any threads are created turned out to be not such a good idea.
there are stronger requirements on what has to work in a forked child
while a process is still single-threaded. so take all that stuff
back out and fix the problems with single-threaded programs that
are linked with libpthread differently, by checking if the library
has been started and doing completely different stuff if it hasn't been:
- for pthread_rwlock_timedrdlock(), just fail with EDEADLK immediately.
- for sem_wait(), the only thing that can unlock the semaphore is a
signal handler, so use sigsuspend() to wait for a signal.
- for pthread_mutex_lock_slow(), just go into an infinite loop
waiting for signals.
I also noticed that there's a "sem2" test that has never worked in its
single-threaded form. the problem there is that a signal handler tries
to take a sem_t interlock which is already held when the signal is received.
fix this too, by adding a single-threaded case for sig_trywait() that
blocks signals instead of using the userland interlock.
call pthread__start() if it hasn't already been called. this avoids
an internal assertion from the library if these routines are used
before any threads are created and they need to sleep.
fixes PR 20256, PR 24241, PR 25722, PR 26096.
After exiting the try-again loop, make one more test of the lock
conditions, in case it was released while a signal handler kept the
thread busy past the alarm expiration.
- return EPERM when unlocking a lock which isn't held
=> prevent the failure in PR 24023, where the citrus code had a deadlocking
code path
- remove deadlock check in pthread_rwlock_tryrdlock, return EBUSY instead
=> makes pthread_rwlock_tryrdlock standards compliant