frank's scheme, with one new twist: don't wait until we've totally run
out of free pages before committing, but instead notice when we've built
up a largish range of uncommitted pages and commit only the older half of
the range, which is likely to already be on disk on the server.
- remove special treatment of pager_map mappings in pmaps. this is
required now, since I've removed the globals that expose the address range.
pager_map now uses pmap_kenter_pa() instead of pmap_enter(), so there's
no longer any need to special-case it.
- eliminate struct uvm_vnode by moving its fields into struct vnode.
- rewrite the pageout path. the pager is now responsible for handling the
high-level requests instead of only getting control after a bunch of work
has already been done on its behalf. this will allow us to UBCify LFS,
which needs tighter control over its pages than other filesystems do.
writing a page to disk no longer requires making it read-only, which
allows us to write wired pages without causing all kinds of havoc.
- use a new PG_PAGEOUT flag to indicate that a page should be freed
on behalf of the pagedaemon when it's unlocked. this flag is very similar
to PG_RELEASED, but unlike PG_RELEASED, PG_PAGEOUT can be cleared if the
pageout fails due to eg. an indirect-block buffer being locked.
this allows us to remove the "version" field from struct vm_page,
and together with shrinking "loan_count" from 32 bits to 16,
struct vm_page is now 4 bytes smaller.
- no longer use PG_RELEASED for swap-backed pages. if the page is busy
because it's being paged out, we can't release the swap slot to be
reallocated until that write is complete, but unlike with vnodes we
don't keep a count of in-progress writes so there's no good way to
know when the write is done. instead, when we need to free a busy
swap-backed page, just sleep until we can get it busy ourselves.
- implement a fast-path for extending writes which allows us to avoid
zeroing new pages. this substantially reduces cpu usage.
- encapsulate the data used by the genfs code in a struct genfs_node,
which must be the first element of the filesystem-specific vnode data
for filesystems which use genfs_{get,put}pages().
- eliminate many of the UVM pagerops, since they aren't needed anymore
now that the pager "put" operation is a higher-level operation.
- enhance the genfs code to allow NFS to use the genfs_{get,put}pages
instead of a modified copy.
- clean up struct vnode by removing all the fields that used to be used by
the vfs_cluster.c code (which we don't use anymore with UBC).
- remove kmem_object and mb_object since they were useless.
instead of allocating pages to these objects, we now just allocate
pages with no object. such pages are mapped in the kernel until they
are freed, so we can use the mapping to find the page to free it.
this allows us to remove splvm() protection in several places.
The sum of all these changes improves write throughput on my
decstation 5000/200 to within 1% of the rate of NetBSD 1.5
and reduces the elapsed time for "make release" of a NetBSD 1.5
source tree on my 128MB pc to 10% less than a 1.5 kernel took.
adjusted via sysctl. file systems that have hash tables which are
sized based on the value of this variable now resize those hash tables
using the new value. the max number of FFS softdeps is also recalculated.
convert various file systems to use the <sys/queue.h> macros for
their hash tables.
prevents us losing the locked state of the old vnode.
fvdl thinks the old vnode is certain to be locked at this point. I've put in
a KASSERT to be on the safe side.
This seems to fix PR kern/12661.
havoc if the server erroneously uses the same filehandle for
different files. This changes back revision 1.28; the PR that
that revision fixed doesn't apply anymore, it has been verified
not to be a problem with this change.
that required to support NFSv2 mounts. Not finished yet, but already
provides some 44k of saving in code size on arm26. More savings, and some
documentation, are still to come.
in vfs_detach(). vfs_done may free global filesystem's resources,
typically those allocated in respective filesystem's init function.
Needed so those filesystems which went in via LKM have a chance to
clean after themselves before unloading. This fixes random panics
when LKM for filesystem using pools was loaded and unloaded several
times.
For each leaf filesystem, add appropriate vfs_done routine.
