we no longer need to guard against access from hardware interrupt handlers.
Additionally, if cloning a process with CLONE_SIGHAND, arrange to have the
child process share the parent's lock so that signal state may be kept in
sync. Partially addresses PR kern/37437.
proclist_mutex and proclist_lock into a single adaptive mutex (proc_lock).
Implications:
- Inspecting process state requires thread context, so signals can no longer
be sent from a hardware interrupt handler. Signal activity must be
deferred to a soft interrupt or kthread.
- As the proc state locking is simplified, it's now safe to take exit()
and wait() out from under kernel_lock.
- The system spends less time at IPL_SCHED, and there is less lock activity.
- Add a lot of missing selinit() and seldestroy() calls.
- Merge selwakeup() and selnotify() calls into a single selnotify().
- Add an additional 'events' argument to selnotify() call. It will
indicate which event (POLL_IN, POLL_OUT, etc) happen. If unknown,
zero may be used.
Note: please pass appropriate value of 'events' where possible.
Proposed on: <tech-kern>
- Add a KAUTH_PROCESS_SCHEDULER action, to handle scheduler related
requests, and add specific requests for set/get scheduler policy and
set/get scheduler parameters.
- Add a KAUTH_PROCESS_KEVENT_FILTER action, to handle kevent(2) related
requests.
- Add a KAUTH_DEVICE_TTY_STI action to handle requests to TIOCSTI.
- Add requests for the KAUTH_PROCESS_CANSEE action, indicating what
process information is being looked at (entry itself, args, env,
open files).
- Add requests for the KAUTH_PROCESS_RLIMIT action indicating set/get.
- Add requests for the KAUTH_PROCESS_CORENAME action indicating set/get.
- Make bsd44 secmodel code handle the newly added rqeuests appropriately.
All of the above make it possible to issue finer-grained kauth(9) calls in
many places, removing some KAUTH_GENERIC_ISSUSER requests.
- Remove the "CAN" from KAUTH_PROCESS_CAN{KTRACE,PROCFS,PTRACE,SIGNAL}.
Discussed with christos@ and yamt@.
The general trend is to remove it from all kernel interfaces and
this is a start. In case the calling lwp is desired, curlwp should
be used.
quick consensus on tech-kern
tech-kern:
- Invert priority space so that zero is the lowest priority. Rearrange
number and type of priority levels into bands. Add new bands like
'kernel real time'.
- Ignore the priority level passed to tsleep. Compute priority for
sleep dynamically.
- For SCHED_4BSD, make priority adjustment per-LWP, not per-process.
from doc/BRANCHES:
idle lwp, and some changes depending on it.
1. separate context switching and thread scheduling.
(cf. gmcgarry_ctxsw)
2. implement idle lwp.
3. clean up related MD/MI interfaces.
4. make scheduler(s) modular.
If we cannot write on the slave side, always return EWOULDBLOCK in the
non-blocking case, because we don't know that the buffer we started
writing is actually in a system call boundary.
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html