- Pull rf_FreePhysDiskAddr() out from under a #ifdef, since we're now
going to use it.
- Add a pda_cleanup_list into the DAG header. Use it in rf_FreeDAG() to
cleanup any PDA's that get allocated but have no "easy" way of being
located and freed when the DAG completes.
- numStripeUnitsAccessed is a per-stripe value, and has a maximum
value equal to the number of colums (thus limited by RF_MAXCOL).
Use this knowledge to set a high-bound on overlappingPDAs, and stuff
it on the stack instead of malloc'ing it all the time! This costs us
a whopping 40 bytes on the stack, but saves a malloc() and a free().
Provide rf_AllocDAGNode() and rf_FreeDAGNode() to handle
allocation/freeing.
- Introduce a "nodes" linked list of RF_DagNode_t's into the DAG header.
Initialize nodes in InitHdrNode(). Arrange for nodes cleanup in rf_FreeDAG().
- Add a "list_next" to RF_DagNode_t to keep track of nodes on the
above "nodes" list. (This is distinct from the "next" field of
RF_DagNode_t, which keeps track of the firing order of nodes.)
"list_next" gets used in the cleanup routines, and in traversing
through a set of nodes that belong to a particular set of nodes
(e.g. those belonging to xorNodes for a given DAG).
- use rf_AllocDAGNode() instead of mallocs of variable-sized arrays of
RF_DagNode_t's. Mostly mechanical changes to convert the DAG construction
from "access nodes via an array index" to "access nodes via a 'nextnode'
pointer".
- rework a couple of tricky spots where assumptions about the node order
was being abused.
- performance remains consistent with performance before these changes.
[Thanks to Simon Burge (simonb at you.know.where) for looking over
the mechanical changes to make sure I didn't biff anything.]
bp->b_proc for mapping userspace buffers to kernelspace in the
original rf_kintf.c. That means bp isn't of any use in RF_BZERO()
for us, and the macro can be replaced with just the memset().
No functional changes.
was just an accident in the first place. Cleanup function decls and
a few comments. [ok.. so I wasn't going to fix this many.. but once
you're on a roll....]
- all freelists converted to pools
- initialization of structure members in certain cases where
code was relying on specific allocation and usage properties
to keep structures in a "known state" (that doesn't work with
pools!).
- make most pool_get() be "PR_WAITOK" until they can be analyzed
further, and/or have proper error handling added.
- all RF_Mallocs zero the space returned, so there is no difference
between RF_Calloc and RF_Malloc. In fact, all the RF_Calloc()'s
do is tend to do is get things horribly confused.
Make RF_Malloc() the "general memory allocator", with
RF_MallocAndAdd() the "general memory allocator with
allocation list".
- some of these RF_Malloc's et al. are destined to disappear.
- remove rf_rdp_freelist entirely (it's not used anywhere!)
- remove: #include "rf_freelist.h"
- to the files that were relying on the above, add: #include "rf_general.h"
- add: #include "rf_debugMem.h" to rf_shutdown.h to make it happy
about the loss of: #include "rf_freelist.h".
This shrinks an i386 GENERIC kernel by approx 5K. RAIDframe now
weighs in at about 162K on i386.
of strenuous agreement, and some general agreement, this commit is
going ahead because it's now starting to block some other changes I
wish to make.]
Remove most of the support for the concept of "rows" from RAIDframe.
While the "row" interface has been exported to the world, RAIDframe
internals have really only supported a single row, even though they
have feigned support of multiple rows.
Nothing changes in configuration land -- config files still need to
specify a single row, etc. All auto-config structures remain fully
forward/backwards compatible.
The only visible difference to the average user should be a
reduction in the size of a GENERIC kernel (i386) by 4.5K. For those
of us trolling through RAIDframe kernel code, a lot of the driver
configuration code has become a LOT easier to read.
the stuff that used to live in rf_types.h, rf_raidframe.h, rf_layout.h,
rf_netbsd.h, rf_raid.h, rf_decluster,h, and a few other places.
Believe it or not, when this is all done, things will be cleaner.
No functional changes to RAIDframe.
out-dated comments, and other unneeded stuff. This helps prepare
for cleaning up the rest of the code, and adding new functionality.
No functional changes to the kernel code in this commit.
Carnegie Mellon University. Full RAID implementation, including
levels 0, 1, 4, 5, 6, parity logging, and a few other goodies.
Ported to NetBSD by Greg Oster.