request (not always the passed in DMA tag if we try direct-map
and then fall back to sgmap-mapped). Use the actual window
when performing dmamap_sync and dmamap_unload operations.
Fixes DMA resource leak on systems with 2G+ RAM. Thanks to
Matt Thomas for help debugging this.
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.
Rather than an "iointr" routine that decomposes a vector into an
IRQ, we maintain a vector table directly, hooking up each "iointr"
routine at the correct vector. This also allows us to hook device
interrupts up to specific vectors (c.f. Jensen).
We can shave even more cycles off, here, and I will, but it requires
some changes to the alpha_shared_intr stuff.
common routine into the individual load routines, since each load
routine needs to muddle with the "internals" of this operation.
Add a `prefetch threshold' member to the bus_dma_tag_t, so that
eventually we can determine whether or not to allocate a spill
page on a per-mapping basis.
- pmap_enter()
- pmap_remove()
- pmap_protect()
- pmap_kenter_pa()
- pmap_kremove()
as described in pmap(9).
These calls are relatively conservative. It may be possible to
optimize these a little more.
<vm/pglist.h> -> <uvm/uvm_pglist.h>
<vm/vm_inherit.h> -> <uvm/uvm_inherit.h>
<vm/vm_kern.h> -> into <uvm/uvm_extern.h>
<vm/vm_object.h> -> nothing
<vm/vm_pager.h> -> into <uvm/uvm_pager.h>
also includes a bunch of <vm/vm_page.h> include removals (due to redudancy
with <vm/vm.h>), and a scattering of other similar headers.
"off_t" and the return value is a "paddr_t" to allow mappings
at offsets past 2^31 bytes. Somewhat inspired by FreeBSD, which
only changed the offset to a "vm_offset_t".
Includes updates for the i386, pc532 and sh3 mmmmap from Jason Thorpe.
managed pages, into KVA space. Since the pages are managed, we should
use pmap_enter(), not pmap_kenter_pa().
Also, when entering the mappings, enter with an access_type of
VM_PROT_READ | VM_PROT_WRITE. We do this for a couple of reasons:
(1) On systems that have H/W mod/ref attributes, the hardware
may not be able to track mod/ref done by a bus master.
(2) On systems that have to do mod/ref emulation, this prevents
a mod/ref page fault from potentially happening while in an
interrupt context, which can be problematic.
This latter change is fairly important if we ever want to be able to
transfer DMA-safe memory pages to anonymous memory objects; we will need
to know that the pages are modified, or else data could be lost!
Note that while the pages are unowned (i.e. "just DMA-safe memory pages"),
they won't consume any swap resources, as the mappings are wired, and
the pages aren't on the active or inactive queues.
* Map the message buffer with access_type = VM_PROT_READ|VM_PROT_WRITE `just
because'.
* Map the file system buffers with access_type = VM_PROT_READ|VM_PROT_WRITE to
avoid possible problems with pagemove().
* Do not use VM_PROT_EXEC with either of the above.
* Map pages for /dev/mem with access_type = prot. Also, DO NOT use
pmap_kenter() for this, as we DO NOT want to lose modification information.
* Map pages in dumpsys() with VM_PROT_READ.
* Map pages in m68k mappedcopyin()/mappedcopyout() and writeback() with
access_type = prot.
* For now, bus_dma*(), pmap_map(), vmapbuf(), and similar functions still use
access_type = 0. This should probably be revisited.