- don't use managed mappings/backing objects for wired memory allocations.
save some resources like pv_entry. also fix (most of) PR/27030.
- simplify kernel memory management API.
- simplify pmap bootstrap of some ports.
- some related cleanups.
0. Fix it by returning the peer's block size.
XXX: This is the minimal fix. Probably the buffer size should be initialized
somewhere else, but probably this would need some more code changes.
1. make fileops const
2. add 2 new negative errno's to `officially' support the cloning hack:
- EDUPFD (used to overload ENODEV)
- EMOVEFD (used to overload ENXIO)
3. Created an fdclone() function to encapsulate the operations needed for
EMOVEFD, and made all cloners use it.
4. Centralize the local noop/badop fileops functions to:
fnullop_fcntl, fnullop_poll, fnullop_kqfilter, fbadop_stat
do { ... } while(/*CONSTCOND*/0)
so that they can be used unadorned in if/else blocks, etc. This means
that you now *have* to put a ; at the end of the "call" to these
macros.
the number of bytes in the send queue, and FIONSPACE reports the
number of free bytes in the send queue. These ioctls permit applications
to monitor file descriptor transmission dynamics.
In examining prior art, FIONWRITE exists with the semantics given
here. FIONSPACE is provided so that programs may easily determine how
much space is left in the send queue; they do not need to know the
send queue size.
The fact that a write may block even if there is enough space in the
send queue for it is noted in the documentation.
FIONWRITE functionality may be used to implement TIOCOUTQ for Linux
emulation - Linux extended this ioctl to sockets, even though they are
not ttys.
to pool_init. Untouched pools are ones that either in arch-specific
code, or aren't initialiased during initial system startup.
Convert struct session, ucred and lockf to pools.
would be good) mostly copied from sysctl(3). This takes care of the
top-level, most of kern.* and hw.* (modulo the ath and bge stuff), and
all of proc.*.
If you don't want the added rodata in your kernel, use "options
SYSCTL_NO_DESCR" in your kernel config.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
* introduce fsetown(), fgetown(), fownsignal() - this sets/retrieves/signals
the owner of descriptor, according to appropriate sematics
of TIOCSPGRP/FIOSETOWN/SIOCSPGRP/TIOCGPGRP/FIOGETOWN/SIOCGPGRP ioctl; use
these routines instead of custom code where appropriate
* make every place handling TIOCSPGRP/TIOCGPGRP handle also FIOSETOWN/FIOGETOWN
properly, and remove the translation of FIO[SG]OWN to TIOC[SG]PGRP
in sys_ioctl() & sys_fcntl()
* also remove the socket-specific hack in sys_ioctl()/sys_fcntl() and
pass the ioctls down to soo_ioctl() as any other ioctl
change discussed on tech-kern@
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
Avoids a lot of casting and removes the need for some line breaks.
Removed a load of (caddr_t) casts from calls to copyin/copyout as well.
(approved by christos - he has a plan to remove caddr_t...)
Treat +ve numbers as process group ids and -ve as pids (see tcsetpgrp() in part of current session.
Treat +ve numbers as process group ids and -ve as pids - see tcsetpgrp(3).
(approved by christos)
conditions at points where it's necessary to access both the up-stream
and down-stream parts of the bi-directional pipe data structure. These
are marked `XXXSMP' in the code.
Also, since the changes are pretty invasive, there little point in keeping
all the "#ifdef FreeBSD" code around; so all of that has been stripped out.
malloc types into a structure, a pointer to which is passed around,
instead of an int constant. Allow the limit to be adjusted when the
malloc type is defined, or with a function call, as suggested by
Jonathan Stone.
and seems like generally sensible (more sensible than not doing so), so done
in generic code rather than compat glue only
Change proposed in PR kern/18767 by Emmanuel Dreyfus.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
indicating an unhandled "command". ERESTART is -1, which can lead to
confusion. ERESTART has been moved to -3 and EPASSTHROUGH has been
placed at -4. No ioctl code should now return -1 anywhere. The
ioctl() system call is now properly restartable.
Changes:
* MP locking changes (mostly FreeBSD specific)
XXXSMP the MP locking macros are noops on NetBSD for now
* kevent fix (FreeBSD rev. 1.87): when the last reader/writer
disconnects, ensure that anybody who is waiting for the kevent
on the other end of the pipe gets EV_EOF
* kill __P
deal with shortages of the VM maps where the backing pages are mapped
(usually kmem_map). Try to deal with this:
* Group all information about the backend allocator for a pool in a
separate structure. The pool references this structure, rather than
the individual fields.
* Change the pool_init() API accordingly, and adjust all callers.
* Link all pools using the same backend allocator on a list.
* The backend allocator is responsible for waiting for physical memory
to become available, but will still fail if it cannot callocate KVA
space for the pages. If this happens, carefully drain all pools using
the same backend allocator, so that some KVA space can be freed.
* Change pool_reclaim() to indicate if it actually succeeded in freeing
some pages, and use that information to make draining easier and more
efficient.
* Get rid of PR_URGENT. There was only one use of it, and it could be
dealt with by the caller.
From art@openbsd.org.
expecting pmap_kenter_pa() to be used to replace an existing mapping,
plus it just seems like a bad idea to keep around mappings of pages
that may be freed and reused.