UVM was written by chuck cranor <chuck@maria.wustl.edu>, with some
minor portions derived from the old Mach code. i provided some help
getting swap and paging working, and other bug fixes/ideas. chuck
silvers <chuq@chuq.com> also provided some other fixes.
this is the rest of the MI portion changes.
this will be KNF'd shortly. :-)
the directory cache as translation table. See nfs_subs.c for comments.
Makes the code a bit more complex to look at than I would have liked,
but doesn't affect the speed of the default behavior.
* Optimize caching behavior a bit when buffers are invalidated.
* Save some RPCs in readdir operations by not bothering if there is
a small amount left to do to fill the buffer. It'll be done in the
next RPC with a larger chunk anyway. Wastes a bit of buffer space
but is faster.
* Make n_vattr an allocated vattr struct. This avoids nfsnode bloat,
and is friendlier to the malloc routines.
directory cookie that may be thrown back at us from userspace, up
to a size limit. Fixes double entry problem.
* Split flags for internal and external use in the NFS mount structure.
* Fix some buffer structure fields that weren're being used correctly.
* Fix missing directory cache inval call in nfs_open.
* Limit on NFS_DIRBLKSIZ no longer needed, bumped to the more reasonable
value of 8k.
* Various other things that I forget, all related to the dir caching
somehow, though.
In readdirplus, don't keep such pointers but store the file attributes
in a variable instead until they are needed. Change nfsm_loadattr*
a bit so it can accept a direct pointer to an nfs_fattr structure.
architectures), truncate them intelligently instead.
The truncation is done centralized in vnode_pager.c.
This prevents from wrap-over effects when parts of large (>2^32 byte) files
are mmapped.
Don't allow to mmap above the numerical range of vm_offset_t.
This is considered a temporary solution until the vm system handles the
object sizes/offsets more cleanly.
with full pathname lookups if a public filehandle is used, and that
it translates the '%' escapes (URL-style) in the same case. Also,
make nfsrv_fhtovp convert the public filehandle to the vp of the
publicly exported filesystem, as stored in the nfs_pub structure.
the client and server/shared data initialization into separate functions,
and calling the server/shared initialization directly from main().
Problem noted in PR #1308 (Kenneth Stailey) and PR #1780 (Chris Demetriou).
Fix suggested in PR #1780 by Chris Demetriou, and munged a bit by me,
and OK'd by Frank van der Linden <fvdl@netbsd.org>.
Improve the queuing algorithms used by NFS' asynchronous i/o. The
existing mechanism uses a global queue for some buffers and the
vp->b_dirtyblkhd queue for others. This turns sequential writes into
randomly ordered writes to the server, affecting both read and write
performance. The existing mechanism also copes badly with hung
servers, tending to block accesses to other servers when all the iods
are waiting for a hung server.
The new mechanism uses a queue for each mount point. All asynchronous
i/o goes through this queue which preserves the ordering of requests.
A simple mechanism ensures that the iods are shared out fairly between
active mount points.
Reviewed/integrated/approved by Frank van der Linden <fvdl@netbsd.org>
struct member cn_nameptr 'const', since they should never be used to
modify the path name. (Only the pathname buffer, cn_pnbuf, should be
modified.) Propagate the const poisoning to code that uses the namei
and componentname structs.
XID confusions with servers that cache them over a long period and
with clients that reboot quickly.
Problems: because of the sanity check that is done by comparing the system
time with filesystem time, XIDs will start at 0 until root is mounted,
which means it isn't completely safe for diskless setups. But it's clearly
better than it was. It would also be cleaner if all XID handling (more
generally, all RPC handling) within the kernel went through the
same functions.
* Never change the NQNFS flag and/or version when just doing an update mount.
Fixes a problem that made diskless booting impossible under some
circumstances.
directory problems.
XXX There is no clean solution to the cookie/cookieverifier validity mess.
Together with the disabled strict cookie check, this puts us back at
what v2 did in this case. Slightly better solution possible by
consequently storing 64bit cookies in other places too.