was developed as part of Google's Summer of Code 2005 program. This
change adds the kernel code, the mount_tmpfs utility, a regression test
suite and does all other related changes to integrate these.
The file-system is still *experimental*. Therefore, it is disabled by
default in all kernels. However, as typically done, a commented-out
entry is added in them to ease its setup.
Note that I haven't commited the required mountd(8) changes to be able
to export tmpfs file-systems because NFS support is still very unstable
and because, before enabling it, I'd like to do some other changes.
OK'ed by my project mentor, William Studenmund (wrstuden@).
and install ${TOOLDIR}/bin/${MACHINE_GNU_PLATFORM}-disklabel,
${TOOLDIR}/bin/${MACHINE_GNU_PLATFORM}-fdisk by "reaching over" to
the sources in ${NETBSDSRCDIR}/sbin/{disklabel fdisk}/.
To avoid clashes with a build-host's header files, especially on
*BSD, the host-tools versions of fdisk and disklabel search for
#includes such as disklabel.h, disklabel_acorn.h, disklabel_gpt.h,
and bootinfo.h in a new #includes namespace, nbinclude/. That is,
they #include <nbinclude/sys/disklabel.h>, <nbinclude/machine/disklabel.h>,
<nbinclude/sparc64/disklabel.h>, instead of <sys/disklabel.h> and
such. I have also updated the system headers to #include from
nbinclude/-space when HAVE_NBTOOL_CONFIG_H is #defined.
-Wcast-qual differently, by instead changing the signatore of those
"functions" to take a "volatile struct timeval*" instead of a
"struct timeval*". Many places, these functions are called with
&time, and time is declared as volatile in <sys/kernel.h>. This
way we can get rid of all the ugly casts which now also triggered
warnings, and caused more code to be added to work around the
problem.
Reviewed by thorpej.
where the printing of `version' is already performed.
This has the benefit of allowing the copyright to be available
via dmesg(8) on platforms which need the `msgbuf' to be setup
in cpu_startup() before printed output is remembered.
All those kernels have a line for both tun and bridge, and if either is
commented out, tap is commented out also. With the exception of i386's
GENERIC_TINY.
XXX: we _need_ some way of making this more simple.
to all GENERIC-like kernel config files where SYSV* options were already
present (commented out if the SYSV* options are commented out).
Fix lib/25897 and lib/25898.
drivers that attach to it. This allows for other host interface chips
that use the same keyboards and mice, such as the ones in the ARM
IOMD20, ARM7500, and SA-1111. The PC-compatible driver is still
called pckbc(4), and the new abstraction layer is "pckbport", so the
child devices have moved from sys/dev/pckbc to sys/dev/pckbport, which
also contains some code shared between all host controllers. To avoid
incompatibility, pckbdreg.h is still installed in
/usr/include/dev/pckbc.
In theory, this shouldn't cause any behavioural changes in the drivers
concerned. Thy just use rather more function pointers than before. Tested
on i386 and (with a new host driver) acorn32. Compiled on several other
affected architectures.
virtual memory reservation and a private pool of memory pages -- by a scheme
based on memory pools.
This allows better utilization of memory because buffers can now be allocated
with a granularity finer than the system's native page size (useful for
filesystems with e.g. 1k or 2k fragment sizes). It also avoids fragmentation
of virtual to physical memory mappings (due to the former fixed virtual
address reservation) resulting in better utilization of MMU resources on some
platforms. Finally, the scheme is more flexible by allowing run-time decisions
on the amount of memory to be used for buffers.
On the other hand, the effectiveness of the LRU queue for buffer recycling
may be somewhat reduced compared to the traditional method since, due to the
nature of the pool based memory allocation, the actual least recently used
buffer may release its memory to a pool different from the one needed by a
newly allocated buffer. However, this effect will kick in only if the
system is under memory pressure.
the MI i2c "strtc" device.
XXX: This should use the MI "strtc" device - the M41T81 should be
compatible enough with the M41ST84 currently supported by that
driver.
<sys/bootblock.h>:
* Added definitions for the Master Boot Record (MBR) used by
a variety of systems (primarily i386), including the format
of the BIOS Parameter Block (BPB).
This information was cribbed from a variety of sources
including <sys/disklabel_mbr.h> which this is a superset of.
As part of this, some data structure elements and #defines
were renamed to be more "namespace friendly" and consistent
with other bootblocks and MBR documentation.
Update all uses of the old names to the new names.
<sys/disklabel_mbr.h>:
* Deprecated in favor of <sys/bootblock.h> (the latter is more
"host tool" friendly).
amd64 & i386:
* Renamed /usr/mdec/bootxx_dosfs to /usr/mdec/bootxx_msdos, to
be consistent with the naming convention of the msdosfs tools.
* Removed /usr/mdec/bootxx_ufs, as it's equivalent to bootxx_ffsv1
and it's confusing to have two functionally equivalent bootblocks,
especially given that "ufs" has multiple meanings (it could be
a synonym for "ffs", or the group of ffs/lfs/ext2fs file systems).
* Rework pbr.S (the first sector of bootxx_*):
+ Ensure that BPB (bytes 11..89) and the partition table
(bytes 446..509) do not contain code.
+ Add support for booting from FAT partitions if BOOT_FROM_FAT
is defined. (Only set for bootxx_msdos).
+ Remove "dummy" partition 3; if people want to installboot(8)
these to the start of the disk they can use fdisk(8) to
create a real MBR partition table...
+ Compile with TERSE_ERROR so it fits because of the above.
Whilst this is less user friendly, I feel it's important
to have a valid partition table and BPB in the MBR/PBR.
* Renamed /usr/mdec/biosboot to /usr/mdec/boot, to be consistent
with other platforms.
* Enable SUPPORT_DOSFS in /usr/mdec/boot (stage2), so that
we can boot off FAT partitions.
* Crank version of /usr/mdec/boot to 3.1, and fix some of the other
entries in the version file.
installboot(8) (i386):
* Read the existing MBR of the filesystem and retain the BIOS
Parameter Block (BPB) in bytes 11..89 and the MBR partition
table in bytes 446..509. (Previously installboot(8) would
trash those two sections of the MBR.)
mbrlabel(8):
* Use sys/lib/libkern/xlat_mbr_fstype.c instead of homegrown code
to map the MBR partition type to the NetBSD disklabel type.
Test built "make release" for i386, and new bootblocks verified to work
(even off FAT!).