) are not stored
in the routing table anymore. Instead nexthop caches are stored in
each network interface; we already have lltable/llentry data structure
for this purpose. This change also obsoletes the concept of cloning/cloned
routes. Cloned routes no longer exist while cloning routes still exist
with renamed to connected routes.
Noticeable changes are:
- Nexthop caches aren't listed in route show/netstat -r
- sysctl(NET_RT_DUMP) doesn't return them
- If RTF_LLDATA is specified, it returns nexthop caches
- Several definitions of routing flags and messages are removed
- RTF_CLONING, RTF_XRESOLVE, RTF_LLINFO, RTF_CLONED and RTM_RESOLVE
- RTF_CONNECTED is added
- It has the same value of RTF_CLONING for backward compatibility
- route's -xresolve, -[no]cloned and -llinfo options are removed
- -[no]cloning remains because it seems there are users
- -[no]connected is introduced and recommended
to be used instead of -[no]cloning
- route show/netstat -r drops some flags
- 'L' and 'c' are not seen anymore
- 'C' now indicates a connected route
- Gateway value of a route of an interface address is now not
a L2 address but "link#N" like a connected (cloning) route
- Proxy ARP: "arp -s ... pub" doesn't create a route
You can know details of behavior changes by seeing diffs under tests/.
Proposed on tech-net and tech-kern:
http://mail-index.netbsd.org/tech-net/2016/03/11/msg005701.html
rt_refcnt of rtentry was used in bad manners, for example, direct rt_refcnt++
and rt_refcnt-- outside route.c, "rt->rt_refcnt++; rtfree(rt);" idiom, and
touching rt after rt->rt_refcnt--.
These abuses seem to be needed because rt_refcnt manages only references
between rtentry and doesn't take care of references during packet processing
(IOW references from local variables). In order to reduce the above abuses,
the latter cases should be counted by rt_refcnt as well as the former cases.
This change improves consistency of use of rt_refcnt:
- rtentry is always accessed with rt_refcnt incremented
- rtentry's rt_refcnt is decremented after use (rtfree is always used instead
of rt_refcnt--)
- functions returning rtentry increment its rt_refcnt (and caller rtfree it)
Note that rt_refcnt prevents rtentry from being freed but doesn't prevent
rtentry from being updated. Toward MP-safe, we need to provide another
protection for rtentry, e.g., locks. (Or introduce a better data structure
allowing concurrent readers during updates.)
they are created on the fly. This makes it clear what the route is for
and allows an optimisation in ip_output() by avoiding a call to
in_broadcast() because most of the time we do talk to a host.
It also avoids a needless allocation for the storage of llinfo_arp and
thus vanishes from arp(8) - it showed as incomplete anyway so this
is a nice side effect.
Guard against this and routes marked with RTF_BLACKHOLE in
ip_fastforward().
While here, guard against routes marked with RTF_BLACKHOLE in
ip6_fastforward().
RTF_BROADCAST is IPv4 only, so don't bother checking that here.
Add functions rt_ifa_addlocal() and rt_ifa_remlocal() to add and remove
local routes for the address and announce the new address and route
to the routing socket.
Add in_ifaddlocal() and in_ifremlocal() to use these functions.
Rename in6_if{add,rem}loop() to in6_if{add,rem}local() and use these
functions.
rtinit() no longer announces the address, just the network route for the
address. As such, calls to rt_newaddrmsg() have been removed from
in_addprefix() and in_scrubprefix().
This solves the problem of potentially more than one announcement, or no
announcement at all for the address in certain situations.
RTF_ANNOUNCE was defined as RTF_PROTO2. The flag is used to indicated
that host should act as a proxy for a link level arp or ndp request.
(If RTF_PROTO2 is used as an experimental flag (as advertised),
various problems can occur.)
This commit provides a first-class definition with its own bit for
RTF_ANNOUNCE, removes the old aliasing definitions, and adds support
for the new RTF_ANNOUNCE flag to netstat(8) and route(8).,
Also, remove unused RTF_ flags that collide with RTF_PROTO1:
netinet/icmp6.h defined RTF_PROBEMTU as RTF_PROTO1
netinet/if_inarp.h defined RTF_USETRAILERS as RTF_PROTO1
(Neither of these flags are used anywhere. Both have been removed
to reduce chances of collision with RTF_PROTO1.)
Figuring this out and the diff are the work of Beverly Schwartz of
BBN.
(Passed release build, boot in VM, with no apparently related atf
failures.)
Approved for Public Release, Distribution Unlimited
This material is based upon work supported by the Defense Advanced
Research Projects Agency and Space and Naval Warfare Systems Center,
Pacific, under Contract No. N66001-09-C-2073.
will have an easier time replacing it with something different, even if
it is a second radix-trie implementation.
sys/net/route.c and sys/net/rtsock.c no longer operate directly on
radix_nodes or radix_node_heads.
Hopefully this will reduce the temptation to implement multipath or
source-based routing using grotty hacks to the grotty old radix-trie
code, too. :-)