- finish implementing splraiseipl (and makeiplcookie).
http://mail-index.NetBSD.org/tech-kern/2006/07/01/0000.html
- complete workqueue(9) and fix its ipl problem, which is reported
to cause audio skipping.
- fix netbt (at least compilation problems) for some ports.
- fix PR/33218.
and install ${TOOLDIR}/bin/${MACHINE_GNU_PLATFORM}-disklabel,
${TOOLDIR}/bin/${MACHINE_GNU_PLATFORM}-fdisk by "reaching over" to
the sources in ${NETBSDSRCDIR}/sbin/{disklabel fdisk}/.
To avoid clashes with a build-host's header files, especially on
*BSD, the host-tools versions of fdisk and disklabel search for
#includes such as disklabel.h, disklabel_acorn.h, disklabel_gpt.h,
and bootinfo.h in a new #includes namespace, nbinclude/. That is,
they #include <nbinclude/sys/disklabel.h>, <nbinclude/machine/disklabel.h>,
<nbinclude/sparc64/disklabel.h>, instead of <sys/disklabel.h> and
such. I have also updated the system headers to #include from
nbinclude/-space when HAVE_NBTOOL_CONFIG_H is #defined.
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
counters. These counters do not exist on all CPUs, but where they
do exist, can be used for counting events such as dcache misses that
would otherwise be difficult or impossible to instrument by code
inspection or hardware simulation.
pmc(9) is meant to be a general interface. Initially, the Intel XScale
counters are the only ones supported.
Be consistant in the way that MSIZE, MCLSHIFT, MCLBYTES and NMBCLUSTERS
are defined.
Remove old VM constants from cesfic port.
Bump MSIZE to 256 on mipsco (the only one that wasn't already 256).
and use appropriately
- create more helper macros:
. cdev__xyz_init(c,n), such as cdev__ocri_init() for
/* open, close, read, ioctl */, etc.
. cdev__xRy_init(c,n), where nullop is used instead of enodev to dummy out
method `R' and the comments now read /* xxx (read) yyy */ instead
. cdev__xyz_t_init(c,n,t) - as per cdev__xyz_init, but sets d_type = t
as well
- use seltrue instead of dev_noimpl(poll,*), as (IIRC) cdevsw.d_poll should
always DTRT WRT returning a valid result. (a few devices previously
incorrectly returned ENODEV)
- use dev_noimpl(stop,enodev) instead of dev_noimpl(stop,nullop) if tty
== 0, because it doesn't matter if dev_type_stop isn't implemented in that
case, and it allows the use of the cdev__xyz_init macros. certain ports
(sparc,sparc64,x68k) used the nullop method for dev_type_stop in a few
drivers, whereas everything else uses enodev
- ensure that the comments are accurate WRT the behaviour of a given entry
- for sizeof(void *) == 8 arch, this is mandatory. MHLEN is too small
already (less than 80) and there are chances for unwanted packet loss due
to m_pullup restriction.
- for other cases, the change should avoid allocating clusters in most cases
(even when you have IPv4 IPsec tunnel, or IPv6 with moderate amount of
extension header)
portmasters: if your arch chokes with the change (high memory usage or
whatever), please backout the change for your arch.
contains the values __SIMPLELOCK_LOCKED and __SIMPLELOCK_UNLOCKED, which
replace the old SIMPLELOCK_LOCKED and SIMPLELOCK_UNLOCKED. These files
are also required to supply inline functions __cpu_simple_lock(),
__cpu_simple_lock_try(), and __cpu_simple_unlock() if locking is to be
supported on that platform (i.e. if MULTIPROCESSOR is defined in the
_KERNEL case). Change these functions to take an int * (&alp->lock_data)
rather than the struct simplelock * itself.
These changes make it possible for userland to use the locking primitives
by including <machine/lock.h>.