int's to unsigned int/u_int where they shouldn't go negative.
int's to boolean_t's where they're being used as bools.
No real functional change (in the produced asm a few condition codes changed)
* Define an ARM_INTR_IMPL option, which specifies a header file
describing the interrupt implementation for the platform. Use
this instead of the list of EVBARM_BOARDTYPE checks.
* Make the s3c2xx0 interrupt dispatch code a bit more generic, and move
it to a generic location so that other platforms can use it.
This eliminates all uses of the EVBARM_BOARDTYPE stuff, so delete it.
backed by physical pages (ie. because it reused a previously-freed one),
so that we can skip a bunch of useless work in that case.
this fixes the underlying problem behind PR 18543, and also speeds up fork()
quite a bit (eg. 7% on my pc, 1% on my ultra2) when we get a cache hit.
when looking to reenable caching, only do so if all the pages aren't already
cached.
Convert some ints to unsigned int. (scarily this actually shows the biggest
decrease in timing for my benchmark, I guess the compiler can optimise better)
Use pmap_free_pvs in pmap_remove, should save on the overhead of freeing
each pv on it's own.
Correctly set ptp when calling pmap_enter_pv, this adds more overhead, but
the effect is minimal. Timings show that it increases gmake's make configure
step from 2:07.90 to 2:08.90. I've more optimisations planned that should
negate this increase.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
In particular, use r8 to hold the old process, and r7 for medium-term
scratch, saving r0-r3 for things we don't need saved over function
calls. This gets rid of five register-to-register MOVs.
and hence save fewer into the PCB. This should give me enough free
registers in cpu_switch to tidy things up and support MULTIPROCESSOR
properly. While we're here, make the stacked registers into an
APCS stack frame, so that DDB backtraces through cpu_switch() will
work.
This also affects cpu_fork(), which has to fabricate a switchframe and
PCB for the new process.
GCC produces almost exactly the same instructions as the hand-assembled
versions, albeit in a different order. It even found one place where it
could shave one off. Its insistence on creating a stack frame might slow
things down marginally, but not, I think, enough to matter.
add rd, pc, #foo - . - 8 -> adr rd, foo
ldr rd, [pc, #foo - . - 8] -> ldr rd, foo
Also, when saving the return address for a function pointer call, use
"mov lr, pc" just before the call unless the return address is somewhere
other than just after the call site.
Finally, a few obvious little micro-optimisations like using LDR directly
rather than ADR followed by LDR, and loading directly into PC rather than
bouncing via R0.
in question, whereas the ARM code was using it to hold the model
identification. To fix this, rename:
ci_cpuid -> ci_arm_cpuid
ci_cputype -> ci_arm_cputype (for consistency)
ci_cpurev -> ci_arm_cpurev (ditto)
ci_cpunum -> ci_cpuid
This makes top(1) give correct CPU numbers in its "STATE" column (all 0 for
now).
and boot multi-user on a single-processor machine. Many of these changes
are wildly inappropriate for actual multi-processor operation, and correcting
this will be my next task.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
the 4M super-section that the PTP will map, not some random 1M
chunk of it. This gives the PTP hint code a much better chance
to working properly, and allows us to tidy up the code that
flushes a PTP from the cache in pmap_destroy().
to do uncached memory access during VM operations (which can be
quite expensive on some CPUs).
We currently write-back PTEs as soon as they're modified; there is
some room for optimization (to write them back in larger chunks).
For PTEs in the APTE space (i.e. PTEs for pmaps that describe another
process's address space), PTEs must also be evicted from the cache
complete (PTEs in PTE space will be evicted durint a context switch).